Phase Two Environmental Site Assessment

3056 Neyagawa Boulevard & 1039 Dundas Street West Oakville, Ontario

Prepared For:

NEATT Sixteen Mile Creek Inc. 5926 Chercover Court Burlington, ON L7L 6T1

DS Project No: 22-012-101

Date: 2024-05-15

Executive Summary

i

DS Consultants Ltd. (DS) was retained by NEATT Sixteen Mile Creek Inc. (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the Property located at 3056 Neyagawa Boulevard & 1039 Dundas Street West & 1039 Dundas Street West, Oakville, Ontario, herein referred to as the "Phase Two Property" or "the Site". It is DS' understanding that this Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property for residential purposes. It is further understood that the proposed development consists of eight (8) blocks of twenty-five (25) storey apartment buildings with up to four (4) levels of underground parking (P4).

The Phase Two ESA was completed in general accordance with the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to assess whether contaminants are present, and if present, at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase Two Property is an irregularly shaped 8.12-hectare (20.0 acres) parcel of land situated within a mixed residential, community and commercial neighbourhood in the Town of Oakville, Ontario. The Phase Two Property is located approximately 110 m northwest of the intersection of Neyagawa Boulevard and Dundas Street West.

The Site is currently developed with seven structures. 3056 Neyagawa Boulevard was occupied by residential tenants, including a 320 m² two-storey rectangular-shaped residential dwelling (Site Building A) with one level of basement and attached two-car garage located within the northeastern portion of the Site. A detached 280 m² residential double car garage (Site Building B) located along the eastern portion of the Site. One canvas shed (Shed 1) approximately 10 m² located along the northern portion of the Site. Multiple (more than 10) shipping containers were present adjacent to the gravel driveway within the northeastern, western and central portions of the Site. The southwestern portion of the Site was comprised of agricultural land.

1039 Dundas Street West was occupied by St. Peter & Paul Serbian Orthodox Church and comprised of a 120 m² one-storey rectangular-shaped common area (Site Building C) with an attached 30 m² storage shed (Shed 3). To the south of this is a 650 m² irregular shaped building (Site Building D) which is used as an event hall and is outfitted with a commercial kitchen. A chapel is present on the central portion of the Site (Site Building E), occupying an

approximate footprint of 100 m² and an enclosed 40 m² gazebo is present along the northern portion of the Site. Towards the southwestern portion of the Site is an asphalt paved fenced area with an abandoned trailer and several cars. A Telus telecommunication tower is present along the northern Property boundary and a gravel paved driveway winds through the Site in a north-south orientation connecting Site Buildings C, D and E to Dundas Street West. The remaining balance of the Site was landscaped grass, trees and shrubbery. A small paved playground is present on the south-central portion of the Site along the gravel driveway. The Site Buildings were constructed between 1985 and 2005.

A total of twenty (20) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, of which fifteen (15) are considered to be contributing to fifteen (15) APECs on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (COPC) identified is presented in the table below:

Table E-1: Summary of APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1A	Northeastern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1B	Central portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1C	Entire Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-5	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1D	Vicinity of former Site Building F, located in the southwestern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-11	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1E	Vicinity of former Site Building G, located in the southern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-12	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1F	Vicinity of former Shed 2, located in the southern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-14	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-2	Northern portion of the Site	#58: Waste Disposal and Waste	Off-Site PCA-6	PHCs, VOCs, BTEX, Metals, As,	Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
		Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.		Sb, Se, CN-, Cr (VI), Hg, PAHs	
APEC-3	Southwestern portion of the Site in the vicinity of former orchard	#40: Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site PCA-8	OCPs	Soil
APEC-4A	Northern portion of the Property in the vicinity of Shed 1.	#N/S: Storage of miscellaneous debris, refuse and boats	On-Site PCA-13	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4B	Eastern portion of the Site	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-15	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4C	Central portion of the Site immediately north of agricultural field	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-16	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4D	Southern portion of the Site immediately south of agricultural field	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-17	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-5A	Eastern portion of the Site	#N/S: Inferred application of deicing agents	On-Site PCA-18	EC, SAR Sodium, Chloride	Soil Groundwater
APEC-5B	Western portion of the Site	#N/S: Inferred application of deicing agents	On-Site PCA-19	EC, SAR Sodium, Chloride	Soil Groundwater
APEC-6	Within the Vicinity of Site Building B	#27: Garages and Maintenance and Repair of	On-Site PCA-20	PHCs, VOCs, BTEX, Metals, As,	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
		Railcars, Marine Vehicles and Aviation Vehicles		Sb, Se, Cr (VI), Hg, PAHs	

Notes:

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

BTEX = Benzene, Toluene, Ethylbenzene, Xylene

OCPs = Organochlorine Pesticides

PAHs = Polycyclic Aromatic Hydrocarbons

PHCs = Petroleum Hydrocarbons

VOCs = Volatile Organic Compounds

Based on the findings of the Phase One ESA, a Phase Two ESA was recommended to assess the soil and groundwater conditions on the Phase Two Property.

The Phase Two ESA involved the advancement of eight(8) test pits (TP1 to TP8), which were completed on January 10, 2022. The test pits were advanced to a maximum depth of 3.5 metres below ground surface (mbgs) under the supervision of DS personnel. Additionally, twenty-one (21) boreholes (BH23-1 to BH23-21) were advanced on the Phase Two Property, in conjunction with a preliminary geotechnical and hydrogeological investigation, between June 5, 2023 and June 25, 2023. The boreholes were advanced to depths ranging from 1.4 to 18.8 mbgs. Ten (10) boreholes were instrumented with monitoring wells (BH23-1 to BH23-9 and BH23-17) and screened at depths ranging from 3.1 to 18.4 mbgs. In addition, existing monitoring wells (BH1 to BH5) previously installed as part of a historic geotechnical investigation, were utilized to monitor groundwater levels.

Groundwater monitoring wells installed in two (2) of the boreholes (BH23-9 and BH23-17), and three (3) existing monitoring wells (BH1, BH2 and BH4) were utilized to facilitate the collection of groundwater samples and the assessment of groundwater flow direction. The test pit and borehole locations were determined based on the findings of the Phase One ESA. All APECs were investigated using test pits, boreholes and/or monitoring wells in accordance with the requirements of O.Reg. 153/04 (as amended). Soil and groundwater samples were collected and submitted for analysis of all COPCs as follows:

Soil Samples Submitted for Analysis:

Twenty-two (22) soil samples were submitted for analysis of Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR. Three (3) soil samples were also submitted for analysis of pH only;

- Eleven (11) soil samples were submitted for analysis of Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- Eleven (11) soil samples were submitted for analysis of Volatile Organic Compounds (VOCs);
- Eighteen (18) soil samples were submitted for analysis of Polyaromatic Hydrocarbons (PAHs);
- Eleven (11) soil samples were submitted for analysis of Organochlorine Pesticides (OCPs).

Groundwater samples were obtained from the five (5) monitoring wells (BH1, BH2, BH4, BH23-9 and BH23-17) and submitted for analysis of metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, VOCs and PAHs.

The soil and groundwater analytical results were compared to the "Table 2: Full Depth Potable – Residential/Parkland – Coarse Grain" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 Standards) for residential/ parkland/institutional property use.

Based on the results of the Phase Two ESA, DS presents the following findings:

- A surficial layer of topsoil approximately 150 to 250 mm in thickness was encountered in all test-pits (TP1 to TP8) and boreholes BH23-5, BH23-6 and BH23-7 advanced. An asphalt layer, approximately 150 mm in thickness, was encountered at the ground surface in borehole BH23-8 and a 50 mm thick layer of granular fill consisting of sand and gravel was present at the ground surface in borehole BH23-2. Fill materials consisting of clayey silt to silty clay with trace rootlets/organics and/or weathered shale, and cobble fragments were present in all boreholes extending to depths ranging from 0.8 to 1.5 mbgs. Beneath the fill strata, the native soil generally consisted of silty clay till extending to depths of between 1.6 to 3.1 m in all the boreholes. Shale bedrock was encountered at approximate depths ranging from 2.3 to 3.3 mbgs which extended to a maximum termination depth of 18.8 mbgs, and was confirmed by coring.
- The depth to groundwater was measured in seven (7) monitoring wells installed during the course of this investigation (the remaining wells were utilized solely as part of a hydrogeological investigation conducted concurrently). The monitoring wells were screened to intercept the groundwater table. On July 19, 2023 the groundwater levels were found to range between 2.66 to 4.12 mbgs, with

groundwater elevations ranging between 150.83 and 156.38 masl. Based on the groundwater elevations recorded, the groundwater flow direction was southwest towards the Sixteen Mile Creek. It is possible that the groundwater levels may vary seasonally. The groundwater flow direction can only be confirmed through long term monitoring.

- The results of the soil chemical analyses conducted indicated that all samples analyzed met the applicable Site Condition Standards.
- Groundwater samples were collected from the monitoring wells installed on the Phase Two Property and submitted for analysis of Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl, PHCs, VOCs and PAHs. The results of the chemical analyses conducted indicated the following exceedances of the Table 2 Standards:

Table E-1: Summary of Groundwater Impacts Identified

Sample ID	Well Screen Interval (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
BH1	0.5.5.5			700,000	900,000*
DUP 2 (BH1)	2.5-5.5	Chloride	μg/L	790,000	900,000*
MW23-9	3.1-6.1	Chloride	μg/L	790,000	810,000

Notes

1. 0.0 = Concentration exceeds Table 2 SCS

The result of the groundwater chemical analysis indicated an elevated concentration of chloride present in groundwater collected from monitoring wells BH1 and BH23-9. Both boreholes are located adjacent to driveways/parking areas on the Property that are subjected to de-icing agents during winter. Per Section 49.1 (1) of O.Reg. 153/04 (as amended) "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the site condition standards for chloride in groundwater is deemed not to be exceeded.

Based on the findings of this Phase Two ESA, DS presents the following conclusions and recommendations:

All of the soil and groundwater samples analysed were found to satisfy the applicable SCS. As such, it is the opinion of the QP_{ESA} that the applicable SCS for soil and

^{2. * -} Exemption pertaining to the application of road salt for pedestrian and vehicular safety is applied per Section 49.1 of O. Reg 153/04

groundwater at the Phase Two Property have been met and No further investigation is recommended at this time;

All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

Table of Contents

1.0	Introduction	
1.1	Site Description	
1.2 1.3	Current and Proposed Future UseApplicable Site Condition Standards	
2.0	Background Information	
2.0	Physical Setting	
∠. 1	2.1.1 Water Bodies and Areas of Natural Significance	
	· · · · · · · · · · · · · · · · · · ·	
2.2	2.1.2 Topography and Surface Water Draining Features Past Investigations	
3.0	· ·	
3.0	Scope of the Investigation Overview of Site Investigation	
3.2	Media Investigated	
0.2	3.2.1 Rationale for Inclusion or Exclusion of Media	
	3.2.2 Overview of Field Investigation of Media	
3.3	Phase One Conceptual Site Model	
0.0	3.3.1 Potentially Contaminating Activity Affecting the Phase One Property	
	3.3.2 Contaminants of Potential Concern	
	3.3.3 Underground Utilities and Contaminant Distribution and Transport	
	3.3.4 Geological and Hydrogeological Information	
	3.3.5 Uncertainty and Absence of Information	
3.4	Deviations from Sampling and Analysis Plan	
3.5	Impediments	
4.0	Investigation Method	14
4.1	General	.14
4.2	Drilling and Excavating	
4.3	Soil Sampling	
4.4 4.5	Field Screening Measurements	
4.6	Groundwater Monitoring Well InstallationGroundwater Field Measurement of Water Quality Parameters	
4.7	Groundwater Sampling	
4.8	Sediment Sampling	
4.9	Analytical Testing	
4.10	Residue Management Procedures	.20
	4.10.1 Soil Cuttings From Drilling and Excavations	. 20
	4.10.2 Water from Well Development and Purging	. 20
	4.10.3 Fluids from Equipment Cleaning	
4.11	Elevation Surveying	
4.12	Quality Assurance and Quality Control Measures	.20

	4.12.1 Sample containers, preservation, labelling, handling and custody samples submitted for laboratory analysis, including any deviations from the 20	•
	4.12.2 Description of equipment cleaning procedures followed durin sampling	•
	• •	
	4.12.3 Description of how the field quality control measures referred subsection 3 (3) were carried out	
	4.12.4 Description of, and rational for, any deviations from the procedures se	
5.0	in the quality assurance and quality control program set out in the SAP Review and Evaluation	
5.0 5.1	GeologyGeology	
5.2	Ground Water Elevations and Flow Direction	23
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	23
	5.2.2 Results of Interface Probe Measurements	23
	5.2.3 Product Thickness and Free Flowing Product	23
	5.2.4 Groundwater Elevation	
	5.2.5 Groundwater Flow Direction	24
	5.2.6 Assessment of Potential for Temporal Variability in Groundwater	Flow
	Direction	24
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the V Table 24	Water
5.3	Ground Water Hydraulic Gradients	24
	5.3.1 Horizontal Hydraulic Gradient	24
	5.3.2 Vertical Hydraulic Gradient	25
5.4	Fine-Medium Soil Texture	25
	5.4.1 Results of Grain Size Analysis	25
	5.4.2 Rational for the Number of Samples Collected and Analyzed	
5.5	Soil Guality	
5.6	Soil Quality	
	5.6.1 Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	
	5.6.2 Petroleum Hydrocarbons	
	5.6.3 Volatile Organic Compounds	
	5.6.4 Polycyclic Aromatic Hydrocarbons	
	5.6.5 Organochlorine Pesticides (OCPs)	
5.7	5.6.6 Commentary on Soil QualityGround Water Quality	
J. 1	or ourid water Quarty	∠0

	5.7.1 Metals and As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl	28
	5.7.2 Petroleum Hydrocarbons	29
	5.7.3 Volatile Organic Compounds	29
	5.7.4 Polycyclic Aromatic Hydrocarbons	
	5.7.5 Commentary on Groundwater Quality	
5.8	Sediment Quality	
5.9	Quality Assurance and Quality Control Results	31
5.10	Phase Two Conceptual Site Model	33
6.0	Conclusions	33
6.1	Qualifications of the Assessors	35
6.2	Signatures	
6.3	Limitations	37
7.0	References	38
TABLE Table 1-	S -1: Phase Two Property Information	2
	-1: Rationale of Sampling Media	
	-2: Field Investigation of Media	
Table 3-	-3: Summary of PCAs Contributing to APECs	11
Table 4-	-1: Summary of Drilling Activities	15
Table 4-	-2: Field Screening Equipment	17
Table 4-	-3: Summary of Sample Bottle Preservatives	20
Table 5-	-1: Summary of Geologic Units Investigated	22
Table 5-	-2: Summary of Horizontal Hydraulic Gradient Calculations	25
Table 5-	-3: Summary of Grain Size Analyses	25
Table 5-	-4: Summary of ORP Impacts in Groundwater – January 2022	28
	-5: Summary of ORP Impacts in Groundwater – June 2023	
Table 5-	-6: Summary of QA/QC Results	31

Enclosures

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Phase One Property Site Plan
- Figure 3 Phase One Study Area
- Figure 4 PCAs within Phase One Study Area
- Figure 5 Borehole/Monitoring Well Location Plan with APECs
- Figure 5A Geological Cross Section A-A'
- Figure 6 Groundwater Elevation Contours and Flow Direction
- Figure 7A Soil Characterization Metals & Hydride Forming Metals
- Figure 7B Soil Characterization ORPs
- Figure 7C Soil Characterization PHCs
- Figure 7D Soil Characterization VOCs
- Figure 7E Soil Characterization PAHs
- Figure 7F Soil Characterization OCPs
- Figure 8A Groundwater Characterization Metals & Hydride Forming Metals
- Figure 8B Groundwater Characterization ORPs
- Figure 8C Groundwater Characterization PHCs
- Figure 8D Groundwater Characterization VOCs
- Figure 8E Groundwater Characterization PAHs
- Figure 9 Contaminant Transport Diagram

TABLES

- Table 1 Summary of Monitoring Well Installation and Groundwater Data
- Table 2 Summary of Soil Samples Submitted for Chemical Analysis
- Table 3 Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 4 Summary of APECs Investigated
- Table 5 Summary of Metals and ORPs in Soil
- Table 6 Summary of PHCs in Soil
- Table 7 Summary of VOCs in Soil
- Table 8 Summary of PAHs in Soil
- Table 9 Summary of OCPs in Soil
- Table 10 Summary of Metals & ORPs in Groundwater
- Table 11 Summary of PHCs in Groundwater
- Table 12 Summary of VOCs in Groundwater

Table 13 – Summary of PAHs in Groundwater

Table 14 – Summary of Maximum Concentrations in Soil

Table 15 – Summary of Maximum Concentrations in Groundwater

APPENDICES

Appendix A – Sampling and Analysis Plan

Appendix B – Borehole Logs

Appendix C – Laboratory Certificates of Analysis

Appendix D – Phase Two Conceptual Site Model

1

1.0 Introduction

DS Consultants Ltd. (DS) was retained by NEATT Sixteen Mile Creek Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property located at 3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario, herein referred to as the "Phase Two Property" or "the Site". It is DS' understanding that this Phase Two ESA has been requested for due diligence purposes in association with the proposed redevelopment of the Property for residential purposes. It is further understood that the proposed development consists of eight (8) blocks of twenty-five (25) storey apartment buildings with up to four (4) levels of underground parking (P4).

The intended future property use (residential) does not constitute a more sensitive property use, as defined under O.Reg. 153/04 (as amended) than the current residential and institutional use. Given that the proposed change in property use is not to a more sensitive property use, the filing of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) will not be mandated under O.Reg. 153/04 (as amended).

The Phase Two ESA was completed in general accordance with the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Phase Two ESA is to assess whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is an irregularly shaped 8.12-hectare (20.0 acres) parcel of land situated within a mixed residential, community and commercial neighbourhood in the Town of Oakville, Ontario. The Phase Two Property is located approximately 110 m northwest of the intersection of Neyagawa Boulevard and Dundas Street West. A Site Location Plan depicting the general location of the Phase Two Property is provided in Figure 1.

For the purposes of this report, Dundas Street West is assumed to be aligned in an east-west orientation, and Neyagawa Boulevard in a north-south orientation. A survey of the property was not available at the time of this investigation.

The Site is currently developed with eight structures. 3056 Neyagawa Boulevard was occupied by residential tenants, including a 320 m² two-storey rectangular-shaped residential dwelling (Site Building A) with one level of basement and attached two-car

garage located within the northeastern portion of the Site. A detached 280 m² residential double car garage (Site Building B) located along the eastern portion of the Site. One canvas shed (Shed 1) approximately 10 m² located along the northern portion of the Site. Multiple (more than 10) shipping containers were present adjacent to the gravel driveway within the northeastern, western and central portions of the Site. The southwestern portion of the Site was comprised of agricultural land.

1039 Dundas Street West was occupied by St. Peter & Paul Serbian Orthodox Church and comprised of a 120 m² one-storey rectangular-shaped common area (Site Building C) with an attached 30 m² storage shed (Shed 3). South of Shed 3 is a 650 m² irregularly shaped building (Site Building D) which is used as an event hall and is outfitted with a commercial kitchen. A chapel is present on the central portion of the Site (Site Building E), occupying an approximate footprint of 100 m². An enclosed 40 m² gazebo is present within the northern portion of the Site. An asphalt paved fenced area with an abandoned trailer and several cars is present within the southwestern portion of the Site. A Telus telecommunication tower is present on-Site adjacent to the northern Property boundary.

A gravel paved driveway traverses through the Site in a north-south orientation connecting Site Buildings C, D and E to Dundas Street West. The remaining balance of the Site consisted of landscaped grass, trees and shrubbery. A small, paved playground is present on the south-central portion of the Site adjacent to the gravel driveway.

A Site Plan depicting the orientation of the buildings on-Site is provided in Figure 2.

Additional details regarding the Phase Two Property are provided in the table below.

Table 1-1: Phase Two Property Information

Criteria	Information	Source
Legal Description	3056 Neyagawa Boulevard PT LT 21, CON 1 TRAF NDS, PT 2 20R5073, EXCEPT PT 1 HR683869 & PTS 1 & 2 ON EXPROPRIATION PLAN HR1105049; TOWN OF OAKVILLE 1039 Dundas Street West PT LT 21, CON 1 TRAF NDS, PT 1 20R5073; TOWN OF OAKVILLE	Ontario Land Registry
Property Identification Number (PIN)	3056 Neyagawa Boulevard: 24928-0267 1039 Dundas Street West:	Ontario Land Registry

Criteria	Information	Source
	24928-0063	
Municipal Address	3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario	Google Earth
Zoning	Future Development	Oakville Zoning Map Zoning By-Law 2009 – 189
Property Owner	3056 Neyagawa Boulevard: NEATT 16 Mile Creek Inc. 1039 Dundas Street West: St. Peter and Paul Serbian Orthodox Parish of Oakville and Mississauga	Ontario Land Registry
Property Owner Contact Information	Evan Kernaghan Representative of the Property Owner evan.kernaghan@neattcommunities.com	Phase One Questionnaire
Current Site Occupants	Residential Tenants and Church	Site Reconnaissance
Site Area	8.12-hectare (20.0 acres)	Google Earth
Centroid UTM Coordinates	Northing: 4813105.37 m N Easting: 601272.44 m E Zone: 17T	Google Earth

1.2 Current and Proposed Future Use

The Phase Two Property is currently occupied by residential tenants on the eastern parcel and a church on the western parcel, these are considered to be residential and institutional Property Use respectively under O.Reg. 153/04 (as amended). It is DS's understanding that the Client intends to redevelop the Site for residential use.

1.3 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Phase Two Property are considered by the Qualified Person (QP) to be the Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils as contained in the April 15, 2011 Ontario Ministry of Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment

Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "Table 2 SCS".

The selection of the Table 2 SCS is considered appropriate based on the following rationale:

- The Town of Oakville obtains its potable water from Lake Ontario, and does not rely on groundwater as a potable water source;
- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Phase Two Property will be residential;
- The Site is not located within 30 m of a water body, and;
- Bedrock was not encountered within 2 metres of the ground surface.

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

During the site visit, standing water was not observed on the Property. The nearest body of water to the Phase Two Property is Sixteen Mile Creek, located approximately 450 m to the southwest. Environmentally Significant Areas are natural areas that have been identified as significant and worthy of protection on three criteria – ecology, hydrology and geology. Municipalities have developed policies to protect natural heritage features. The Region uses Environmentally Significant Areas as a means to protect natural areas like wetlands, fish habitat, woodlands, habitat of rare species, groundwater recharge and discharge areas, and Areas of Natural and Scientific Interest.

The Property includes no Areas of Natural Significance.

2.1.2 Topography and Surface Water Draining Features

The topography on the Phase One Property and within the Phase One Study Area is generally flat with a surficial elevation of 160 metres above sea level (masl) and a slight slope to the southwest. Based on the local topography, the shallow groundwater flow direction is inferred to be southwest towards Sixteen Mile Creek, which is located approximately 450 metres southwest of the Phase One Property. Based on a review of the MECP well records, the depth to groundwater in the vicinity of the Phase One Property is approximately 3.6 to 5.5 mbgs. The shallow groundwater flow direction within the Phase One Study Area is inferred to be southwest towards Sixteen Mile Creek.

The Site is situated within a Till Plains physiographic region. The surficial geology within the Phase One Study area is described as "Till, clay to silt-textured till (derived from glaciolacustrine deposits or shale)", and the bedrock is described as "shale, limestone, dolostone, siltstone, of the Queenston Formation". Based on a review of MECP Well Records, the bedrock underlying the Phase One Property is anticipated to be present at a depth of between 2.0 to 4.0 mbgs.

2.2 Past Investigations

DS was provided with the following reports for review by the Client:

- ""Phase One Environmental Site Assessment, 3056 Neyagawa Boulevard, Oakville, Ontario" dated September 3, 2021, prepared by AEL Environment, prepared for Diana McGowan (Former Property Owner).
- "Preliminary Geotechnical Investigation, 3056 Neyagawa Boulevard, Oakville, Ontario", prepared for NEATT Communities, prepared by DS Consultants Ltd., dated August 2023 (DS 2023 Geotechnical Report); and
- "Preliminary Hydrogeological Investigation, 3056 Neyagawa Boulevard, Oakville, Ontario", prepared for NEATT Communities, prepared by DS Consultants Ltd., dated September 2023 (DS 2023 Hydrogeology Report)

These reports were reviewed to assess the presence of known or suspected PCAs and APECs, and to determine if there are known soil and/or groundwater impacts on the Phase One Property or on Properties within the Phase One Study Area.

AEL 2021 Phase I ESA

AEL Environment (AEL) completed a Phase I ESA in 2021 which encompassed the eastern portion of the Phase One Property associated with the municipal address 3056 Neyagawa Boulevard, Oakville, Ontario. The Phase I ESA was reportedly completed in accordance with the requirements of the Canadian Standards Association (CSA Standard Z768-01 (R2016)). DS notes the following pertinent details presented by AEL:

◆ AEL indicated that the Site was occupied by one residential dwelling, one separate residential garage, and approximately ten (10) storage containers at the time of their assessment. AEL also notes that a gravel driveway was present in the northeastern portion of the site, and that a field used for growing and harvesting agricultural crops was present within the southern portion of the site. Cleared areas with gravel ground cover were present within the central-north and eastern portions of the Site.

- ◆ AEL noted that historic records and aerial photographs indicated that the property was developed in the late 1980s or early 1990s for residential/agricultural use. Aerial photographs obtained from the Town of Oakville show clear evidence of the current site buildings by 1996. Prior to this, the Site use was likely agricultural or vacant until it was developed for residential/agricultural use.
- AEL reported a gravel material stockpile containing soil of unknown origin located to the north/northeast of the residential garage.
- According to the Phase One Interview provided by AEL the property owner indicated that fill material of unknown origin may have been placed on the central portion of the property.
- ♦ AEL did not identify any PCAs or APECs on the Site, stating that a Phase Two ESA is not recommended at this time based on only the low potential for Site impacts from historical importation of gravel fill.
- AEL also stated that off-Site downgradient/transgradient bulk fuel operations and gasoline USTs present a low potential for Site impacts.
- AEL concluded that there were no environmental liabilities of high likelihood at the Site requiring immediate further investigation as of the report date and that the Site is suitable for the current (residential) property use.
- Based on photographs provided by AEL it is inferred that light vehicle servicing has likely taken place within the residential garage.

DS 2023 Geotechnical Report

DS Consultants Ltd (DS) completed a preliminary geotechnical investigation for the proposed residential development located on the eastern portion of the Site (at 3056 Neyagawa Boulevard). It is understood that the proposed development will involve the construction of several blocks comprised of 18 to 27-storey high-rise buildings with an eight (8) storey podium and four (4) levels of underground parking (P4).

In 2022, a preliminary geotechnical investigation was conducted by SHAD and Associates Inc. (SHAD). The investigation involved the advancement of five (5) boreholes (BH1 to BH5) on the eastern portion of the Site, pertaining to 3056 Neyagawa Boulevard, extending to depths ranging from 8.1 to 9.4 metres below existing grade. All five (5) boreholes were instrumented with monitoring wells (BH1 to BH5).

DS' supplementary geotechnical investigation involved the advancement of an additional eight (8) boreholes (BH23-1 to BH23-8) between June 5 and June 15, 2023, extending to

depths ranging from 18.6 to 18.8 metres below ground surface (mbgs). All of the boreholes were equipped with monitoring wells upon completion. A surficial layer of topsoil ranging in thickness from 150 to 250 mm was encountered at the ground surface in boreholes BH23-5, BH23-6, and BH23-7. An asphaltic concrete layer, about 150 mm in thickness, was encountered at the ground surface in borehole BH23-8 and a 50 mm thick layer of granular fill consisting of sand and gravel was present at the ground surface in borehole BH23-2. Fill materials consisting of clayey silt to silty clay with trace rootlets/organics, organic staining, weathered shale, and cobble fragments were present in all boreholes extending to depths ranging from 0.8 to 1.5 m. Beneath the fill layer soils generally consisted of silty clay till/shale complex with thicknesses ranging from 0.2 to 0.9 m in all the boreholes. Shale bedrock was encountered at approximate depths ranging from 2.3 to 3.3 m, corresponding to elevations 152.2 to 157.0 metres above sea level (masl).

The static water levels were measured in the newly installed monitoring wells (BH23-1 to BH23-8) on June 26, 2023, and July 19, 2023. On June 26, 2023, the groundwater levels across the Site ranged between 2.5 to 12.9 mbgs; on July 19, 2023, groundwater levels ranged between 2.8 to 13.1 mbgs.

DS 2023 Hydrogeology Report

DS Consultants Limited (DS) was retained by NEATT Communities to complete a preliminary hydrogeological investigation for the proposed residential development located on the eastern portion of the Site (at 3056 Neyagawa Boulevard).

Between June 5, 2023, and June 25, 2023, DS conducted a hydrogeological investigation in conjunction with the geotechnical and environmental investigation. Twenty-one (21) boreholes (BH23-1 to BH23-21) were advanced to depths ranging from 1.4 to 18.8 meters below ground surface (mbgs). Ten (10) boreholes were instrumented with monitoring wells (BH23-1 to BH23-9 and BH23-17) and screened at depths ranging from 3.1 to 18.4 mbgs. DS also utilized five (5) existing monitoring wells (BH1 to BH5) installed by SHAD and Associates Inc. as part of the preliminary geotechnical investigation in 2022. Boreholes BH1 to BH5 were drilled to depths ranging from 8.1 to 9.4 mbgs and screened at depths ranging from 1.5 to 7.1 mbgs.

The groundwater levels were measured in all available monitoring wells on June 26, 2023, and July 19, 2023. The interpreted local direction of hydraulic movement across the Site is inferred to be in a southwestern direction, towards East Sixteen Mile Creek.

3.0 Scope of the Investigation

The scope of the Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Phase Two ESA was conducted in general accordance with O.Reg. 153/04 (as amended). The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- ◆ In January 2022, a contractor was retained to advance eight (8) test pits (TP1 to TP8) on the eastern portion of the Phase Two Property using a backhoe under the supervision of DS personnel, to depths ranging between 2.3 to 3.5 metres below ground surface (mbgs).
- Retained a MECP licenced driller to advance twenty-one (21) additional boreholes in June 2023 (BH23-1 to BH23-21), which were advanced to depths ranging from 1.4 to 18.8 mbgs on the western portion of the Phase Two Property. Ten (10) of the boreholes were instrumented with groundwater monitoring wells (BH23-1 to BH23-9 and BH23-17) upon completion.
- The soil lithology was logged during the excavation, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using (RKI Eagle 2 MultiGas Detector), and examined for visual and olfactory indications of soil impacts;
- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;
- Conducted groundwater level measurements in the monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction:
- Surveyed all monitoring wells to a geodetic benchmark;

- Developed and purged all monitoring wells prior to sampling.
- Collection of groundwater samples from monitoring wells;
- Compared all soil and groundwater analytical data to the applicable MECP SCS; and
- Prepared a Phase Two ESA Report in general accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA,
		based on the historical operations conducted on-Site.
Groundwater	Included	Groundwater was identified as a media of potential impact in the Phase
		One ESA, based on the historical operations conducted on-Site.
Sediment	Excluded	Sediment was not identified as a media of concern by the Phase One
		ESA.
Surface Water	Excluded	Surface water was not identified as a media of concern by the Phase
		One ESA.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation
Soil	Eight (8) test pits (TP1 to TP8) were advanced on the Phase Two Property in January
	2022 to a maximum depth of 3.5 mbgs. Soil samples were collected and submitted for
	analysis of COPCs as follows:
	TP1, TP5, TP7: Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs,
	PHCs, BTEX, VOCs;
	TP2, TP3, TP4: Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs,
	pH, and;
	TP6 and TP8: Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs.
	An additional, thirteen (13) additional boreholes were advanced in June 2023 (BH23-9 to
	BH23-21). Soil samples were collected and submitted for analysis of COCPs, as follows:

Media	Methodology of Investigation		
	♦ BH23-9, BH23-10, BH23-17, BH23-21: Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI),		
	Hg, pH, and SAR, OCPs, PAHs, PHCs, BTEX, VOCs;		
	BH23-11, BH23-12: Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR;		
	BH23-13, BH23-18: OCPs, Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and		
	SAR;		
	♦ BH23-14: OCPs;		
	BH23-16, BH23-20: Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR,		
	PAHs, PHCs, BTEX, VOCs, and;		
	BH23-19: OCPs, Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs.		
Groundwater	A total of ten (10) monitoring wells (MW23-1 to MW23-9 and MW23-17)) were installed by DS on the Phase Two Property. Five (5) monitoring wells (BH1 to BH5) were previously installed by SHAD and Associates Inc. (SHAD) in 2022, that were also used to facilitate the collection of representative groundwater samples and water levels. Groundwater sampling was completed within the installed monitoring wells as follows:		
	January 22, 2022 Groundwater samples were collected from BH1, BH2 and BH4 and submitted for analysis of all COPCs (Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, BTEX, VOCs, PAHs).		
	June 30, 2023 Groundwater samples were collected from BH23-9 and BH23-17 and submitted for analysis of all COPCs (Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, BTEX, VOCs, PAHs).		

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at 3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario. The Phase One Conceptual Site Model is presented in Figures 1 through 5, which visually depict the following:

- Any existing buildings and structures
- Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks

Areas of Potential Environmental Concern

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 4. The PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

Table 3-3: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
1	#30: Importation of Fill Material of Unknown Origin	AEL (2021) reported a gravel material stockpile containing soil of unknown origin located to the north/northeast of the residential garage.	PCA is on-Site
2	#30: Importation of Fill Material of Unknown Origin	According to the Phase One Interview provided by AEL the current property owner indicated that fill material of unknown origin may have been placed on the western portion of 3056 Neyagawa Boulevard.	PCA is on-Site
5	#30: Importation of Fill Material of Unknown Origin	DS geotechnical investigation (2023) encountered fill material extending to depths ranging from 0.8 to 1.5 mbgs across the entire Site.	PCA is on-Site
6	#58: Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	3070 – 3090 Neyagawa Blvd, the north adjacent property, had one (1) record in the Ontario Regulation 347 Waste Generators database in 2015 and 2021 for alkaline solutions – other metals and non-metals paint/pigment/coating residues, oils & lubricants, inorganic and organic laboratory chemicals, light fuels and organic acids.	PCA is immediately upgradient of the Site.
8	#40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	In the 1934 aerial imagery an orchard can be observed on the southwest portion of the Phase One Property.	PCA is on-Site
11	#30: Importation of Fill Material of Unknown Origin	In the 1965 aerial imagery the residential dwelling (Former Site Building F) on the southwestern portion of the Property, along Dundas Street West, appears to have been demolished.	PCA is on-Site
12	#30: Importation of Fill Material of Unknown Origin	The residential dwelling (Former Site Building G) on the southern portion of the Property has been demolished.	PCA is on-Site
13	#N/S: Storage of miscellaneous debris, refuse and boats	Miscellaneous debris, refuse and boats appears to have been stored at the Site for extended periods of time within the western extent of the Property in the vicinity of Shed 1.	PCA is on-Site

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale	
14	#30: Importation of Fill Material of Unknown Origin	A shed appears to have been formerly located in the southern portion of the Site (Former Shed 2) from at least 2004 to 2007. The structure was subsequently demolished and fill material of unknown origin may have been utilized for grading/infilling at this location.	PCA is on-Site	
15	#N/S: Storage of miscellaneous debris and refuse	Based on historic imagery and the Site Reconnaissance, storage of miscellaneous debris and refuse appears to have taken place within the eastern portion of the Site.	PCA is on-Site	
16	#N/S: Storage of miscellaneous debris and refuse	Based on historic satellite imagery, areas within the western portion of 3056 Neyagawa Boulevard, immediately north of the current agricultural field appears to have been utilized for the storage of miscellaneous debris and refuse.	PCA is on-Site	
17	#N/S: Storage of miscellaneous debris and refuse	Based on historic satellite imagery, an area within the southern portion of the Site immediately south of the current agricultural field appears to have been utilized for the storage of miscellaneous debris and refuse.	PCA is on-Site	
18	#N/S: Application of De-Icing Agents	It is inferred that de-icing agents have been utilized upon the driveways present within the eastern portion of the Property for the purpose of pedestrian and vehicular safety.	PCA is on-Site	
19	#N/S: Application of De-Icing Agents	It is inferred that de-icing agents have been utilized upon the driveways present within the western portion of the Property for the purpose of pedestrian and vehicular safety.	PCA is on-Site	
20	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Based on photographs provided by AEL it is inferred that light vehicle servicing has likely taken place within the residential garage.	PCA is on-Site	

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

3.3.2 Contaminants of Potential Concern

A summary of the contaminants of potential concern identified for each respective APEC is presented in Table 3-3 above. The following contaminants of potential concern were identified for the Phase One Property:

- Soil PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, Iow or high pH, SAR, PAHs, OCPs.
- Groundwater PHCs, VOCs, BTEX, PAHs, Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Plans were not available to confirm the depths of these utilities or whether they are present, however they are estimated to be installed at depths ranging from 2 to 3 metres below ground surface.

The depth to groundwater at the Phase One Property is inferred to be approximately 3.6 to 5.5 mbgs, therefore the utility corridors do have the potential to act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property.

3.3.4 Geological and Hydrogeological Information

The topography on the Phase One Property and within the Phase One Study Area is generally flat with a surficial elevation of 160 metres above sea level (masl) and a slight slope to the southwest. Based on the local topography, the shallow groundwater flow direction is inferred to be southwest towards Sixteen Mile Creek, which is located approximately 450 metres southwest of the Phase One Property. Based on a review of the MECP well records, the depth to groundwater in the vicinity of the Phase One Property is approximately 3.6 to 5.5 mbgs. The shallow groundwater flow direction within the Phase One Study Area is inferred to be southwest towards Sixteen Mile Creek.

The Site is situated within a Till Plains physiographic region. The surficial geology within the Phase One Study area is described as "Till, clay to silt-textured till (derived from glaciolacustrine deposits or shale)", and the bedrock is described as "shale, limestone, dolostone, siltstone, of the Queenston Formation". Based on a review of MECP Well Records, the bedrock underlying the Phase One Property is anticipated to be present at a depth of between 2.0 to 4.0 mbgs.

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended). All responses to database requests were received prior to completion of this report. This report reflects the best judgement of DS based on the information available at the time of the investigation.

Information used in this report was evaluated based on proximity to the Phase One Property, anticipated direction of local groundwater flow, and the potential environmental impact on the Phase One Property as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Phase Two ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase One ESA. The selected borehole locations are presented on Figure 5. The borehole locations were cleared of underground public and private utility

services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Table 4-1: Summary of Drilling Activities

Parameter De		tails		
Drilling Contractor	DK Environmental Equipment	Davis Drilling Ltd.		
Drilling Dates	January 10, 2022	June 5-25, 2023		
Drilling Equipment Used	336E Excavator	Track-mounted CME 75		
Measures taken to minimize the potential for cross contamination	 Soil samples were collected from the excavator bucket. Soil samples were extracted from the interior of the bucket rather than from areas in contact with the sidewalls. Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. 	 ♦ Soil sampling was conducted using a 50 mm stainless steel split spoon sampler. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination; ♦ Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; ♦ Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample; 		
Sample collection	Samples were recovered	Samples were collected at a frequency		
frequency	continuously from the excavator.	of every 0.6 m per 0.8 m from the		

Parameter	Details	
		ground surface to 3.1 mbgs, followed by
	one sample per 1.5 m to borehole	
		termination depth.

4.3 Soil Sampling

Soil samples were collected from the excavator bucket or using a 50 mm stainless steel split spoon sampler. Discrete soil samples were collected from the excavator bucket and split-spoon samplers by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of excavation, and recorded on field borehole logs. The borehole logs are presented under Appendix B. Additional detail regarding the lithology encountered in the boreholes is presented under Section 5.1.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination were noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's 'Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii)

sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Table 4-2: Field Screening Equipment

Parameter	Details	
Make and Model of Field Screening	RKI Eagle 2, Model 5101-P2	
Instrument	Serial Number: E2G721	
Chemicals the equipment can detect	VOCs with dynamic range of 0 parts per million (ppm) to	
and associated detection limits	2,000 ppm PHCs with range of 0 to 50, 000 ppm	
Precision of the measurements	3 significant figures	
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit	
Calibration reference standards	PID: Isobutylene	
	CGD: Hexane	
Procedures for checking calibration	In-field re-calibration of the RKI Eagle 2 was conducted (using the	
of equipment	gas standard in accordance with the operator's manual	
	instructions) if the calibration check indicated that the calibration	
	had drifted by more than +/- 10%.	

A summary of the soil headspace measurements is provided in the borehole logs, provided under Appendix B.

4.5 Groundwater Monitoring Well Installation

Monitoring wells were instrumented within ten (10) of the boreholes (BH23-1 to BH23-9 and BH23-17) advanced on the Phase Two Property. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 1.5 m or 3.1 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective flush mount and aboveground monument casings.

Details regarding the monitoring well construction can be found in Table 1 (Enclosed), and on the borehole logs provided in Appendix B.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

Monitoring wells were developed as follows:

- Monitoring wells BH1, BH2 and BH4 were developed on January 21, 2022, and;
- Monitoring wells MW23-9 and MW23-17 were developed on June 26, 2023.

In accordance with DS SOPs for monitoring well development, the wells were developed by removing a minimum of three standing water column volumes using dedicated inertial pumps comprised of Waterra polyethylene tubing and dedicated foot valves.

4.6 Groundwater Field Measurement of Water Quality Parameters

Field measurements of water quality parameters including temperature, specific conductivity, pH, turbidity, dissolved oxygen, oxidation-reduction potential and turbidity were collected using a flow-through cell and a YSI Water Quality Meter (YSI-556TM). The YSI Water Quality Meter was calibrated by the supplier Maxim Environmental in accordance with the manufacturer's specifications.

The measurements were conducted at regular intervals to determine whether stabilized geochemical conditions had been established in the monitoring well, indicating representative groundwater conditions.

The field measurements have been archived and can be provided upon request.

4.7 Groundwater Sampling

January 2022 Sampling Event (January 22, 2022)

Groundwater samples were collected from BH1, BH2 and BH4 a minimum of 24 hours after the development of the monitoring wells.

Monitoring wells BH1, BH2 and BH4 were purged using a peristaltic pump with dedicated 6.4 mm ID polyethylene tubing. A YSI Water Quality Meter equipped with a flow-through cell was used to monitor the geochemical conditions during purging to assess whether steady-state conditions were achieved prior to sampling.

Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro inline filters. The groundwater was transferred directly into laboratory supplied containers and preserved as appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage,

pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

June 2023 Sampling Event (June 30, 2023)

Groundwater samples were collected from MW23-9 and MW23-17 a minimum of 24 hours after the development of the monitoring wells.

Monitoring wells MW23-9 and MW23-17 were purged using a peristaltic pump with dedicated 6.4 mm ID polyethylene tubing. A YSI Water Quality Meter equipped with a flow-through cell was used to monitor the geochemical conditions during purging to assess whether steady-state conditions were achieved prior to sampling.

Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro inline filters. The groundwater was transferred directly into laboratory supplied containers and preserved as appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation. Sediment sampling was not conducted as a result.

4.9 Analytical Testing

The soil samples collected in 2022 and 2023 were submitted to SGS Canada Inc. (SGS) under chain of custody protocols. SGS is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. SGS conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

The groundwater samples collected in 2022 and 2023 were submitted to Bureau Veritas (BV) under chain of custody protocols. BV is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. BV conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.10 Residue Management Procedures

4.10.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the 2022 test pitting excavations were backfilled into each applicable test pit for later disposal at the time of Site redevelopment.

The soil cuttings generated by the 2023 borehole drilling program were stored in 205 L drums and left on-Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10.2 Water from Well Development and Purging

Excess water derived from well purging activities was stored in 20-L sealed plastic pails and temporarily stored on Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10.3 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and temporarily stored on-Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.11 Elevation Surveying

The ground surface elevations of the boreholes/monitoring wells were surveyed using a Sokkia GCX-2 GNSS RTK receiver, referenced to geodetic benchmark 04519910054 located near the intersection of Dundas Street West and Neyagawa Boulevard.

The ground surface elevations can be found on the borehole logs presented in Appendix B.

4.12 Quality Assurance and Quality Control Measures

4.12.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Table 4-3: Summary of Sample Bottle Preservatives

Media	Parameter	Sample Container	
0.11	PHCs F1	40 mL methanol preserved glass vial with septum lid.	
Soil	VOCs		

Media	Parameter	Sample Container	
PHCs F2-F4		120 mL or 250 mL unpreserved glass jar with Teflon™-lined lid.	
	metals and ORPs		
	PAHs		
	PHCs F1	40 mL glass vial with septum lid, containing sodium bisulphate	
	VOCs	preservative.	
Groundwater	PHCs F2-F4	250 mL amber glass bottle with sodium bisulphate preservative	
	PAHs	250 mL amber glass bottle (unpreserved)	
	Inorganics	500 mL high density polyethylene bottle (unpreserved)	
	Metals	125 mL high density polyethylene bottle containing nitric acid preservative	
Groundwater	Hexavalent Chromium	125 mL high density polyethylene bottle containing ammonium sulphate/ammonium hydroxide preservative	
Groundwater			
	Mercury	125 mL glass bottle containing hydrochloric acid preservative	
	Cyanide	125 mL high density polyethylene bottle containing sodium hydroxide	
		preservative	

Groundwater samples were collected using dedicated equipment for each well. Groundwater samples collected for analysis of dissolved metals, mercury and hexavalent chromium were filtered in the field using a dedicated 0.45-micron in-line filter. Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling, and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.12.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination. Non-dedicated equipment (i.e. interface probe, YSI water quality meter) was cleaned before initial use and between all measurement points with a solution of AlconoxTM and distilled water. The AlconoxTM solution was rinsed off using distilled water.

4.12.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis. A laboratory prepared trip blank accompanied the groundwater samples during each sampling event and was submitted for laboratory analysis of VOCs.

All field screening devices (i.e. RKI Eagle 2, YSI Water Quality Meter) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

4.12.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix B. The boundaries of soil indicated on the borehole logs and described below are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A surficial layer of topsoil approximately 150 to 250 mm in thickness was encountered in all test-pits (TP1 to TP8) and boreholes BH23-5, BH23-6 and BH23-7 advanced. An asphalt layer, approximately 150 mm in thickness, was encountered at the ground surface in borehole BH23-8 and a 50 mm thick layer of granular fill consisting of sand and gravel was present at the ground surface in borehole BH23-2. Fill materials consisting of clayey silt to silty clay with trace rootlets/organics and/or weathered shale, and cobble fragments were present in all boreholes extending to depths ranging from 0.8 to 1.5 mbgs. Beneath the fill strata, the native soil generally consisted of silty clay till extending to depths of between 1.6 to 3.1 m in all the boreholes. Shale bedrock was encountered at approximate depths ranging from 2.3 to 3.3 mbgs which extended to a maximum termination depth of 18.8 mbgs, and was confirmed by coring.

Table 5-1: Summary of Geologic Units Investigated

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Topsoil	0.1 to 0.25	157.00	155.80	-
Fill Material	0.5 to 0.7	156.1	154.60	Moist
Silty Clay Till	0.2 to 0.9	155.10	154.50	Very Moist
Shale Bedrock	Unknown	153.40	Unknown	-

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

Two (2) of the monitoring wells installed by DS on the Phase Two Property (MW23-9 and MW23-17) were utilized to assess the groundwater quality in relation to APEC-2 and APEC-5B. In addition, groundwater monitoring wells (BH1, BH2 and BH4) installed as part of the SHAD Geotechnical Investigation (2022) were also utilized for groundwater sampling purposes in relation to assessing APEC-2, APEC-5A, APEC-5B, and APEC-6. Two additional wells installed by SHAD (2022, namely BH3 and BH5) were utilized solely for groundwater monitoring purposes.

Monitoring wells were screened to intersect the first water bearing formation encountered, generally to allow for the assessment of LNAPL, and to provide information regarding the quality of the groundwater.

The remaining monitoring wells were installed on the Phase Two Property as a part of hydrogeological and geotechnical investigations conducted concurrently with the environmental investigation. These monitoring wells were not used to assess the groundwater conditions on-Site.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1 (Enclosed). The groundwater level measurements were collected using a Solinst interface probe (model 122). On July 19, 2023 the shallow groundwater levels were found to range between 2.66 to 4.12 mbgs.

There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1 (Enclosed). Generally, the groundwater elevation on July 19, 2023 was found to range from 150.83 and 156.38 masl in the aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was interpreted using the groundwater elevations calculated for the monitoring wells installed on the Phase Two Property. Based on the groundwater elevations calculated, the groundwater flow direction is interpreted to be southwest towards the Sixteen Mile Creek. The groundwater elevation contours, and flow direction are presented on Figure 6.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The shallow aquifer investigated is inferred to be an unconfined aquifer, based on the soil stratigraphy observed in the boreholes advanced on the Phase Two Property. It is possible that temporal variations in groundwater elevations may occur on the Phase Two Property in response to seasonal weather patterns.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The groundwater table was encountered at depths ranging from 2.66 to 4.12 mbgs on the Phase Two Property. Buried utility services are present on the Phase Two Property and are inferred to be situated at depths ranging between 2 and 3 mbgs. Therefore, there is potential for the utility corridors to act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase Two Property.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on July 19, 2023.

Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Till-Highly Weathered Shale Interface	Minimum: 0.013 m/m
	Average: 0.014 m/m
	Maximum: 0.015 m/m

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was not calculated, as no groundwater impacts were identified on the Phase Two Property.

5.4 Fine-Medium Soil Texture

A total of six (6) grain size analyses were conducted as part of this investigation. With respect to soil texture and the applicable SCS, although the grain size analyses indicate that more than two-thirds of the soil are considered as medium-fine textured, the more conservative coarse textured SCS were applied.

5.4.1 Results of Grain Size Analysis

A summary of the soil samples analyzed and the corresponding grain size results is presented in the table below:

Table 5-3: Summary of Grain Size Analyses

Sample	% Gravel	% Sand	% Silt	% Clay	Classification
BH23-1 SS2	4	21	49	26	Medium-fine textured
BH23-3 SS3	1	12	58	29	
BH23-5 SS3	4	18	52	26	
BH23-6 SS2	3	14	61	22	
BH23-7 SS4	3	20	53	24	
BH23-8 SS2	9	20	48	23	

5.4.2 Rational for the Number of Samples Collected and Analyzed

The grain size analyses were conducted as part of the geotechnical investigation which was conducted concurrently with the Phase Two ESA. At least one sample was analyzed per stratigraphic unit encountered in order to characterize the various strata encountered.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix B). The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. The PID readings ranged between non-detect (0 ppm) and 1 ppm. The CGD readings ranged between non-detect (0 ppm) and 15 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No visual or olfactory indications of deleterious materials were noted.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 5 through 9 (Enclosed). A visual summary of the location of the sample locations is provided in Figures 7A through 7F. The laboratory certificates of analysis have been provided under Appendix C.

5.6.1 Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR

The results of the analyses are tabulated in Table 5 (enclosed), and presented on Figure 7A and 7B.

January 2022

A total of nine (9) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of Metals and As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR. Three (3) soil samples were also submitted for analysis of pH only.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

June 2023

A total of thirteen (13) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of Metals and As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

5.6.2 Petroleum Hydrocarbons

The results of the analyses are tabulated in Table 6 (enclosed), and presented on Figure 7C. January 2022

A total of three (3) samples were submitted for analysis of PHCs (including BTEX).

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

June 2023

A total of eight (8) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of PHCs (including BTEX).

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

5.6.3 Volatile Organic Compounds

The results of the analyses are tabulated in Table 7 (enclosed), and presented on Figure 7D. <u>January 2022</u>

A total of three (3) samples were submitted for analysis of VOCs.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

June 2023

A total of eight (8) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of VOCs.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

5.6.4 Polycyclic Aromatic Hydrocarbons

The results of the analyses are tabulated in Table 8 (enclosed), and presented on Figure 7E. January 2022

A total of ten (10) samples, including two (2) field duplicates for QA/QC purposes, were submitted for analysis of PAHs.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

June 2023

A total of eight (8) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of PAHs.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

5.6.5 Organochlorine Pesticides (OCPs)

June 2023

A total of eleven (11) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of OCPs. The results of the analyses are tabulated in Table 9 (enclosed), and presented on Figure 7F.

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

5.6.6 Commentary on Soil Quality

It is the opinion of the QP_{ESA} that the applicable SCS for the soil at the Phase Two Property have been met.

5.7 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 10 through 13 (Enclosed). A visual summary of the location of the sample locations is provided in Figures 8A through 8E. The laboratory certificates of analysis have been provided under Appendix C.

5.7.1 Metals and As, Sb, Se, CN-, Cr (VI), Hg, Na, CI

The results of the analyses are tabulated in Table 10 (enclosed), and presented on Figure 8A and 8B.

January 2022

A total of five (5) samples, including two (2) field duplicates for QA/QC purposes, were submitted for analysis of Metals and As, Sb, Se, CN-, Cr (VI), Hg, Na, CI.

The results of the analyses indicated the following exceedances of the MECP Table 2 SCS:

Table 5-4: Summary of ORP Impacts in Groundwater – January 2022

Sample ID	Well Screen Interval (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
BH1	0.5.5.5	011		700,000	900,000*
DUP 2 (BH1)	2.5- 5.5	Chloride	µg/L	790,000	900,000*

Notes

^{1. 0.0 =} Concentration exceeds Table 2 SCS

^{2. * -} Exemption pertaining to the application of road salt for pedestrian and vehicular safety is applied per Section49.1 of O. Reg 153/04.

June 2023

A total of three (3) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of Metals and As, Sb, Se, CN-, Cr (VI), Hg, Na, CI.

The results of the analyses indicated the following exceedances of the MECP Table 2 SCS:

Table 5-5: Summary of ORP Impacts in Groundwater – June 2023

Sample ID	Well Screen Interval (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
MW23-9	3.1-6.1	Chloride	μg/L	790,000	810,000*

Notes

1. 0.0 = Concentration exceeds Table 2 SCS

5.7.2 Petroleum Hydrocarbons

The results of the analyses are tabulated in Table 11 (enclosed), and presented on Figure 8C.

January 2022

A total of five (5) samples, including two (2) field duplicates for QA/QC purposes, were submitted for analysis of PHCs (including BTEX).

The results of the analyses indicated that all of the samples analysed met the MECP Table 2 SCS.

June 2023

A total of three (3) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of PHCs (including BTEX).

The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.7.3 Volatile Organic Compounds

The results of the analyses are tabulated in Table 12 (enclosed), and presented on Figure 8D. January 2022

A total of five (5) samples, including two (2) field duplicates and a single trip blank for QA/QC purposes, were submitted for analysis of VOCs.

The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

<u>June 2023</u>

^{2. * -} Exemption pertaining to the application of road salt for pedestrian and vehicular safety is applied per Section 49.1 of O. Reg 153/04.

A total of three (3) samples, including one (1) field duplicate and trip blank for QA/QC purposes, were submitted for analysis of VOCs.

The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.7.4 Polycyclic Aromatic Hydrocarbons

The results of the analyses are tabulated in Table 13 (enclosed), and presented on Figure 8E. January 2022

A total of five (5) samples, including two (2) field duplicates for QA/QC purposes, were submitted for analysis of PAHs.

The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

June 2023

A total of three (3) samples, including one (1) field duplicate for QA/QC purposes, were submitted for analysis of PAHs.

The results of the chemical analyses conducted indicated that all samples analyzed met the MECP Table 2 SCS.

5.7.5 Commentary on Groundwater Quality

ORP

Groundwater containing elevated concentrations of chloride was identified in monitoring wells BH1 and BH23-9, respectively located adjacent to a driveway on the eastern and western portions of the Site.

Per Section 49.1 (1) of O.Reg. 153/04 (as amended), "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the site condition standards for chloride in groundwater is deemed not to be exceeded.

It is the opinion of the QP_{ESA} that the applicable SCS for groundwater at the Phase Two Property have been met for the purposes of filing an RSC.

5.8 Sediment Quality

Sediment was not identified as a media of concern by the Phase One ESA. Sediment sampling was not completed as a result.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* As described in Section 4.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples, and the use of a trip blank for each groundwater sampling event (when suitable). In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Table 5-6: Summary of QA/QC Results

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result						
	January 2022 Soil Sampling Event									
TP1-1	DUP 1	Soil	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	All results were within the analytical protocol criteria for RPD						
TP3-1	DUP 2	Soil	PAHs	All results were within the analytical protocol criteria for RPD						
TP4-1	DUP 3	Soil	PAHs	All results were within the analytical protocol criteria for RPD						
	January 2022 Groundwater Sampling Event									

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result		
BH1	DUP 2	Groundwater	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl, PHCs, VOCs, PAHs	All results were within the analytical protocol criteria for RPD		
BH2	DUP 1	Groundwater	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, VOCs, PAHs	All results were within the analytical protocol criteria for RPD		
		June	2023 Soil Sampling Event			
BH23-17 SS3	DUP-1	Soil	PHCs, BTEX, VOCs	All results were within the analytical protocol criteria for RPD		
BH23-18 SS1	DUP-2	Soil	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	All results were within the analytical protocol criteria for RPD		
BH23-9 SS2	DUP-3	Soil	PAHs	All results were within the analytical protocol criteria for RPD		
BH23-10 SS1	DUP-4	Soil	OCPs	All results were within the analytical protocol criteria for RPD		
	June 2023 Groundwater Sampling Event					
MW23-17	DUP1	Groundwater	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl, PHCs, VOCs, PAHs	All results were within the analytical protocol criteria for RPD		

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

BV and SGS routinely conduct internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the SGS QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix C.

With respect to subsection 47(3) of O.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix C.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the

QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

5.10 Phase Two Conceptual Site Model

A Phase Two Conceptual Site Model (CSM) was developed through a synthesis of the information obtained through the completion of the Phase One ESA, and the data collected as part of the Phase Two ESA. The Phase Two CSM is presented as Appendix D.

6.0 Conclusions

This Phase Two ESA involved the advancement of eight (8) test pits, and twenty-one (21) boreholes, ten (10) of which were instrumented with monitoring wells as well as the collection of soil and groundwater samples for analysis of the potential contaminants of concern, including:

- Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PHCs, VOCs, PAHs and OCPs in soil, and;
- Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, VOCs and PAHs in groundwater.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

- A surficial layer of topsoil approximately 150 to 250 mm in thickness was encountered in all test-pits (TP1 to TP8) and boreholes BH23-5, BH23-6 and BH23-7 advanced. An asphalt layer, approximately 150 mm in thickness, was encountered at the ground surface in borehole BH23-8 and a 50 mm thick layer of granular fill consisting of sand and gravel was present at the ground surface in borehole BH23-2. Fill materials consisting of clayey silt to silty clay with trace rootlets/organics and/or weathered shale, and cobble fragments were present in all boreholes extending to depths ranging from 0.8 to 1.5 mbgs. Beneath the fill strata, the native soil generally consisted of silty clay till extending to depths of between 1.6 to 3.1 m in all the boreholes. Shale bedrock was encountered at approximate depths ranging from 2.3 to 3.3 mbgs which extended to a maximum termination depth of 18.8 mbgs, and was confirmed by coring.
- The depth to groundwater was measured in seven (7) monitoring wells installed during the course of this investigation (the remaining wells were utilized solely as part of a hydrogeological investigation conducted concurrently). The monitoring

wells were screened to intercept the groundwater table. On July 19, 2023 the groundwater levels were found to range between 2.66 to 4.12 mbgs, with groundwater elevations ranging between 150.83 and 156.38 masl. Based on the groundwater elevations recorded, the groundwater flow direction was southwest towards the Sixteen Mile Creek. It is possible that the groundwater levels may vary seasonally. The groundwater flow direction can only be confirmed through long term monitoring.

- ♦ The results of the soil chemical analyses conducted indicated that all samples analyzed met the applicable Site Condition Standards.
- ◆ Groundwater samples were collected from selected monitoring wells installed on the Phase Two Property and submitted for analysis of Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, VOCs and PAHs. The results of the chemical analyses indicated that all of the groundwater samples analyzed met the MECP Table 2 RPI SCS, with the exception of an elevated concentration of chloride present in groundwater associated with monitoring wells BH1 and MW23-9. Both boreholes are located adjacent to driveways/parking areas on the Property which are subject to de-icing agents during winter. Per Section 49.1 (1) of O.Reg. 406/19, published December 4, 2019 "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the site condition standards for chloride in groundwater is deemed not to be exceeded.
- Based on the findings of this Phase Two ESA, it is the opinion of the QP_{ESA} that the applicable SCS for soil and groundwater at the Phase Two Property have been met. A Record of Site Condition may be filed for the Phase Two Property;
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

6.1 Qualifications of the Assessors

Fahmida Anwar, B.Sc.

Ms. Anwar is a Project Coordinator with DS Consultants Ltd. Fahmida holds a Bachelor of Science in Chemical Engineering from the American University of Sharjah (United Arab Emirates), as a well as a Post Graduate Certificate in Environmental Control from Sheridan College. Ms. Anwar has been working in the environmental sector since 2018 and has experience conducting Phase One and Phase Two Environmental Site Assessments.

Ms. Kirstin Olsen, MSc.

Ms. Olsen is a Senior Project Manager in the Environmental Services Department at DS Consultants Ltd. Ms. Olsen has a bachelor's degree in Animal, Plant and Environmental Science, as well as a Master of Science Degree in Environmental Science, Ecology and Conservation from the University of the Witwatersrand (Johannesburg, South Africa). Ms. Olsen has personally completed over three hundred detailed environmental assessments across a wide array of scientific disciplines including: Phase One & Two Environmental Site Assessments, Remedial Excavation & Injection Oversight, Hydrogeological Investigations, EASR Registration/PTTW Application, Aquatic Ecological Delineation, Assessment & Planning, Toxicological, Soil & Water Impact and Risk Assessment, as well as Environmental Construction Monitoring & Performance Auditing.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPesa

Mr. Fioravanti is the Vice President, Environmental Services with DS Consultants Ltd. Patrick holds an Honours Bachelor of Science with distinction in Toxicology from the University of Guelph, and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Patrick has over a decade of environmental consulting experience and has conducted and/or managed hundreds of projects in his professional experience. Patrick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, supported many risk assessments, and successfully filed Records of Site Condition with the Ministry of Environment and Climate Change. He has conducted work across southern and eastern Ontario, and Quebec in his professional experience. Patrick is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

6.2 Signatures

This Phase Two ESA was conducted under the supervision of Mr. Patrick (Rick) Fioravanti in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Prepared by

Fahmida Anwar, B.Sc.

Project Coordinator

Reviewed by:

Kirstin Olsen M.Sc. Senior Project Manager – Environmental Patrick M. Fioravanti, B.Sc., P.Geo. QP_{ESA} Vice President – Environmental Services

6.3 Limitations

This report was prepared for the sole use of NEATT Sixteen Mile Creek Inc. and is intended to provide an assessment of the environmental condition on the property located at 3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the site that was not apparent from the available information.

7.0 References

- Armstrong, D.K. and Dodge, J.E.P. Paleozoic Geology Map of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. Ground water. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.1of the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. *Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.*
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.
- AEL Environment, September 2021. Phase One Environmental Site Assessment, 3056 Neyagawa Boulevard, Oakville, Ontario
- DS Consultants Ltd., August 2023. Preliminary Geotechnical Investigation, 3056 Neyagawa Boulevard, Oakville, Ontario
- DS Consultants Ltd., September 2023. Preliminary Hydrogeological Investigation, 3056 Neyagawa Boulevard, Oakville, Ontario

Tables

<u>Table 1: Summary of Monitoring Well Installation and Groundwater Data</u>

	Well ID		BH1	BH2	вн3	BH4	BH5	MW23-9	MW23-17
Installed By:		SHAD	SHAD	SHAD	SHAD	SHAD	DS	DS	
I	nstallation Date:		18-Jan-22	18-Jan-22	20-Jan-22	20-Jan-22	21-Jan-22	Jun 19, 2023	Jun 16, 2023
	Well Status:		Active	Active	Active	Active	Active	Active	Active
Inner Diameter		mm	50	50	50	50	50	50	50
Surface Elevatio	n	masl	158.34	159.66	157.50	158.35	156.10	158.20	154.50
Bottom of Concr	ete Seal/Top of	mbgs	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Bentonite Seal		masl	158.04	159.36	157.20	158.05	155.80	157.90	154.20
Bottom of Bento	nite Seal/Top of	mbgs	1.80	3.40	0.90	2.50	1.70	2.40	2.40
Sand Pack		masl	156.54	156.26	156.60	155.85	154.40	155.80	152.10
Top of Well Scre	on	mbgs	2.40	4.00	1.50	3.10	2.30	3.10	3.10
Top of Well Scre	en	masl	155.94	155.66	156.00	155.25	153.80	155.10	151.40
Well Screen Len	gth	m	3.00	3.00	1.50	3.00	3.00	3.00	3.00
Bottom of Well S	Scroon	mbgs	5.40	7.00	3.00	6.10	5.30	6.10	6.10
bottom of wen s	creen	masl	152.94	152.66	154.50	152.25	150.80	152.10	148.40
			Gro	oundwater (GW	V) Monitoring				
28-Jan-22	Depth to GW	mbgs	3.6	3.6	2.9	3.8	3.4	NI	NI
20-jaii-22	GW Elevation	masl	154.74	156.06	154.60	154.55	152.70	NI	NI
4-Feb-22	Depth to GW	mbgs	3.6	3.6	2.9	3.8	3.5	NI	NI
4-1-60-22	GW Elevation	masl	154.74	156.06	154.60	154.55	152.60	NI	NI
Depth to GW		mbgs	3.24	NM	2.71	3.53	4.07	4.07	3.68
20-jun-23	26-Jun-23 GW Elevation		155.10	NM	154.79	154.82	152.03	154.13	150.82
27-Jun-23	27-Jun-23 Depth to GW GW Elevation		3.25	3.1	2.74	3.51	3.21	5.2	4.77
27-juii-23			155.09	156.56	154.76	154.84	152.89	153.00	149.73
19-Jul-23	Depth to GW	mbgs	3.02	3.28	2.66	3.49	3.21	4.12	3.67
17 jui 23	GW Elevation	masl	155 . 32	156.38	154.84	154.86	152.89	154.08	150.83

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated	
TP1	TP1-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs, PHCs, BTEX, VOCs	APEC-1C, APEC-1F	
	Dup 1 (TP1-1)			Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR		
TP2	TP2-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-4I	
	TP2-3	1.5-2.5	Sand	рН	1	
mp.o.	TP3-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-40	
TP3	Dup 2 (TP3-1)			PAHs	APEC-5A	
	TP3-4	2.2-2.7	Silty sand	рН		
TD4	TP4-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1B, APEC-	
TP4	Dup 3 (TP4-1)			PAHs	1C, APEC-2	
	TP4-3	1.5-2.2	Silty sand	рН		
TP5	TP5-1	0.0-0.7	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-2 APEC-4A	
	TP5-4	2.2-2.5	Silty sand	PHCs, BTEX, VOCs	AI LC-4A	
	TP6-1	0.0-0.7	Sandy silt	PAHs		
TP6	TP6-2	0.7-1.5	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC- 4B, APEC-5A	
	TP6-3	1.5-2.2	Silty sand	рН		
TP7	TP7-1	0.0-0.7	Silty sand	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC-	
IP/	TP7-2	0.7-1.5	Silty sand	PAHs	5A, APEC-6	
	TP7-4	2.3-3.1	Silty sand	PHCs, BTEX, VOCs		
TP8	TP8-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1A, APEC- 1C, APEC-5A	
	SS1	0.1-0.7	Fill - Sand	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs		
BH23-9	SS2 DUP-3	0.8-1.4	Silty clay till	PAHs	APEC-1C, APEC-2	
	SS3	1.5-2.1	Silty clay till	PHCs, BTEX, VOCs		
	SS1 DUP-4	0.3-0.6	Fill - Clayey silt	OCPs		
BH23-10	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-3	
	SS3	1.5-1.8	Silty clay till	PHCs, BTEX, VOCs		
BH23-11	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C	
BH23-12	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC-1	
	SS1	0.2-0.6	Fill - Silty clay	OCPs		
BH23-13	SS2	0.8-1.4	Silty clay till Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR		APEC-1C, APEC-3	
BH23-14	SS1	0.2-0.6	Fill - Silty clay	OCPs	APEC-1C, APEC-3	
BH23-15	SS1	0.2-0.6 Fill - Silty clay Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs		APEC-1C, APEC-3		
	SS2	0.8-1.4	Silty clay till	PAHs, PHCs, BTEX, VOCs	<u> </u>	
BH23-16	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-5E	
	SS2	0.8-1.4	Fill - Silty clay	PHCs, BTEX, VOCs		

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated		
	SS1	0.3-0.6	Fill - Silty clay Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs				
BH23-17	SS2	0.8-1.4	Silty clay till	PAHs	APEC-1C, APEC-5B		
	SS3	1.5-2.1	Ciltry alasy till	PHCs, BTEX, VOCs]		
	DUP-1	1.5-2.1	Silty clay till	PHCS, BTEA, VOCS			
BH23-18	SS1	0-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C, APEC-5B		
БП23-10	DUP-2	0-0.0	FIII - SIILY CIAY	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	AFEC-1C, AFEC-3D		
BH23-19	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C, APEC-1D		
	SS2	0.8-1.4	Silty clay till	PAHs			
BH23-20	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C, APEC-5B		
SS3		1.5-2.1	Silty clay till	PHCs, BTEX, VOCs]		
	SS1		SS1 0.2-0.6 Fill - Silty clay		Fill - Silty clay	PAHs, OCPs	
BH23-21	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC-5B		
	SS4	2.3-2.8	Silty clay till	PHCs, BTEX, VOCs			

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

Well ID	Well Screen Interval masl		Sample Date Parameter Analyzed		APEC Investigated	
BH1	152.94		155.94	22-Jan-22	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl,	APEC-2, APEC-5A
DUP2	132,74		133,74	22-jan-22	PHCs, BTEX, VOCs, PAHs	AI EC-2, AI EC-3A
ВН2	152.66	•	155.66	22-Jan-22	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl, PHCs, BTEX, VOCs, PAHs	APEC-5A, APEC-6
BH4	152.25		155.25	22-Jan-22	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl,	APEC-5A
DUP1	132,23		133,23	22-jan-22	PHCs, BTEX, VOCs, PAHs	AI EC-SA
MW23-9	152.10	-	155.10	30-Jun-23	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl, PHCs, BTEX, VOCs, PAHs	APEC-2
MW23-17	148.40		151.40	30-Jun-23	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, Cl,	APEC-5B
DUP1	140,40	-	131,40	30-juli-23	PHCs, BTEX, VOCs, PAHs	AFEC-3D

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed												
APEC-1A	Northeastern portion of the Site #30: Importation of Fill Material of Unknown Origin	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil	TP8	TP8-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs												
APEC-1B	Central portion of the Site #30: Importation of Fill Material of	Metals, As, Sb, Se, B-HWS, CN-, Cr	Soil	TP4	TP4-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs												
111 110 110	Unknown Origin	(VI), Hg, low or high pH, PAHs	5611		Dup 3 (TP4-1)	PAHs												
					TP4-3	рН												
				TP1	TP1-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs, PHCs, BTEX, VOCs												
					Dup 1 (TP1-1)	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH												
				TP2	TP2-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, PAHs												
									TP2-3	рН								
						TIPO	TP3-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs										
								ТР3	Dup 2 (TP3-1)	PAHs								
APEC-1C	Entire Site #30: Importation of Fill Material of	Metals, As, Sb, Se, B-HWS, CN-, Cr	Soil		TP3-4	рН												
20 10	Unknown Origin	(VI), Hg, low or high pH, PAHs	(VI), Hg, low or high pH, PAHs TP4	I), Hg, low or high pH, PAHs	con	5611	222				001	3011	5611	2011			TP4-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs
					TP4	Dup 3 (TP4-1)	PAHs											
					TP4-3	рН												
				TP5	TP5-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs												
					TP5-4	PHCs, BTEX, VOCs												
					TP6-1	PAHs												
			TP		TP6-2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH												
					TP6-3	рН												

Table 4: Summary of APECs Investigated

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed								
				mpg	TP7-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH								
					TP7	TP7-2	PAHs							
					TP7-4	PHCs, BTEX, VOCs								
				TP8	TP8-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, PAHs								
					SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs								
				ВН23-9	SS2	PAHs								
				DUP-3	PARS									
					SS3	PHCs, BTEX, VOCs								
									SS1	OCPs				
									DUP-4					
APEC-1C		on of Fill Material of Metals, As, Sb, Se, B-HWS, CN-, Cr Soil	ortation of Fill Material of Metals, As, Sb, Se, B-HWS, CN-, Cr Soil					l Material of Metals, As, Sb, Se, B-HWS, CN-, Cr	Soil	BH23-10	SS2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, PAHs		
	Unknown Origin					SS3	PHCs, BTEX, VOCs							
												BH23-11	SS2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH
											BH23-12	SS2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH	
				SS1	OCPs									
				BH23-13	SS2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH								
				BH23-14	SS1	OCPs								
									BH23-15	SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs			
					SS2	PAHs, PHCs, BTEX, VOCs								
				BH23-16	SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, PAHs								
					SS2	PHCs, BTEX, VOCs								

Table 4. Su	mmary of APECS investigated					~
APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
					SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs
				ВН23-17	SS2	PAHs
					SS3	
					DUP-1	PHCs, BTEX, VOCs
			Soil	ВН23-18	SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs
		Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs			DUP-2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH
APEC-1C	Entire Site			ВН23-19	SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs
					SS2	PAHs
				BH23-20	SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs
					SS3	PHCs, BTEX, VOCs
					SS1	PAHs, OCPs
				BH23-21	SS2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH
					SS4	PHCs, BTEX, VOCs
APEC-1D	Vicinity of former Site Building F, located in the southwestern portion of the Site	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil	вн23-19	SS1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, OCPs
	#30: Importation of Fill Material of Unknown Origin		SS2	PAHs		
APEC-1E	Vicinity of former Site Building G, located in the southern portion of the Site #30: Importation of Fill Material of Unknown Origin	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil	ВН23-12	SS2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH

APEC	mmary of APECs Investigated Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed	
APEC-1F	Vicinity of former Shed 2, located in the southern portion of the Site #30: Importation of Fill Material of	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil	TP1	TP1-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, PAHs, PHCs, BTEX, VOCs	
	Unknown Origin	(v1), ng, iow of lligh ph, rAns			Dup 1 (TP1-1)	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH	
	Northern portion of the Site			DII1	BH1	Metals, As, Sb, Se, CN-, Cr (VI), Hg, PHCs,	
A DELG O	#58: Waste Disposal and Waste Management, including thermal	PHCs, VOCs, BTEX, Metals, As, Sb,		BH1	DUP2	BTEX, VOCs, PAHs	
APEC-2	treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs		MW23-9	MW23-9	Metals, As, Sb, Se, CN-, Cr (VI), Hg, PHCs, BTEX, VOCs, PAHs	
				BH23-10	SS1	OCPs	
	Southwestern portion of the Site in the vicinity of former orchard			BH23-10	DUP-4	oers	
APEC-3	#40: Pesticides (including Herbicides,	OCPs	Soil	BH23-13	SS1	OCPs	
AFEC-3	Fungicides and Anti-Fouling Agents)			BH23-14	SS1	OCPs	
	Manufacturing, Processing, Bulk Storage and Large-Scale Applications			BH23-15	SS1	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	
APEC-4A	Northern portion of the Property in the vicinity of Shed 1 #N/S: Storage of miscellaneous debris, refuse and boats	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil	TP5	TP5-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH, PAHs	
					TP6-1	PAHs	
APEC-4B	Eastern portion of the Site #N/S: Storage of miscellaneous debris and refuse	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil	TP6	TP6-2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, pH	
	and Fordo				TP6-3	рН	
APEC-4C	Central portion of the Site immediately north of agricultural field		Soil	TP3	TP3-1	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	
AI LU-4U	#N/S: Storage of miscellaneous debris and refuse	(VI), Hg, low or high pH, PAHs	3011	113	Dup 2 (TP3-1)	PAHs	
	and refuse				TP3-4	рН	

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
APEC-4D	Southern portion of the Site immediately south of agricultural field #N/S: Storage of miscellaneous debris		Soil	TP2	TP2-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg pH, PAHs
	and refuse				TP2-3	рН
				TP3	TP3-1	EC, SAR
				TP6	TP6-2	EC, SAR
			Soil	TP7	TP7-1	EC, SAR
APEC-5A	Eastern portion of the Site	EC, SAR (Soil) Na, Cl- (Groundwater)		TP8	TP8-1	EC, SAR
	#N/S: Inferred application of de-icing agents		Groundwater	ВН1	BH1 DUP2	Na, Cl
				ВН2	BH2	Na, Cl
				BH4 _	BH4	Na, Cl
					DUP1	
				BH23-16	SS1	EC, SAR
				BH23-17	SS1	EC, SAR
APEC-5B	Western portion of the Site #N/S: Inferred application of de-icing	EC, SAR (Soil) Na, Cl- (Groundwater)	Soil	ВН23-18	SS1	EC, SAR
	agents	,			DUP-2	EC, SAR
				ВН23-20	SS1	EC, SAR
					SS2	EC, SAR

Table 4: Summary of APECs Investigated

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
APEC-5B	Western portion of the Site #N/S: Inferred application of de-icing	EC, SAR (Soil)	Groundwater	MW23-17	MW23-17	Na, Cl
MI EC 3B	agents	Na, Cl- (Groundwater)			DUP1	iva, ci
		PHCs, VOCs, BTEX, Metals, As, Sb,	Soil	TP7	TP7-1	Metals, As, Sb, Se, Cr (VI), Hg, pH
	Within the Vicinity of Site Building B				TP7-2	PAHs
APEC-6	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles	Se, Cr (VI), Hg, low or high pH,			TP7-4	PHCs, BTEX, VOCs
	and Aviation Vehicles	PAHs	Groundwater	вн2	BH2	Metals, As, Sb, Se, Cr (VI), Hg, PHCs, BTEX, VOCs, PAHs

Table 5: Summary of Metals and ORPs in Soil

Parameter		TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
Date of Collection		10-Jan-22							
Date Reported	MECP Table 2	19-Jan-22							
Sampling Depth (mbgs)	SCS	0-0.7	0-0.8	1.5-2.5	0-0.7	2.2-2.7	0-0.7	1.5-2.2	0-0.7
Analytical Report Reference No.	1	CA40064-JAN22							
Analytical Report Reference No.		9	10	11	12	13	14	15	16
Antimony	7.5	< 0.8	< 0.8	-	< 0.8	-	< 0.8	-	< 0.8
Arsenic	18	4.4	4.2	-	6.1	-	4.6	-	5.9
Barium	390	95	130	-	120	-	130	-	94
Beryllium	4	0.88	0.77	-	0.87	-	0.76	-	0.8
Boron (total)	120	12	9	-	7	-	8	-	6
Boron (Hot Water Soluble)	1.5	< 0.5	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5
Cadmium	1.2	0.1	0.1	-	0.15	-	0.28	-	0.15
Chromium Total	160	24	23	-	26	-	22	-	23
Chromium VI	8	< 0.2	< 0.2	-	< 0.2	-	< 0.2	1	< 0.2
Cobalt	22	14	13	-	15	-	13	-	13
Copper	140	14	10	-	34	-	16	-	35
Cyanide (CN-)	0.051	< 0.05	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05
Electrical Conductivity (mS/cm)	0.7	0.27	0.21	-	0.25	-	0.19	-	0.17
Lead	120	15	13	-	19	-	18	-	18
Mercury	0.27	< 0.05	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05
Molybdenum	6.9	0.6	0.4	-	0.4	-	0.7	-	0.3
Nickel	100	32	29	-	36	-	26	-	32
Selenium	2.4	< 0.7	< 0.7	-	< 0.7	-	< 0.7	-	< 0.7
Silver	20	< 0.05	< 0.05	-	< 0.05	-	0.09	-	< 0.05
Sodium Adsorption Ratio	5	0.4	0.3	-	0.4	-	0.4	-	0.2
Thallium	1	0.11	0.1	-	0.16	-	0.13	-	0.17
Uranium	23	0.59	0.53	-	0.56	-	0.75	-	0.55
Vanadium	86	30	27	-	32	-	27	-	29
Zinc	340	67	65	-	77	-	75	-	78
рН	NV	7.63	7.65	7.8	7.61	7.76	7.52	7.59	7.71

Table 5: Summary of Metals and ORPs in Soil

Parameter		TP6-2	TP7-1	TP8-1	DUP 1 (TP1-1)	BH23-9 SS1	BH23-10 SS2	BH23-11 SS2
Date of Collection		10-Jan-22	10-Jan-22	10-Jan-22	10-Jan-22	19-Jun-23	20-Jun-23	20-Jun-23
Date Reported	MECP Table 2	19-Jan-22	19-Jan-22	19-Jan-22	3-Feb-22	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	SCS	0.7-1.5	0-0.7	0-0.5	0-0.7	0.1-0.7	0.8-1.4	0.8-1.4
Analytical Report Reference No.	1	CA40064-JAN22	CA40064-	CA40064-	CA40062-FEB22	CA40240-JUN23 9	CA40240-JUN23	CA40240-JUN23
Analytical Report Reference No.		19	JAN22 21	JAN22 24	9	CA40240-JUN23 9	13	15
Antimony	7 . 5	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic	18	4.9	4.9	6.8	4.1	7. 5	4.7	4.9
Barium	390	110	94	140	76	8.2	68	61
Beryllium	4	0.6	0.65	1.1	0.76	0.08	0.7	0.73
Boron (total)	120	8	7	6	9	10	13	14
Boron (Hot Water Soluble)	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	1.2	0.11	0.12	0.2	0.12	0.21	0.11	0.1
Chromium Total	160	19	20	28	25	2.4	18	20
Chromium VI	8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	22	12	12	17	15	1.4	11	12
Copper	140	27	26	35	12	4.2	16	18
Cyanide (CN-)	0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Electrical Conductivity (mS/cm)	0.7	0.14	0.14	0.2	0.24	0.24	0.13	0.13
Lead	120	11	11	17	14	9.9	10	12
Mercury	0.27	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	6.9	0.4	0.3	0.5	0.7	0.8	0.6	0.8
Nickel	100	27	26	37	33	3.4	24	27
Selenium	2.4	< 0.7	< 0.7	< 0.7	< 0.7	< 0.1	< 0.1	< 0.1
Silver	20	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio	5	0.3	0.4	0.5	0.2	0.3	0.2	0.2
Thallium	1	0.15	0.15	0.17	0.09	0.04	0.1	0.1
Uranium	23	0.62	0.54	0.67	0.5	0.24	0.5	0.51
Vanadium	86	25	25	35	30	< 3	25	26
Zinc	340	63	68	82	66	63	49	54
pH	NV	7.79	7.77	7.27	7.68	8.38	7.82	7.79

Table 5: Summary of Metals and ORPs in Soil

Parameter		BH23-12 SS2	BH23-13 SS2	BH23-15 SS1	BH23-16 SS1	BH23-17 SS1	BH23-18 SS1
Date of Collection		20-Jun-23	20-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23
Date Reported	MECP Table 2	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	SCS	0.8-1.4	0.8-1.4	0.2-0.6	0.2-0.6	0.3-0.6	0-0.6
Analytical Report Reference No.	1 1	CA40240-JUN23	CA40240-JUN23	CA40197-JUN23	CA40197-JUN23	CA40197-JUN23	CA40197-JUN23
Analytical Report Reference No.		16	18	9	11	13	16
Antimony	7.5	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic	18	5.6	5.3	5.9	7	4.4	5.8
Barium	390	82	87	120	89	94	100
Beryllium	4	0.67	0.74	0.95	0.77	0.76	0.89
Boron (total)	120	10	10	8	11	4	8
Boron (Hot Water Soluble)	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	1.2	0.1	0.11	0.19	0.24	0.17	0.13
Chromium Total	160	18	20	23	19	21	23
Chromium VI	8	< 0.2	< 0.2	0.3	< 0.2	0.9	< 0.2
Cobalt	22	11	12	13	10	12	13
Copper	140	21	22	27	96	19	29
Cyanide (CN-)	0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Electrical Conductivity (mS/cm)	0.7	0.23	0.19	0.11	0.22	0.19	0.21
Lead	120	9.8	11	19	51	18	15
Mercury	0.27	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	6.9	0.5	0.4	0.6	1.1	0.7	0.6
Nickel	100	25	27	31	23	20	29
Selenium	2.4	< 0.1	0.1	0.2	0.3	0.4	0.2
Silver	20	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05
Sodium Adsorption Ratio	5	2.3	1.2	0.3	< 0.2	< 0.2	< 0.2
Thallium	1	0.13	0.13	0.18	0.13	0.16	0.19
Uranium	23	0.51	0.5	0.56	0.77	0.59	0.58
Vanadium	86	24	26	31	29	32	30
Zinc	340	52	51	62	79	55	61
рН	NV	7.82	7.52	7.26	7.48	6.87	7.12

Table 5: Summary of Metals and ORPs in Soil

Parameter		DUP-2 (BH23-18 SS1)	BH23-19 SS1	BH23-20 SS1	BH23-21 SS1
Date of Collection		16-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23
Date Reported	MECP Table 2	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	scs	0-0.6	0.2-0.6	0.2-0.6	0.2-0.6
Analytical Report Reference No.	Ι Γ	CA40197-JUN23	CA40197-JUN23	CA40197-JUN23	CA40197-JUN23
Analytical Report Reference No.		25	17	19	22
Antimony	7.5	< 0.8	< 0.8	< 0.8	< 0.8
Arsenic	18	8.7	7.4	3.5	5.2
Barium	390	80	49	88	66
Beryllium	4	0.68	0.39	0.58	0.63
Boron (total)	120	9	10	6	10
Boron (Hot Water Soluble)	1.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	1.2	0.23	0.33	0.14	0.1
Chromium Total	160	19	14	18	19
Chromium VI	8	0.3	< 0.2	< 0.2	< 0.2
Cobalt	22	10	6.9	11	12
Copper	140	39	38	18	25
Cyanide (CN-)	0.051	< 0.05	< 0.05	< 0.05	< 0.05
Electrical Conductivity (mS/cm)	0.7	0.24	0.29	0.31	0.18
Lead	120	43	46	18	11
Mercury	0.27	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	6.9	1.1	1.4	0.6	0.5
Nickel	100	22	18	20	25
Selenium	2.4	0.2	0.2	0.2	< 0.1
Silver	20	0.07	0.07	< 0.05	< 0.05
Sodium Adsorption Ratio	5	< 0.2	0.3	< 0.2	0.3
Thallium	1	0.17	0.13	0.13	0.14
Uranium	23	0.53	0.48	0.46	0.55
Vanadium	86	27	25	26	23
Zinc	340	86	100	58	50
рН	NV	7.31	7.72	7.3	7.48

Table 0. Summary 01 Files in Son					
Parameter		TP1-1	TP5-4	TP7-4	BH23-9 SS3
Date of Collection	MECP	10-Jan-22	10-Jan-22	10-Jan-22	19-Jun-23
Date Reported	Table 2	19-Jan-22	19-Jan-22	19-Jan-22	29-Jun-23
Sampling Depth (mbgs)	SCS	0-0.7	2.2-2.5	2.3-3.1	1.5-2.1
Analytical Report Reference No.		CA40064-JAN22	CA40064-JAN22	CA40064-JAN22	CA40240-JUN23
Analytical Report Reference No.		9	17	23	11
F1 (C6-C10) -BTEX	55	< 10	< 10	< 10	< 10
F2 (C10-C16)	98	< 10	< 10	< 10	< 10
F3 (C16-C34)	300	< 50	< 50	< 50	< 50
F4 (C34-C50)	2800	< 50	< 50	< 50	< 50

Table 6: Summary of PHCs in Soil

Parameter		TP1-1	BH23-10 SS3	BH23-15 SS2	BH23-16 SS2
Date of Collection	MECP	10-Jan-22	20-Jun-23	16-Jun-23	16-Jun-23
Date Reported	Table 2	19-Jan-22	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)		0-0.7	1.5-1.8	0.8-1.4	0.8-1.4
Analytical Report Reference No.		CA40064-JAN22	CA40240-JUN23	CA40197-JUN23	CA40197-JUN23
Analytical Report Reference No.		9	14	10	12
F1 (C6-C10) -BTEX	55	< 10	< 10	< 10	< 10
F2 (C10-C16)	98	< 10	< 10	< 10	< 10
F3 (C16-C34)	300	< 50	< 50	< 50	< 50
F4 (C34-C50)	2800	< 50	< 50	< 50	< 50

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 6: Summary of PHCs in Soil

Parameter		TP1-1	DUP-1	BH23-20 SS3	BH23-21 SS4
Date of Collection	MECP	10-Jan-22	16-Jun-23	16-Jun-23	16-Jun-23
Date Reported	Table 2	19-Jan-22	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	SCS	0-0.7	1.5-2.1	1.5-2.1	2.3-2.8
Analytical Report Reference No.		CA40064-JAN22	CA40197-JUN23	CA40197-JUN23	CA40197-JUN23
Analytical Report Reference No.		9	24	20	23
F1 (C6-C10) -BTEX	55	< 10	< 10	< 10	< 10
F2 (C10-C16)	98	< 10	< 10	< 10	< 10
F3 (C16-C34)	300	< 50	< 50	< 50	< 50
F4 (C34-C50)	2800	< 50	124	133	< 50

Table 7: Summary of VOCs in Soil

Parameter		TP1-1	TP5-4	TP7-4	BH23-9 SS3
Date of Collection		10-Jan-22	10-Jan-22	10-Jan-22	19-Jun-23
Date Reported	MECP Table	19-Jan-22	19-Jan-22	19-Jan-22	29-Jun-23
Sampling Depth (mbgs)	2 SCS	0-0.7	2.2-2.5	2.3-3.1	1.5-2.1
		CA40064-JAN22	CA40064-JAN22	CA40064-JAN22	CA40240-JUN23
Analytical Report Reference No.		9	17	23	11
Tetrachloroethane, 1,1,1,2-	0.058	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,1-	0.38	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,2,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,1-	0.47	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,1-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,2-	1.2	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropane, 1,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,3-	4.8	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropene, 1,3-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,4-	0.083	< 0.05	< 0.05	< 0.05	< 0.05
Acetone	16	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-cis-	1.9	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-trans-	0.084	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene dibromide	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	16	< 0.5	< 0.5	< 0.5	< 0.5
Methyl Isobutyl Ketone	1.7	< 0.5	< 0.5	< 0.5	< 0.5
Methyl tert-Butyl Ether (MTBE)	0.75	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	0.1	< 0.05	< 0.05	< 0.05	< 0.05
Hexane (n)	2.8	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	0.7	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	0.28	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	0.061	< 0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	4	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.02	< 0.02	< 0.02	< 0.02	< 0.02
Benzene	0.21	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	1.1	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	2.3	< 0.05	< 0.05	< 0.05	< 0.05
Total Xylene	3.1	< 0.05	< 0.05	< 0.05	< 0.05
Bromodichloromethane	1.5	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	0.27	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	2.3	< 0.05	< 0.05	< 0.05	< 0.05

Table 7: Summary of VOCs in Soil

Parameter		BH23-10 SS3	BH23-15 SS2	BH23-16 SS2	BH23-17 SS3
Date of Collection	1	20-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23
Date Reported	MECP Table	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	2 SCS	1.5-1.8	0.8-1.4	0.8-1.4	1.5-2.1
	1	CA40240-JUN23	CA40197-JUN23	CA40197-JUN23	CA40197-JUN23
Analytical Report Reference No.		14	10	12	15
Tetrachloroethane, 1,1,1,2-	0.058	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,1-	0.38	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,2,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,1-	0.47	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,1-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,2-	1.2	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropane, 1,2-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,3-	4.8	< 0.05	< 0.05	< 0.05	< 0.05
Dichloropropene, 1,3-	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,4-	0.083	< 0.05	< 0.05	< 0.05	< 0.05
Acetone	16	< 0.5	< 0.5	< 0.5	< 0.5
Bromomethane	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-cis-	1.9	< 0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-trans-	0.084	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene dibromide	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	16	< 0.5	< 0.5	< 0.5	< 0.5
Methyl Isobutyl Ketone	1.7	< 0.5	< 0.5	< 0.5	< 0.5
Methyl tert-Butyl Ether (MTBE)	0.75	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	0.1	< 0.05	< 0.05	< 0.05	< 0.05
Hexane (n)	2.8	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	0.7	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	0.28	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	0.061	< 0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	4	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.02	< 0.02	< 0.02	< 0.02	< 0.02
Benzene	0.21	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	1.1	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	2.3	< 0.05	< 0.05	< 0.05	< 0.05
Total Xylene	3.1	< 0.05	< 0.05	< 0.05	< 0.05
Bromodichloromethane	1.5	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	0.27	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	2.3	< 0.05	< 0.05	< 0.05	< 0.05

2.3

3.1

1.5

0.27

2.3

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

Toluene

Total Xylene

Bromoform

Bromodichloromethane

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 8: Summary of PAHs in Soil

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 8: Summary of PAHs in Soil

Parameter		BH23-9 SS2	DUP3	BH23-10 SS2	BH23-15 SS2	BH23-16 SS1	BH23-17 SS2	BH23-19 SS2	BH23-21 SS1
Date of Collection		19-Jun-23	19-Jun-23	20-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23
Date Reported	MECD Table	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	2 SCS	0.8-1.4	0.8-1.4	0.8-1.4	0.8-1.4	0.2-0.6	0.8-1.4	0.8-1.4	0.2-0.6
Analytical Report Reference No.		CA40240-JUN23 10	CA40240- JUN23 20	CA40240- JUN23 13	CA40197-JUN23 10	CA40197-JUN23 11	CA40197-JUN23 14	CA40197-JUN23 18	CA40197-JUN23 21
Methylnaphthalene, 2-(1-)	0.99	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	7.9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benz(a)anthracene	0.5	< 0.05	< 0.05	< 0.05	< 0.05	0.12	< 0.05	< 0.05	0.14
Benzo(a)pyrene	0.3	< 0.05	< 0.05	< 0.05	< 0.05	0.14	< 0.05	< 0.05	0.15
Benzo(b+j)fluoranthene	0.78	< 0.05	< 0.05	< 0.05	< 0.05	0.16	< 0.05	< 0.05	0.18
Benzo(g,h,i)perylene	6.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1
Benzo(k)fluoranthene	0.78	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	0.08
Chrysene	7	< 0.05	< 0.05	< 0.05	< 0.05	0.12	< 0.05	< 0.05	0.14
Dibenz(a,h)anthracene	0.1	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Fluoranthene	0.69	< 0.05	< 0.05	< 0.05	< 0.05	0.25	< 0.05	< 0.05	0.32
Fluorene	62	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	0.38	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene	0.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2	< 0.05	< 0.05	< 0.05	< 0.05	0.12	< 0.05	< 0.05	0.19
Pyrene	78	< 0.05	< 0.05	< 0.05	< 0.05	0.22	< 0.05	< 0.05	0.27

Table 9: Summary of OCPs in Soil

Parameter		BH23-9 SS1	BH23-10 SS1	BH23-13 SS1	BH23-14 SS1	DUP-4 (BH23-10 SS1)	BH23-15 SS1	BH23-17 SS1	BH23-18 SS1	BH23-19 SS1
Date of Collection	MECP	19-Jun-23	20-Jun-23	20-Jun-23	20-Jun-23	20-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23	16-Jun-23
Date Reported	Table 2	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23	29-Jun-23
Sampling Depth (mbgs)	scs	0.1-0.7	0.3-0.6	0.2-0.6	0.2-0.6	0.2-0.6	0.2-0.6	0.3-0.6	0-0.6	0.2-0.6
Analytical Report		CA40240-	CA40240-	CA40240-	CA40240-	CA40240-JUN23	CA40197-	CA40197-	CA40197-	CA40197-
Reference No.		JUN23	JUN23	JUN23	JUN23	21	JUN23	JUN23	JUN23	JUN23
Aldrin	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordane	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDD	3.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDE	0.26	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDT	1.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Endrin	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Hexachlorocyclohexane Gamma-	0.056	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor Epoxide	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.52	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	0.012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachloroethane	0.089	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Table 9: Summary of OCPs in Soil

Table 3: Summary of OCFS in Son								
Parameter		BH23-20 SS1	BH23-21 SS1					
Date of Collection	MECP Table 2	16-Jun-23	16-Jun-23					
Date Reported	SCS	29-Jun-23	29-Jun-23					
Sampling Depth (mbgs)	363	0.2-0.6	0.2-0.6					
Analytical Report		CA40197-	CA40197-					
Reference No.		JUN23	JUN23					
Aldrin	0.05	< 0.05	< 0.05					
Chlordane	0.05	< 0.05	< 0.05					
DDD	3.3	< 0.05	< 0.05					
DDE	0.26	< 0.05	< 0.05					
DDT	1.4	< 0.05	< 0.05					
Dieldrin	0.05	< 0.05	< 0.05					
Endosulfan	0.04	< 0.04	< 0.04					
Endrin	0.04	< 0.04	< 0.04					
Hexachlorocyclohexane Gamma-	0.056	< 0.01	< 0.01					
Heptachlor	0.15	< 0.01	< 0.01					
Heptachlor Epoxide	0.05	< 0.01	< 0.01					
Hexachlorobenzene	0.52	< 0.01	< 0.01					
Hexachlorobutadiene	0.012	< 0.01	< 0.01					
Hexachloroethane	0.089	< 0.01	< 0.01					
Methoxychlor	0.13	< 0.05	< 0.05					

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 10: Summary of Metals and ORPs in Groundwater

Table 10: Summary of Metals and OR	<u>Ps in Grounav</u>	<u>/ater</u>							
Parameter		BH1	BH2	BH4	DUP1 (BH4)	DUP2 (BH1)	MW23-9	MW23-17	DUP1
Date of Collection	MECP Table	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	30-Jun-23	30-Jun-23	30-Jun-23
Date Reported	2 SCS	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	12-Jul-23	12-Jul-23	12-Jul-23
Screen Interval (mbgs)	2 363	2.5-5.5	4.1-7.1	3.1-6.1	3.1-6.1	2.5-5.5	3.1-6.1	3.1-6.1	3.1-6.1
Analytical Report Reference No.		RRD592	RRD593	RRD594	RRD595	RRD596	C3J3318	C3J3318	C3J3318
Antimony	6	0.57	0.55	< 0.50	<0.50	<0.50	1	<0.50	<0.50
Arsenic	25	<1.0	1.3	1.1	1.1	<1.0	2.3	<1.0	<1.0
Barium	1 000	180	230	140	140	190	150	180	190
Beryllium	4	<0.40	< 0.40	< 0.40	<0.40	< 0.40	<0.40	< 0.40	< 0.40
Boron	5 000	150	150	120	120	140	350	140	130
Cadmium	2.7	<0.090	<0.090	< 0.090	< 0.090	<0.090	<0.090	<0.090	< 0.090
Chromium	50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chromium VI	25	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cobalt	3.8	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Copper	87	0.92	< 0.90	< 0.90	<0.90	< 0.90	0.97	1.1	1.4
Lead	10	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Mercury	0.29	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Molybdenum	70	6.9	5	3	3	6.4	12	1.9	1.8
Nickel	100	<1.0	1.1	<1.0	<1.0	<1.0	1.3	1.7	1.9
Sodium	490 000	420 000	190 000	23 000	23 000	430 000	440 000	310 000	300 000
Selenium	10	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Silver	1.5	< 0.090	<0.090	< 0.090	< 0.090	<0.090	<0.090	<0.090	< 0.090
Thallium	2	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050
Vanadium	6.2	0.57	0.71	0.6	0.51	0.57	0.54	0.58	0.65
Zinc	1 100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	9	7 . 8
Cyanide, Free	66	<1	<1	<1	<1	<1	<1	<1	<1
Chloride	790 000	900 000	520 000	30 000	29 000	900 000	810 000	620 000	650 000
Uranium	20	4.7	5.6	3.7	3.7	4.7	4.1	3.8	3.8

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 11: Summary of PHCs in Groundwater

Table 11: Summary of P	able 11: Summary of PHCs in Groundwater									
Parameter		BH1	BH2	BH4	DUP1 (BH4)	DUP2 (BH1)	MW23-9	MW23-17	DUP1	
Date of Collection	MECP	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	30-Jun-23	30-Jun-23	30-Jun-23	
Date Reported	Table 2	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	12-Jul-23	12-Jul-23	12-Jul-23	
Screen Interval (mbgs)	SCS	2.5-5.5	4.1-7.1	3.1-6.1	3.1-6.1	2.5-5.5	3.1-6.1	3.1-6.1	3.1-6.1	
Analytical Report		RRD592	RRD593	RRD594	RRD595	RRD596	C3J3318	C3J3318	C3J3318	
Reference No.							,	,	,	
F1 (C6-C10)	750	<25	<25	<25	<25	<25	<25	<25	<25	
F2 (C10-C16)	150	<100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16-C34)	500	<200	<200	<200	<200	<200	<200	<200	<200	
F4 (C34-C50)	500	<200	<200	<200	<200	<200	<200	<200	<200	

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 12: Summary of VOCs in Groundwater

Table 12: Summary of VOCs in G	<u>roundwater</u>										
Parameter		BH1	BH2	BH4	DUP1 (BH4)	DUP2 (BH1)	TRIP BLANK	MW23-9	MW23-17	DUP1	TRIP BLANK
Date of Collection	MECP Table	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	22-Jan-22	30-Jun-23	30-Jun-23	30-Jun-23	30-Jun-23
Date Reported	2 SCS	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	12-Jul-23	12-Jul-23	12-Jul-23	12-Jul-23
Screen Interval (mbgs)	_ 505	2.5-5.5	4.1-7.1	3.1-6.1	3.1-6.1	2.5-5.5	-	3.1-6.1	3.1-6.1	3.1-6.1	-
Analytical Report Reference No.		RRD592	RRD593	RRD594	RRD595	RRD596	RRD596	C3J3318	C3J3318	C3J3318	C3J3318
Acetone	2700	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzene	5	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromodichloromethane	16	<0.50	0.56	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromoform	25	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	0.89	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Carbon Tetrachloride	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	30	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	2.4	0.42	0.52	0.34	0.3	0.45	0.62	1.3	0.66	0.62	0.62
Dibromochloromethane	25	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,2-Dichlorobenzene	3	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichlorobenzene	59	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,4-Dichlorobenzene	1	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50
1,1-Dichloroethane	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cis-1,2-Dichloroethylene	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trans-1,2-Dichloroethylene	1.6	< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50
1,2-Dichloropropane	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cis-1,3-Dichloropropylene	NV	< 0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30
Trans-1,3-Dichloropropylene	NV	< 0.40	<0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Ethylbenzene	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylene Dibromide	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Ethyl Ketone	1800	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methylene Chloride	50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methyl Isobutyl Ketone	640	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl-t-Butyl Ether	15	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
Styrene	5.4	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,1,2-Tetrachloroethane	1.1	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	1	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	24	<0.20	0.22	0.21	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Tetrachloroethylene	1.6	<0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20
1.1.1-Trichloroethane	200	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,2-Trichloroethane	4.7	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Trichloroethylene	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
m-Xylene & p-Xylene	NV	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	NV	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total Xylenes	300	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorodifluoromethane	590	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexane(n)	51	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	150	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,3-Dichloropropene (cis + trans)	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,5 Diemoropropene (els i trans)	0.5	10.50	1 10.00	10.50	`0.50	\0.50	\0.50	`0.50	10.50	10.50	10.50

3056 Neyagawa Blvd 1039 Dundas Street West, Oakville, Ontario

Table 13: Summary of PAHs in Groundwater

< 0.071

< 0.071

< 0.071

< 0.071

< 0.071

< 0.071

< 0.071

3.2

Methylnaphthalene, 2-(1-)

Table 14: Summary of Maximum Concentrations in Soil

	Parameter	Table 2 Standard	Maximum Concentration	Location
	Antimony	7.5	< 0.8	All Samples
	Arsenic	18	6,8	TP8-1
	Barium	390	140	TP8-1
	Beryllium	4	1.1	TP8-1
	Boron (total)	120	12	TP1-1
	Boron (Hot Water Soluble)	1.5	< 0.5	All Samples
	Cadmium	1.2	0.28	TP4-1
	Chromium Total	160	28	TP8-1
	Chromium VI	8	< 0.2	All Samples
S	Cobalt	22	17	TP8-1
)RF	Copper	140	35	TP5-1
Metals and ORPs	Cyanide (CN-)	0.051	< 0.05	All Samples
s aı	Electrical Conductivity (mS/cm)	0.7	0.27	TP1-1
etal	Lead	120	19	TP3-1
Me	Mercury Molybdenum	0.27 6.9	< 0.05 0.7	All Samples TP4-1
	Nickel	100	37	TP8-1
	Selenium	2.4	< 0.7	All Samples
	Silver	20	0.09	TP4-1
	Sodium Adsorption Ratio	5	0.5	TP8-1
	Thallium	1	0.17	TP5-1
	Uranium	23	0.75	TP4-1
	Vanadium	86	35	TP8-1
	Zinc	340	82	TP8-1
	рН	NV	7.8	TP2-3
	Petroleum Hydrocarbons F1	55	< 10	All Samples
	Petroleum Hydrocarbons F2	98	< 10	All Samples
	Petroleum Hydrocarbons F3	300	< 50	All Samples
PHCs	Petroleum Hydrocarbons F4	2800	< 50	All Samples
PF	Benzene	0.21	< 0.02	All Samples
	Ethylbenzene	1.1	< 0.05	All Samples
	Toluene	2.3	< 0.05	All Samples
	Xylene Mixture	3.1	< 0.05	All Samples
	Tetrachloroethane, 1,1,1,2-	0.058	< 0.05	All Samples
	Trichloroethane, 1,1,1-	0.38	< 0.05	All Samples All Samples
	Tetrachloroethane, 1,1,2,2- Trichloroethane, 1,1,2-	0.05	< 0.05	All Samples
	Dichloroethane, 1,1-	0.05	< 0.05 < 0.05	All Samples
	Dichloroethylene, 1,1-	0.05	< 0.05	All Samples
	Dichlorobenzene, 1,2-	1,2	< 0.05	All Samples
	Dichloroethane, 1,2-	0.05	< 0.05	All Samples
	Dichloropropane, 1,2-	0.05	< 0.05	All Samples
	Dichlorobenzene, 1,3-	4.8	< 0.05	All Samples
	Dichloropropene, 1,3-	0.05	< 0.05	All Samples
	Dichlorobenzene, 1,4-	0.083	< 0.05	All Samples
	Acetone	16	< 0.5	All Samples
	Bromomethane	0.05	< 0.05	All Samples
	Carbon Tetrachloride	0.05	< 0.05	All Samples
۱	Chlorobenzene	2.4	< 0.05	All Samples
VOCs	Chloroform	0.05	< 0.05	All Samples
>	Dichloroethylene, 1,2-cis-	1.9	< 0.05	All Samples
	Dichloroethylene, 1,2-trans-	0.084	< 0.05	All Samples
	Dichlorodifluoromethane	16	< 0.05	All Samples
	Ethylene dibromide	0.05	< 0.05	All Samples
	Methyl Ethyl Ketone Methyl Isobutyl Ketone	16 1.7	< 0.5 < 0.5	All Samples All Samples
	Methyl tert-Butyl Ether (MTBE)	0.75	< 0.5 < 0.05	All Samples
	Methylene Chloride	0.75	< 0.05	All Samples
	Hexane (n)	2.8	< 0.05	All Samples
	Styrene	0.7	< 0.05	All Samples
	Tetrachloroethylene	0.28	< 0.05	All Samples
	Trichloroethylene	0.061	< 0.05	All Samples
	Trichlorofluoromethane	4	< 0.05	All Samples
	Vinyl Chloride	0.02	< 0.02	All Samples
	Bromodichloromethane	1.5	< 0.05	All Samples
	Bromoform	0.27	< 0.05	All Samples

<u>Table 14: Summary of Maximum Concentrations in Soil</u>

	Parameter	Table 2 Standard	Maximum Concentration	Location
	Methylnaphthalene, 2-(1-)	0.99	< 0.05	All Samples
	Acenaphthene	7.9	< 0.05	All Samples
	Acenaphthylene	0.15	< 0.05	All Samples
	Anthracene	0.67	< 0.05	All Samples
	Benz(a)anthracene	0.5	< 0.05	All Samples
	Benzo(a)pyrene	0.3	< 0.05	All Samples
	Benzo(b+j)fluoranthene	0.78	< 0.05	All Samples
S	Benzo(g,h,i)perylene	6.6	< 0.1	All Samples
PAHs	Benzo(k)fluoranthene	0.78	< 0.05	All Samples
~	Chrysene	7	< 0.05	All Samples
	Dibenz(a,h)anthracene	0.1	< 0.06	All Samples
	Fluoranthene	0.69	< 0.05	All Samples
	Fluorene	62	< 0.05	All Samples
	Indeno(1,2,3-cd)pyrene	0.38	< 0.1	All Samples
	Naphthalene	0.6	< 0.05	All Samples
	Phenanthrene	6.2	< 0.05	All Samples
	Pyrene	78	< 0.05	All Samples

Table 15: Summary of Maximum Concentrations in Groundwater

	Parameter	Table 2 Standard	Maximum Concentration	Location
	Antimony	1.5	0.57	BH1
	Arsenic	13	1.3	BH2
	Barium	610	230	BH2
	Beryllium	0.5	0	All Samples
	Boron	1700	150	BH1
	Cadmium	0.5	0	All Samples
	Chromium	11	0	All Samples
	Chromium VI	25	0	All Samples
{Ps	Cobalt Copper	3.8	0.92	All Samples BH1
Metals and ORPs	Lead	1.9	0.92	All Samples
and	Mercury	0.1	0	All Samples
als	Molybdenum	23	6.9	BH1
/let	Nickel	14	1.1	BH2
_	Sodium	490000	430000	All Samples
	Selenium	5	0	All Samples
	Silver	0.3	0	All Samples
	Thallium	0.5	0	All Samples
	Vanadium	3.9	0.71	BH2
	Zinc	160	0	All Samples
	Cyanide, Free	5	0	All Samples
	Chloride	790 000	900 000	BH1
	Uranium	8.9	5.6	BH2
S	F1 (C6-C10)	750 150	<25	All Samples All Samples
PHCs	F2 (C10-C16) F3 (C16-C34)	500	<100 <200	All Samples
д	F4 (C34-C50)	500	<200	All Samples
		2700	<10	•
	Acetone			All Samples
	Benzene	5	<0.17	All Samples
	Bromodichloromethane Bromoform	16 25	0.56 <1.0	BH2 All Samples
	Bromomethane	0.89	<0.50	All Samples
	Carbon Tetrachloride	0.79	<0.20	All Samples
	Chlorobenzene	30	<0.20	All Samples
	Chloroform	2.4	0.52	BH2
	Dibromochloromethane	25	<0.50	All Samples
	1,2-Dichlorobenzene	3	<0.50	All Samples
	1,3-Dichlorobenzene	59	<0.50	All Samples
	1,4-Dichlorobenzene	1	<0.50	All Samples
	1,1-Dichloroethane	5	<0.20	All Samples
	1,2-Dichloroethane	1.6	<0.50	All Samples
	1,1-Dichloroethylene	1.6	<0.20	All Samples
	Cis-1,2-Dichloroethylene	1.6	<0.50	All Samples
	Trans-1,2-Dichloroethylene	1.6	<0.50	All Samples
	1,2-Dichloropropane	5	<0.20	All Samples
	Cis-1,3-Dichloropropylene	NV	<0.30	All Samples
Ş	Trans-1,3-Dichloropropylene	NV	<0.40	All Samples
VOCs	Ethylbenzene	2.4	<0.20	All Samples
	Ethylene Dibromide	0.2	<0.20	All Samples
	Methyl Ethyl Ketone	1800	<10	All Samples
	Methylene Chloride Methyl Isobutyl Ketone	50 640	<2.0	All Samples All Samples
	Methyl-t-Butyl Ether	15	<5.0 <0.50	All Samples
	Styrene	5.4	<0.50	All Samples
	1,1,1,2-Tetrachloroethane	1.1	<0.50	All Samples
	1,1,2,2-Tetrachloroethane	1	<0.50	All Samples
	Toluene	24	0.22	BH2
	Tetrachloroethylene	1.6	<0.20	All Samples
	1,1,1-Trichloroethane	200	<0.20	All Samples
	1,1,2-Trichloroethane	4.7	<0.50	All Samples
	Trichloroethylene	1.6	<0.20	All Samples
	Vinyl Chloride	0.5	<0.20	All Samples
	m-Xylene & p-Xylene	NV	<0.20	All Samples
	o-Xylene	NV	<0.20	All Samples
	Total Xylenes	300	<0.20	All Samples
	Dichlorodifluoromethane	590	<1.0	All Samples
	II()			
	Hexane(n) Trichlorofluoromethane	51 150	<1.0 <0.50	All Samples All Samples

	Parameter	Table 2 Standard	Maximum Concentration	Location
	Acenaphthene	4.1	< 0.050	All Samples
	Acenaphthylene	1	< 0.050	All Samples
	Anthracene	0.1	< 0.050	All Samples
	Benzo(a)anthracene	0.2	< 0.050	All Samples
	Benzo(a)pyrene	0.01	< 0.0090	All Samples
	Benzo(b/j)fluoranthene	0.1	< 0.050	All Samples
	Benzo(ghi)perylene	0.2	< 0.050	All Samples
	Benzo(k)fluoranthene	0.1	< 0.050	All Samples
	Chrysene	0.1	<0.050	All Samples
	Dibenzo(a,h)anthracene	0.2	< 0.050	All Samples
-Is	Fluoranthene	0.4	< 0.050	All Samples
PAHs	Fluorene	120	< 0.050	All Samples
"	Indeno(1,2,3-cd)pyrene	0.2	< 0.050	All Samples
	1-Methylnaphthalene	2	< 0.050	All Samples
	2-Methylnaphthalene	2	< 0.050	All Samples
	Naphthalene	7	< 0.050	All Samples
	Phenanthrene	0.1	< 0.030	All Samples
	Pyrene	0.2	< 0.050	All Samples
	Methylnaphthalene, 2-(1-)	2	< 0.071	All Samples
	Dichlorodifluoromethane	590	<1.0	All Samples
	Hexane(n)	51	<1.0	All Samples
	Trichlorofluoromethane	150	< 0.50	All Samples
	1,3-Dichloropropene (cis + trans)	0.5	<0.50	All Samples

Notes for Soil and Groundwater Summary Tables

For soil and groundwater analytical results, concentration exceeds the applicable Standards.
For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
Benzene, Toluene, Ethylbenzene, Xylene
Meters above sea level
Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with Coarse Grain soils as contained in Table 2 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MECP on April 15, 2011.
Meters below ground surface
Not Monitored
Not Available
Metals and ORPs in Soil: Metals, As, Sb, Se, SAR, pH, EC, Hg, B-HWS, CN-, Cr(VI) Metals and ORPs in Groundwater: Metals, As, Sb, Se, CN-, Cr(VI), Hg, Cl, Na
Polycyclic Aromatic Hydrocarbons
Volatile Organic Compounds
Other Regulated Parameters
Petroleum Hydrocarbons
Units for all soil analyses are in µg/g (ppm) unless otherwise indicated
Units for all groundwater analyses are in µg/L (ppb) unless otherwise indicated

Figures

Client: **NEATT SIXTEEN MILE**

CREEK INC.

Size:	Approved By:		Drawn By:		Date:	
8.5 x 11		K.O		S.Y	May 2024	
Rev.	Scale:		Project No:	22-012-101	Figure No.	
		N.T.S		22-012-101		

Appendix A

22-012-101 January 2, 2022

NEATT Sixteen Mile Creek Inc. 5926 Chercover Court Burlington, Ontario L7L 6T1

Re: Sampling and Analysis Plan – Phase Two Environmental Site Assessment 3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Phase Two Environmental Site Assessment of 3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario, (the Site). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions in support of the proposed redevelopment of the Site.

The Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. Background

Based on the Phase One Environmental Site Assessment completed by DS it is DS's understanding that the Site is a 8.12 hectare (20.0 acres) parcel of land which is currently used for mixed residential and institutional purposes. The first developed use of the Site is interpreted to be Residential based on the findings of the Phase One ESA. A total of twenty (20) potentially contaminating activities were identified on the Phase One Property or on neighbouring properties within the Phase One Study Area which are considered to be contributing to Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs identified, the potential contaminants of concern, and the media potentially impacted is presented in Table 1 below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1A	Northeastern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-1	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1B	Central portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-2	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1C	Entire Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-5	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1D	Vicinity of former Site Building F, located in the southwestern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-11	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1E	Vicinity of former Site Building G, located in the southern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-12	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1F	Vicinity of former Shed 2, located in the southern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-14	Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-2	Northern portion of the Site	#58: Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	Off-Site PCA-6	PHCs, VOCs, BTEX, Metals, As, Sb, Se, CN-, Cr (VI), Hg, PAHs	Groundwater
APEC-3	Southwestern portion of the Site in the vicinity of former orchard	#40: Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site PCA-8	OCPs	Soil

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-4A	Northern portion of the Property in the vicinity of Shed 1.	#N/S: Storage of miscellaneous debris, refuse and boats	On-Site PCA-13	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4B	Eastern portion of the Site	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-15	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4C	Central portion of the Site immediately north of agricultural field	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-16	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4D	Southern portion of the Site immediately south of agricultural field	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-17	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-5A	Eastern portion of the Site	#N/S: Inferred application of de- icing agents	On-Site PCA-18	EC, SAR Sodium, Chloride	Soil Groundwater
APEC-5B	Western portion of the Site	#N/S: Inferred application of deicing agents	On-Site PCA-19	EC, SAR Sodium, Chloride	Soil Groundwater
APEC-6	Within the Vicinity of Site Building B	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site PCA-20	PHCs, VOCs, BTEX, Metals, As, Sb, Se, Cr (VI), Hg, PAHs	Soil and Groundwater

 $\mbox{N/S}$ - not specified in Table 2, Schedule D, of O.Reg. 153/04

BTEX = Benzene, Toluene, Ethylbenzene, Xylene

OCPs = Organochlorine Pesticides

PAHs = Polycyclic Aromatic Hydrocarbons

PHCs = Petroleum Hydrocarbons

VOCs = Volatile Organic Compounds

3. Site Investigation Program

The proposed field investigation will involve the advancement of eight (8) test pits (TP1 to TP8) on the eastern portion of the Phase Two Property using a backhoe under the supervision of DS

personnel, to depths ranging between 2.3 to 3.5 metres below ground surface (mbgs). As well as the advancement of twenty-one (21) additional boreholes (BH23-1 to BH23-21), to depths ranging from 1.4 to 18.8 mbgs on the western portion of the Phase Two Property. Ten (10) of the boreholes were instrumented with groundwater monitoring wells (BH23-1 to BH23-9 and BH23-17) upon completion.

Prior to mobilizing a drilling rig, we will lay out the proposed borehole and clear the buried utilities and services by using Ontario One Call System in addition to private utility locates.

The borings will be advanced to the indicated depths using a combination of a truck/track mounted continuous flight auger machine and portable drilling equipment (for MW20-20S and MW20-24S). Samples will be retrieved by means of a 50 mm O.D. split-spoon barrel sampler at 0.75 metre intervals in the upper 3 metres and at 1.5 metres intervals below this level. The monitoring wells will be constructed using 50 mm I.D. PVC pipe, equipped with 3.1 m slotted screens and finished at the ground surface with flush mount well casings. A geodetic benchmark will be used to establish the elevation of each borehole. Drilling and sampling will conform to standard practice.

The Phase Two ESA involves the following principal tasks:

- Retain the services of public and private utility locaters to identify the locations of buried and overhead utility services prior to any excavation or demolition activities;
 - Certain underground utilities (such as those constructed or encased in plastic, fibreglass, clay, concrete pipe, untraceable cast iron, steel, and/or repaired services) cannot be traced by standard locating practices. DS will review all available Site Plans and/or "As Built" figures in an attempt to identify the locations of potential untraceable services. DS will not be held responsible for any damages to utility services that are not on the figures provided or cannot be located by standard utility locating practices;
- Advancement of boreholes as described above. The proposed boreholes will be used to
 facilitate the collection of representative soil and groundwater samples, and to provide
 information regarding the Site-specific geological and hydrogeological conditions;
- All soil samples recovered during the proposed drilling activities will be field screened
 for visual and olfactory evidence of deleterious impacts and for the presence of petroleum
 hydrocarbon (PHC) and volatile organic compound (VOC) derived vapours using either a
 combustible gas detector (CGD) calibrated to hexane or a photo-ionization detector (PID)
 calibrated to isobutylene or equivalent;

- Measure the depth to groundwater levels in the monitoring wells installed, and monitor the wells for the presence/absence of non-aqueous phase liquid using an interface probe;
- Survey each of the monitoring wells to a geodetic datum;
- Develop and purge all of the monitoring wells installed;
- Submit soil samples from the newly advanced boreholes as follows:

Table 3-1: Summary of proposed soil chemical analyses

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
TP1	TP1-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs, PHCs, BTEX, VOCs	APEC-1C, APEC-1F
	Dup 1 (TP1- 1)			Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	711 20 11
TP2	TP2-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-4D
	TP2-3	1.5-2.5	Sand	рН	AI LO-4D
	TP3-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C,
TP3	Dup 2 (TP3- 1)	0.0 0.0	oundy sint	PAHs	APEC-4C, APEC-5A
	TP3-4	2.2-2.7	Silty sand	рН	
	TP4-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1B,
TP4	Dup 3 (TP4- 1)	0.0-0.0	Sality Silt	PAHs	APEC-1C, APEC-2
	TP4-3	1.5-2.2	Silty sand	рН	
TP5	TP5-1	0.0-0.7	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C, APEC-2, APEC-
	TP5-4	2.2-2.5	Silty sand	PHCs, BTEX, VOCs	4A
	TP6-1	0.0-0.7	Sandy silt	PAHs	ADE0 40
TP6	TP6-2	0.7-1.5	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC-4B, APEC-5A
	TP6-3	1.5-2.2	Silty sand	рН	AI EO-JA
	TP7-1	0.0-0.7	Silty sand	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C,
TP7	TP7-2	0.7-1.5	Silty sand	PAHs	APEC-5A, APEC-6
	TP7-4	2.3-3.1	Silty sand	PHCs, BTEX, VOCs	AI LO-0
TP8	TP8-1	0.0-0.6	Sandy silt	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1A, APEC-1C, APEC-5A
	SS1	0.1-0.7	Fill - Sand	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	
BH23-9	SS2 DUP-3	0.8-1.4	Silty clay till	PAHs	APEC-1C, APEC-2
	SS3	1.5-2.1	Silty clay till	PHCs, BTEX, VOCs	
	SS1				
Dug- :-	DUP-4	0.3-0.6	Fill - Clayey silt	OCPs	APEC-1C.
BH23-10	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-3
	SS3	1.5-1.8	Silty clay till	PHCs, BTEX, VOCs	

BH23-11	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C
BH23-12	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC-1E
	SS1	0.2-0.6	Fill - Silty clay	OCPs	APEC-1C,
BH23-13	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C,
BH23-14	SS1	0.2-0.6	Fill - Silty clay	OCPs	APEC-1C, APEC-3
BH23-15	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C, APEC-3
	SS2	0.8-1.4	Silty clay till	PAHs, PHCs, BTEX, VOCs	APEC-3
BH23-16	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, PAHs	APEC-1C,
	SS2	0.8-1.4	Fill - Silty clay	PHCs, BTEX, VOCs	APEC-5B
	SS1	0.3-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	
BH23-17	SS2	0.8-1.4	Silty clay till	PAHs	APEC-1C,
	SS3	1.5-2.1	Cilty aloy till	PHCs, BTEX, VOCs	APEC-5B
	DUP-1	1.5-2.1	Silty clay till	PHCS, BTEX, VOCS	
BH23-18	SS1	0-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C,
ВП23-10	DUP-2	0-0.0	Fill - Silty Clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-5B
BH23-19	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C,
	SS2	0.8-1.4	Silty clay till	PAHs	APEC-1D
BH23-20	SS1	0.2-0.6	Fill - Silty clay	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR, OCPs	APEC-1C,
	SS3	1.5-2.1	Silty clay till	PHCs, BTEX, VOCs	APEC-5B
	SS1	0.2-0.6	Fill - Silty clay	PAHs, OCPs	
BH23-21	SS2	0.8-1.4	Silty clay till	Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR	APEC-1C, APEC-5B
	SS4	2.3-2.8	Silty clay till	PHCs, BTEX, VOCs	

• Submit groundwater samples from the monitoring wells as follows:

Table 3-2: Summary of proposed groundwater analyses

Well ID	Wel Inter		reen masl	Sample Date	Parameter Analyzed	APEC Investigated
BH1	152.94	_	155.94	22-Jan-22	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na,	APEC-2. APEC-5A
DUP2	132.74	-	155.94	22-Jan-22	CI, PHCs, BTEX, VOCs, PAHs	AFLC-2, AFLC-3A
BH2	152.66	1	155.66	22-Jan-22	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, BTEX, VOCs, PAHs	APEC-5A, APEC-6
BH4	152.25	-	155.25	22-Jan-22	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na,	APEC-5A
DUP1	152.25	,	155.25	22-Jan-22	CI, PHCs, BTEX, VOCs, PAHs	AFEC-SA
MW23-9	152.10	- 1	155.10	30-Jun-23	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, BTEX, VOCs, PAHs	APEC-2
MW23-17	140 40		151.40	30-Jun-23	Metals, As, Sb, Se, CN-, Cr (VI), Hg, Na,	APEC-5B
DUP1	148.40	-	131.40	30-Jul1-23	CI, PHCs, BTEX, VOCs, PAHs	APEC-3B

A summary of the proposed soil and groundwater analytical program is presented in the following table:

Table 3-3: Summary of Soil and Groundwater Analytical Program

Soil	Groundwater
 22 Samples for analysis of metals and inorganics 11 Samples for analysis of PHCs 11 Samples for analysis of VOCs 18 Samples for analysis of PAHs 11 Samples for analysis of SVOCs 	 5 Samples for analysis of metals and inorganics 5 Samples for analysis of PHCs 5 Samples for analysis of VOCs 5 Samples for analysis of PAHs 1 VOC Trip Blank

- A Quality Assurance and Quality Control (QAQC) program will be implemented, involving the collection and analysis of duplicate soil and groundwater samples and trip blanks at the frequency specified under O.Reg. 153/04 (as amended);
- A Phase Two ESA Report will be prepared upon receipt of all analytical results and groundwater monitoring data. The Phase Two ESA Report will be completed in general accordance with O.Reg. 153/04 (as amended).

It should be noted that drilling activities may result in some disturbance to the ground surface at the site. Precautions will be taken by the drilling contractor to minimize any damage. The Client will be notified should there be cause to extend the borehole termination depth based on field observations. It is assumed that the site can be accessed at our convenience, during regular business hours. Prior notice will be sent to the client and site representative

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Site. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of O.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

4. Closure

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Kirstin Olsen, M.Sc., C.E.T

kolsen@dsconsultants.ca

Appendix B

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Hollow Stem Auger/Mud Rotary

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/06/2023 ENCL NO.: 1

BH LOCATION: See Figure 5 N 4813210.47 E 601359.2

	SOIL PROFILE		S	AMPL	ES.	œ		L	5			d S	pac		<u> </u>			PLAS	TIC N	ATUR	AL	LIQUID		Ψ	RI	MAF	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	Æ		BLOWS 0.3 m	GROUND WATER	NOIT		(PIC					CGI ppr			LIMIT W _P ⊢	C	ONTEI W —O—	NT	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		RIBU	SIZE UTIO
158.1		STRAT	NUMBER	TYPE		GROUN	ELEVATION		10 2	20 3	30 4	i 0	1	0 2	20 :	30 4	• 40	W	ATER 10	CONT	TEN ⁻		P(NAT	GR S	(%) SA	
0.0	FILL: clayey silt to silty clay, trace rootlets, trace gravel, trace sand,	\boxtimes	1	SS	9		158	3												0							
0.8	reddish brown, moist, stiff SILTY CLAY TILL: sandy, trace		2	SS	18		15	-											-	+	-				4 2	21 4	49 2
155.8	gravel, reddish brown, moist, very stiff to hard weathered shale pieces at 1.5m		3	SS	37		150	Ė											0								
15 5,6 2.5	SILTY CLAY TILL/SHALE COMPLEX: trace sand, reddish	7/1/	4	SS	50/ \30mn			Ė										0									
	brown, moist, hard SHALE BEDROCK: Queenston Formation, reddish brown,		5	SS	50/ 25mm		15	1																			
153.4	weathered		\ 6 <i>/</i> \	SS /	50/	abla	154 W. L.	153		asl																	
15 3 :0 5.1	TCR=94%, SCR=77%, RQD=55% ~Hard layers=11%, Maximum hard / layer thickness=50mm		Ř1	RC	30mr		Jul 19		23																		
151.5	TCR=96%, SCR=83%, RQD=46% Hard layers=25%, Maximum hard layer thickness=75mm		R2	RC			15	2																			
6.6	TCR=96%, SCR=81%, RQD=72% Hard layers=14%, Maximum hard		R3	RC			15													+							
150.1 8.0	layer thickness=50mm TCR=95%, SCR=63%, RQD=51%						150																				
	Hard layers=10%, Maximum hard layer thickness=60mm		R4	RC			149																				
9.6	TCR=100%, SCR=88%, RQD=86%																										
	Hard layers=25%, Maximum hard layer thickness=75mm		R5	RC			148	3																			
11.1	TCR=92%, SCR=75%, RQD=64% Hard layers=11%, Maximum hard						14	7																			
145.4	layer thickness=75mm		R6	RC			140	<u> </u>																			
12.7	TCR=100%, SCR=93%, RQD=55% Hard layers=20%, Maximum hard layer thickness=60mm		R7	RC			14	5											+								
144.0 14.1	TCR=91%, SCR=91%, RQD=88%						14	1																			
	Hard layers=18%, Maximum hard layer thickness=75mm		R8	RC			14	3																			
142.5	TCR=98%, SCR=95%, RQD=95% Hard layers=16%, Maximum hard						14:	2																			
141.0	layer thickness=150mm		R9	RC				Ē																			
17.1	TCR=95%, SCR=90%, RQD=77% Hard layers=10%, Maximum hard layer thickness=130mm		R10	RC			14	F																			
139.5 18.6	END OF BOREOLE:						. 140)																			
141.0 17.1 139.5 18.6	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																										
	Date: Water Level(mbgl): June 26, 2023 4.3 July 19, 2023 4.4																										

CLIENT: NEATT Sixteen Mile Creek Inc. Method: Hollow Stem Auger/Mud Rotary

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm REF. NO.: 22-012-101

DATUM: Geodetic ENCL NO.: 2

	SOIL PROFILE		S	AMPL	ES	œ							d S	pac					PLAS	TIC, N	ATURAI DISTUR	- LIQ	JID ,	₩	F		ARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	SER		BLOWS 0.3 m	GROUND WATER	200	ELEVATION			PID ppm > ■					CG ppr ⊋			W _P	C	W —O—	Γ -"	OCKET PE	NATURAL UNIT WT	G	RAIN TRII	ND N SIZ BUT %)
159.6		STRA	NUMBER	TYPE	ž	GROU		ELEV/	1	0 2	0 3	0 4	l -0	1	0 2	20	30	₽ 40			CONTE 20	,	b) L	ž	1		SI
15 9.9 158.8	GRANULAR FILL: sand and gravel, 50mm		1	SS	13			159												c)						
1 0.8	FILL: clayey silt to silty clay, trace gravel, reddish brown, moist, stiff		2	SS	27															0							
2	SILTY CLAY TILL: some sand, trace gravel, brown to reddish brown, moist, very stiff to hard		3	SS	29			158												0							
157.0	trace shale fragments at 2.3m SHALE BEDROCK: Queenston		4	SS	62	abla		157											-	-		+	\parallel				
3 2.0	Formation, reddish brown, weathered		5_/	SS /	50/ 30mm			V. L. 1 ul 19, 156	202		asl																
4					1001111			130																			
154.9 15 4 : 3	TCR=94%, SCR=64%, RQD=23%		6.	SS /	50/			155																			
5.1	Hard layers=11%, Maximum hard // layer thickness=50mm		R1		(<u>00mr</u>)			154														1					
153.0	TCR=90%, SCR=81%, RQD=68% Hard layers=11%, Maximum hard layer thickness=50mm		R2	RC																							
6.6	TCR=91%, SCR=85%, RQD=66% Hard layers=16%, Maximum hard							153																			
151.5	layer thickness=75mm		R3	RC				152														+	-				
8.1	TCR=100%, SCR=93%, RQD=75% Hard layers=19%, Maximum hard							151																			
2	layer thickness=78mm		R4	RC																							
149.9 2 9.7	TCR=95%, SCR=91%, RQD=91%							150																			
	Hard layers=15%, Maximum hard layer thickness=50mm		R5	RC				149														+					
148.4	TCR=93%, SCR=93%, RQD=90%					4. · L.		148																			
2	Hard layers=25%, Maximum hard layer thickness=78mm		R6	RC				1 10																			
146.9 3 12.7	TCR=100%, SCR=93%, RQD=82%							147																			
	Hard layers=14%, Maximum hard layer thickness=55mm		R7	RC				146														+					
145.3	TCR=98%, SCR=93%, RQD=88%							115																			
5	Hard layers=23%, Maximum hard layer thickness=78mm		R8	RC				145																			
143.8 15.8	TCR=96%, SCR=96%, RQD=93%							144														+					
7142.4	Hard layers=27%, Maximum hard layer thickness=78mm		R9	RC				143						-								_	4				
⁷ 142.4 17.2	TCR=100%, SCR=100%,							4.40																			
<u>3</u>	RQD=94% Hard layers=22%, Maximum hard		R10	RC				142																			
140.8	layer thickness=127mm END OF BOREHOLE:							141														+	+	\bot	_		
140.8	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																										
	Date: Water Level(mbgl): June 26, 2023 2.5 July 19, 2023 2.8																										

Method: Hollow Stem Auger/Mud Rotary

CLIENT: NEATT Sixteen Mile Creek Inc. PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm

REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/06/2023 ENCL NO.: 3

BH LOCATION: See Figure 5 N 4813192.51 E 601273.15

BH LC	OCATION: See Figure 5 N 4813192.51	E 60				1	1									1				1	1			
L	SOIL PROFILE		S	AMPL	.ES	· ~					ad S _l	pace				PLAS	STIC NA	ATURA	L LIQU	D	₹	RE	MAR	
(m)						GROUND WATER CONDITIONS			Pl					GD		LIIVII	CC	ONTEN	T LIIVI	B EN	NATURAL UNIT WT (kN/m³)	CB	and Ain s	
ELEV	DECODIDATION	STRATA PLOT	~		BLOWS 0.3 m	Š Š O	EVATION	l ,	(bb	m)			(P)	pm)		W _P		w 	W	POCKET PE (Cu) (kPa)	SAL L	DIST		TION
DEPTH	DESCRIPTION	ATA	BEF	ш	0.3	N	¥		\geq	X	X	←		>₽	•	w	ΔTFR (CONT	ENT (%)	9 G	ATU.		(%)	
450.0		STR.	NUMBER	TYPE	þ	SRC SON	l e	10	20	30	40	10	20	30	40	"	10	20	30		z	GR S	۸ د	יו כו
158.2	FILL: clayey silt to silty clay, some	XX	╆	SS	26		158	\vdash	+				1				+	+	\perp		1	OIV C		1 01
F I	sand, trace cobble fragments, trace	\bowtie	1	33	20												%							
157.2 1.0	weathered shale, reddish brown, noist, stiff to very stiff		2	SS	8		157																	l
[1.0	SILTY CLAY TILL: some sand,		Ě	-			157													1				
-2	trace gravel, reddish brown, moist,	KK.	3	SS	13												0	+	+			1 1	2 5	8 29
155.8	stiff weathered shale inclusions at 2.3m/	JAS'Y	4	SS	50/		156										6			1				l
2.4	SHALE BEDROCK: Queenston		广		30mg	$^{\prime}$		-																
	Formation, reddish brown,		5	SS	50/	-	W. L.			_						-			-	┨				
E. I	weathered				1 <u>∖30mr</u>		Jun 26	i, 2023 F ∣	•															l
<u>-4</u>							154									_	_		+	-				l
153.5			6/	\ SS /	50/																			l
±15 5 :7	TCR=78%, SCR=57%, RQD=28% —\text{Hard layers=5%, Maximum hard}		R1	RC ,	30mr		153		\perp	\perp				\perp	\perp	\perp	_	\perp	\perp	1				
5.1	layer thickness=25mm						100																	
6	TCR=94%, SCR=89%, RQD=54%		R2	RC			450	Ē																
151.7	Hard layers=10%, Maximum hard —layer thickness=50mm						152													1				
6.5	TCR=98%, SCR=95%, RQD=95%							 																
	Hard layers=24%, Maximum hard layer thickness=100mm		R3	RC			151													1				l
E ≝150.1	layer thickness-roomin																							l
8.1	TCR=98%, SCR=98%, RQD=95%						150	-								-	+		+	-				l
	Hard layers=18%, Maximum hard		R4	RC		ŀ: ∃ :	1	-																l
<u>-9</u>	layer thickness=50mm		N4	NC.			149													4				
148.6	TCR=100%, SCR=100%,		1																					l
9.6	RQD=95%						148																	l
F	Hard layers=20%, Maximum hard		R5	RC			140																	l
1147.1	layer thickness=75mm						1																	l
11.1	TCR=96%, SCR=96%, RQD=88%						147													1				l
12	Hard layers=20%, Maximum hard layer thickness=50mm		R6	RC			:																	
145.6	,						146										+			1				
145.6	TCR=94%, SCR=93%, RQD=74%						:																	l
-	Hard layers=24%, Maximum hard		R7	RC			145									-				-				l
E	layer thickness=130mm		 '''	110																				l
14.0	TCR=96%, SCR=94%, RQD=88%						144																	l
F	Hard layers=28%, Maximum hard		1			ŀ: ∃ :	'''																	l
45	layer thickness=100mm		R8	RC		I:E:																		l
142.6							143													1				
142.6 15.6	TCR=100%, SCR=100%,																							
<u>.</u> [RQD=88% Hard layers=16%, Maximum hard		R9	RC			142									1			+	1				
) E	layer thickness=100mm							Ē																
141.0 17.2	TCR=100%, SCR=100%,		\vdash				141	-	+	+		\vdash		-	+	+	+	+	+	1				
5E	RQD=76%							E																
18	Hard layers=12%, Maximum hard layer thickness=50mm		R10	RC			140		\perp	-				\perp		1			1	-				
139.5	,									\perp		\sqcup			_	_			\perp	_				
18.7	END OF BOREHOLE: Notes:																							
i	1) 50mm dia. monitoring well																							
i l	installed upon completion. 2) Water Level Readings:																							
[,																							
:	Date: Water Level(mbgl): June 26, 2023 3.0																							
3 	Julie 20, 2023 3.0																							
\vdash				l		L GRAPH	. 3				1		3 =3%											

DS ENVIRO 0~50 PPM-2021 22-012-101 ENV.GPJ DS.GDT 4/25/24

NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

REF. NO.: 22-012-101

CLIENT: NEATT Sixteen Mile Creek Inc.

PROJECT: Phase Two ESA DRILLING DATA

Method: Hollow Stem Auger/Mud Rotary

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm

DATUM: Geodetic Date: Jun/07/2023 ENCL NO.: 4

	SOIL PROFILE		S	AMPL	.ES			L		Soil I	Hea	d S	pace	e Va	apor	s		PLASTIC	NAT	URAL	LIQUID		5	REMA	ARK:
(m)		2LOT			NS E	WATER			(PID ppn					CGE opm		ľ	LIMIT W _P	CON	STURE ITENT N	LIMIT	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AN GRAIN	I SIZ
EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION					1			≥	-				ONTEN	. ,	POC (Cu)	NATUR/ (KI	DISTRIB (%	6)
0.0	FILL: clayey silt to silty clay, trace	ν ××				0 0	ОШ	╄	10 2	20 3	30 4	.0	10	0 2	0 3	40	4	10) 2	20 :	30			GR SA	SI
156.1	sand, trace rootlets, reddish brown,	\otimes	1	SS	11			F											(Þ					
0.8	moist, stiff	X	2	SS	18		150	3 E									+		<u> </u>						
155.3	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist,							F										`	,						
1.6	very stiff		3	<u>SS</u>	50/ 100mr		15	5Ē_										c	,						
154.5	SILTY CLAY TILL/SHALE COMPLEX: trace sand, trace				50/			Ē										0							
2.4	gravel, reddish brown, moist, hard		4	_SS_	75mm		45	, E																	
	SHALE BEDROCK: Queenston		5	SS	50/		154	†E																	
	Formation, reddish brown, weathered		Э	- 33	75mn			ŧ																	
	weathered						15	3[─									1								
152.2					50/			F																	
15 1 :8	TCR=98%, SCR=77%, RQD=66%		6 R1	SS RC	50/ 75mm		15	2[-									+								
5.1	Hard layers=19%, Maximum hard /							F																	
	TCR=98%, SCR=93%, RQD=73%		R2	RC			15	1 🖳		-							4								
150.3	Hard layers=20%, Maximum hard layer thickness=50mm							E																	
6.6	TCR=100%, SCR=98%, RQD=93%						150	Ŀ																	
	Hard layers=20%, Maximum hard layer thickness=60mm		R3	RC			∏ '˘'	Ě																	
	layer thickness=60mm							F																	
148.8 8.1	TCR=100%, SCR=100%,					$\vdash \exists$	149	1																	
0.1	RQD=98%							Ē																	
	Hard layers=11%, Maximum hard layer thickness=50mm		R4	RC			14	3								+	1								
147.3	•							F																	
9.6	TCR=100%, SCR=98%, RQD=89% Hard layers=22%, Maximum hard						14	7[-									-								
	layer thickness=130mm		R5	RC				E																	
145.8							W. L. Jul 19			asl							_								
11.1	TCR=98%, SCR=98%, RQD=84%						:: °°°	, Zu																	
	Hard layers=11%, Maximum hard layer thickness=50mm		R6	RC			14	Ŀ																	
	layer unerarese commi						:	É																	
144.3 12.6	TCR=94%, SCR=94%, RQD=89%					\mathbb{H}		Æ																	
	Hard layers=25%, Maximum hard		R7	RC			14	1																	
	layer thickness=100mm		IN/	KC				Ē																	
142.9	TCR=96%, SCR=96%, RQD=93%					$\ \cdot\ $	14	3╞─									+								
	Hard layers=12%, Maximum hard		$ _{-} $	_				ŧ																	
	layer thickness=50mm		R8	RC			14	2 -								+	\dashv								
141.3		E	L		L			F																	
141.3 15.6	TCR=100%, SCR=91%, RQD=67%						14	1									\dashv	_							
	Hard layers=19%, Maximum hard layer thickness=150mm		R9	RC				E																	
139.7	•			-			140	Ŀ								\perp	\perp								
139.7 17.2	TCR=100%, SCR=100%,	E					1-1	ĺ																	
17.2	RQD=91%						40	F																	
	Hard layers=25%, Maximum hard layer thickness=100mm		R10	RC			139	T									寸								
138.2		F						Ė								_	_ļ								
18.7	END OF BOREHOLE: Notes:					1																			
	1) 50mm dia. monitoring well					1																			
	installed upon completion. 2) Water Level Readings:																								
	,																								
- 1	Date: Water Level(mbgl): June 26, 2023 9.4					1																			
	July 19, 2023 10.5					1																			
	-					1																			
- 1						1																			
		1	1		1	1	1	1	1	1	1	1					- 1			1	1				

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

Method: Hollow Stem Auger/Mud Rotary

CLIENT: NEATT Sixteen Mile Creek Inc. PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm

REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/13/2023 ENCL NO.: 5

BH LOCATION: See Figure 5 N 4813099.92 E 601201.33

	SOIL PROFILE		S	AMPL	.ES	_				S	oil F	lead	d S	pac					PI AS	TIC NA	ATURAI DISTUR	L	IQUID		₽	RI	EMAF	RKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	GROUND WATER	ELEVATION				PID ppm					CGI ppn <u>→</u>			W _P		ONTEN		W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)		ANE AIN S RIBU (%)	SIZE JTION
157.6		STR/	NUMBER	TYPE	ż	GRO			10) 20) 3() 4	0	1	10 2	20 3	30 4	10	l	10	20 20	=N I			≥	GR S	SA S	SI C
150.0	TOPSOIL: 250mm	1 1 _y	1	SS	8			Ī													0	1						
156.5	FILL: clayey silt to silty clay, trace gravel, trace organic staining, trace	\boxtimes	2	SS	7		1	57																				
1.1	sand, trace rootlets, brown to reddish brown, moist, firm to stiff		H				1:	56																				
2	SILTY CLAY TILL: some sand to sandy, trace gravel, reddish brown,		3	SS	38				-											0	٣	1				4	18 5	52 2
± 3154.5	moist, firm to hard weathered shale inclusions at 2.3m		4	_SS_	50/ 25mm		1	55												-		+						
158.3	SILTY CLAY TILL/SHALE	12/2	5	SS	50/			ŧ	-																			
3.3	COMPLEX: trace sand, trace		э	55	150mn		1	54											L '	_		_						
4	gravel, reddish brown, moist, hard					∇																						
150 0	SHALE BEDROCK: Queenston							L. 1			sl																	
152.9	_Formation, reddish brown, weathered	+	6 /	SS	50/		Jul	19, 2	202	3—												+						
5 152:4	TCR=98%, SCR=83%, RQD=22%		R1	RC	50mr			F	-																			
5.2	Hard layers=33%, Maximum hard						1	52																				
6	layer thickness=50mm		R2	RC			1	٧ <u>ـ</u> ٤	П	T												T						
454.0	TCR=84%, SCR=52%, RQD=29%							F																				
-151.0 - 6.6	Hard layers=15%, Maximum hard	=	\vdash				1:	51	-	_				-	1					-	+	+						
0.0	layer thickness=100mm							Ė																				
	TCR=98%, SCR=98%, RQD=90% Hard layers=20%, Maximum hard		R3	RC		:: -		F																				
o4 40 5	layer thickness=60mm					LН	.] 1	50														+						
≝149.5 8.1	TCR=100%, SCR=100%,	F						ŀ	-																			
- 0.1	RQD=95%					lΞ	1	49														\perp						
9	Hard layers=18%, Maximum hard		R4	RC		lН	. '	73																				
140.0	layer thickness=50mm						4	ŧ																				
-148.0 9.6	TCR=100%, SCR=100%,		\vdash		-		1	48		_				-	1					-	_	+						
9.6	RQD=94%					lΒ		Ė																				
	Hard layers=25%, Maximum hard		R5	RC		ľН		F																				
	layer thickness=50mm						. 1	47														+						
1146.5	TCR=98%, SCR=93%, RQD=90%					l∷ ⊨		E	-																			
11.1	Hard layers=16%, Maximum hard					l::E		46																				
12	layer thickness=50mm		R6	RC		ΙĖ	.] '	46																				
	,					LH		Ē	-																			
144.9						l: H	1 1	45											_	-	4	+						
12.7	TCR=95%, SCR=95%, RQD=95%					ĿĦ	:																					
	Hard layers=20%, Maximum hard		R7	RC		lΒ		E																				
	layer thickness=150mm		Ν'	KC.		ĿН	1	44 E		\dashv				\vdash						+		+	_					
143.4						ŀ∃		Ē	-																			
14.2	TCR=100%, SCR=100%,						∄ ₄	43						L	L	L			L	\perp	\perp							
15	RQD=100% Hard layers=33%, Maximum hard		R8	RC		\Box	: ['	43E																				
F	layer thickness=100mm		```	110			•	F	-																			
141.9	·		lacksquare				1.	42						-	1		-	-		-	+	+						
141.9 16 15.7	TCR=100%, SCR=100%,							Ė																				
	RQD=100% Hard layers=20%, Maximum hard		R9	RC				Ę																				
7	layer thickness=100mm		```				1.	41														+						
140.4	-							ŀ	-																			
17.2	TCR=100%, SCR=100%,						1.	40						ot														
18	RQD=100% Hard layers=13%, Maximum hard		R10	RC			1	→rE	T	T		\neg										T	П					
	layer thickness=100mm		. ` ` ĭ					F																				
138.9	,		\sqcup				_1	39						L	<u> </u>					\vdash		4						
18.7	END OF BOREHOLE:						1																					
	Notes: 1) 50mm dia. monitoring well																											
	installed upon completion.																											
	Water Level Readings:																		1									
	,																											
17140.4 17.2 18 138.9 18.7	Date: Water Level(mbgl): June 26, 2023 4.2 July 19, 2023 4.1																											
		1	1			1	1							1				1	l									
								- 1		- 1	ļ			l					l									

CLIENT: NEATT Sixteen Mile Creek Inc.

PROJECT: Phase Two ESA DRILLING DATA

Method: Hollow Stem Auger/Mud Rotary

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm REF. NO.: 22-012-101

DATUM: Geodetic ENCL NO.: 6

	SOIL PROFILE		s	AMPL	.ES	_		L	S	Soil I	Hea	d S	pac	e Va	apor	s		рі дст	IC NAT	URAL	LIQUIE		5	RE	MARI	K٤
(m)		-от			الا	GROUND WATER	2 -		(PID ppn								LIMIT W _P	CON	STURE ITENT W	LIMIT W _L	z	NATURAL UNIT WT (kN/m³)	GR	AND AIN S	
EPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	\ QNU	ELEVATION			_		ı		•	≥			10/0-	TER C	O	IT (0/)	POCKET PE (Cu) (kPa)	ATURAI (KN)	DIST	RIBU [*] (%)	TI
155.4		STR/	NUMBER	TYPE	ż	GRO	ELE		10 2	20 3	80 4	0	1	0 2	0 3	0 4	0				30		Ž	GR S	SA S	il.
158.2	TOPSOIL: 180mm	* 1 <i>l</i> . 1	1	SS	12		15	Ē											0							_
154.6	FILL: clayey silt to silty clay, trace sand, trace rootlets, trace asphalt	\bigotimes					130	1																		
0.8	figment, brown, moist, stiff		2	SS	54		45												∘⊩	H				3 1	4 6	1
	SILTY CLAY TILL: some sand, trace gravel, weathered shale		3	SS	50/		154	1											0							
153.1	_inclusions, reddish brown, moist,	Jac y			130mr		4.54	Ē																		
2.3	hard SILTY CLAY TILL/SHALE		4	SS	50/ \30mr		153	1										0				1				
152.2	_COMPLEX: trace sand, reddish		5,	SS	50/			F										0								
3.2	brown, moist, hard				75mm		152	2														1				
	SHALE BEDROCK: Queenston Formation, reddish brown,					∇		ŧ																		
150.7	weathered			- 00	50/		W. L. Jul 19			asl—												1				
150:2	TCR=89%, SCR=89%, RQD=68% —Hard layers=10%, Maximum hard		6 R1	∖_SS_ RC	50/ 75mm		Jul 13	F .																		
5.2	layer thickness=50mm						150) <u> </u>														1				
	TCR=100%, SCR=96%, RQD=96%		R2	RC				F																		
148.7	Hard layers=21%, Maximum hard layer thickness=100mm						149	9┣─	+													1				
6.7	TCR=100%, SCR=98%, RQD=90%							F																		
	Hard layers=11%, Maximum hard layer thickness=50mm		R3	RC			148	3 E _	\vdash				_								_	ł				
147.3	ayer anemices commi							F																		
8.1	TCR=90%, SCR=90%, RQD=83%					1 🗏	14	7 Ĕ																		
	Hard layers=20%, Maximum hard layer thickness=50mm		R4	RC				E																		
145.8	,					月	140	£																		
9.6	TCR=98%, SCR=95%, RQD=95%						네 'T`	Ĺ																		
	Hard layers=16%, Maximum hard layer thickness=60mm		R5	RC			14	<u>.</u>																		
	layer trickness-comm		1.0	110			14	1																		
144.3	TCR=96%, SCR=96%, RQD=90%							Æ																		
	Hard layers=25%, Maximum hard layer thickness=200mm		R6	RC			144	†																		
	layer trickness=200mm		110	NO				Ē																		
142.8 12.6	TCR=100%, SCR=100%,					$\vdash \exists$	143	1																		
12.0	RQD=83%							Ţ.																		
	Hard layers=24%, Maximum hard layer thickness=50mm		R7	RC			142	*														1				
141.2	-					IJĦ		Ē																		
14.2	TCR=100%, SCR=100%, RQD=100%					ΙB	14	1														1				
	Hard layers=16%, Maximum hard		R8	RC				F																		
139.7	layer thickness=50mm						140	E	+													1				
139.7 15.7	TCR=98%, SCR=98%, RQD=98% Hard layers=21%, Maximum hard							ŧ																		
138.2	layer thickness=100mm		R9	RC			139	₽														1				
138.2								F														1				
17.2	TCR=100%, SCR=100%,						138	3	+													1				
17.2	RQD=85% Hard layers=10%, Maximum hard		R10	RC				F														1				
136.7	layer thickness=50mm						137	7 📙	+													ł				
18.7	END OF BOREHOLE:							Ť																		
	Notes: 1) 50mm dia. monitoring well																					1				
	installed upon completion.																									
	2) Water Level Readings:																					1				
	Date: Water Level(mbgl): June 26, 2023 4.1 July 19, 2023 4.2																									
	56., 10, E0E0 1.E																									
- 1													l									1	l			

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Hollow Stem Auger/Mud Rotary

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/14/2023 ENCL NO.: 7

	SOIL PROFILE		s	AMPL	ES	<u>_</u> _		L				d S	pac					PLAS	TIC, NA	TURAL	LIQUIE		¥	REM	MARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			PIE (ppr		1			CGI ppn <u>→</u>		,	W _P	COI	STURE NTENT W O O O O O O O O O O O O O O O O O O	WL	126	NATURAL UNIT WT (kN/m³)	GRAI DISTR	IND IN SIZE IBUTIC (%)
157.6	TOPOOU AFO	S	₹	≱	ż	R 0	급	╄	10	20 :	30 4	10	1	0 2	20 3	30 4	10		10	20	30			GR SA	SI
15 8 . 2	TOPSOIL: 150mm FILL: silty clay, trace to some organics, trace rootlets, reddish brown. moist. firm to stiff		2	SS	7		15	7											0						
156.1 1.5	SILTY CLAY TILL: sandy, trace		3	SS	19		15	3											0						
2	clay, trace weathered shale fragments, brown to reddish brown, moist, very stiff to hard		4	SS	32		15	5											0			_		3 20	53
154.3		1	5,	SS	50/			F											þ						
3.3	SHALE BEDROCK: Queenston Formation, reddish brown, weathered				30mr		15 ₋																		
152.9 15 2 : 5	TCR=100%, SCR=75%, RQD=0%		6	SS	50/		15	ŧ														1			
5.1	Hard layers=25%, Maximum hard layer thickness=100mm TCR=100%, SCR=82%, RQD=61%		R1 R2	RC	25mm		W. L. Jul 19	152 9, 20	2.6 m 023_ 	asl															
151.0 , 6.6	Hard layers=31%, Maximum hard layer thickness=100mm TCR=100%, SCR=100%,						15	1														$\left\{ \right.$			
<u>′</u> ≅149.5	RQD=80% Hard layers=34%, Maximum hard layer thickness=75mm		R3	RC			15																		
8.1	TCR=95%, SCR=95%, RQD=90% Hard layers=13%, Maximum hard layer thickness=50mm		R4	RC		ΙĖ	14	9																	
148.0 9.6	TCR=100%, SCR=97%, RQD=52%						14	3														=			
146.5	Hard layers=21%, Maximum hard layer thickness=50mm		R5	RC			14	7																	
11.1	TCR=100%, SCR=100%, RQD=98% Hard layers=16%, Maximum hard		R6	RC			14	3																	
144.9	layer thickness=100mm						14	5														1			
₃ 12.7	TCR=98%, SCR=95%, RQD=93% Hard layers=15%, Maximum hard layer thickness=60mm		R7	RC			14	4																	
143.4 14.2	TCR=100%, SCR=98%, RQD=97%							F																	
5	Hard layers=31%, Maximum hard layer thickness=100mm		R8	RC			14																		
141.9 <u>15.7</u>	TCR=100%, SCR=98%, RQD=93% Hard layers=20%, Maximum hard		R9	RC			14	2																	
140.4	layer thickness=100mm		113	110			14	1																	
7140.4 17.2	TCR=100%, SCR=100%, RQD=100% Hard layers=10%, Maximum hard layer thickness=50mm		R10	RC			14																		
138.8	•						13	9																	
18.8	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																								
	Date: Water Level(mbgl): June 26, 2023 5.0 July 19, 2023 5.0																								

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Hollow Stem Auger/Mud Rotary

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 200mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/15/2023 ENCL NO.: 8

	SOIL PROFILE		S	AMPL	ES				S	oil l	Hea	d S	pace	e Va	apor	s	Į.	DI AOT.	_ NAT	URAL	1101115		F	RE	MARK
(m)		LOT			SN E	WATER	Z			PID ppn					CGE		ľ	PLASTI LIMIT W _P	CON	URAL STURE TENT W	LIQUIL LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	GRA	AND AIN SI
ELEV	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER	ELEVATION		10 2		20 4	i o	10		0 3	→ 0 40				O ONTEN 20 3	T (%)	Pock (cu)	NATURA (KN		RIBUT (%)
154.9 15 0 .9	ASPHALT: 150mm	os No				0 0	ш	╁			1				- 1	+0	\dashv	-						GR S.	A SI
154.1	FILL: silty clay, trace rootlets, trace	\bowtie	1	SS	13			Ē	-																
0.8	gravel, brown, moist, stiff SILTY CLAY TILL: sandy, trace	13/	2	SS	23		15	4									1		∘ -	-				9 2	0 48
153.2	gravel, reddish brown, moist, very		3	SS	50/			F											_						
1.7	stiff SILTY CLAY TILL/SHALE		3	33 <u> </u>	(30mr		15	3									1		<u>, </u>						
2.4	COMPLEX: trace sand, reddish	77:/4	4	_SS_	50/			F	•									0							
	brown, moist, hard SHALE BEDROCK: Queenston		-	00	75mm		15	2									7								
	Formation, reddish brown,		5	SS /	50/ 00mg			F	-																
	weathered						15	1									1								
150.2			6	00	50/			F																	
14 9 .8 5.1	TCR=98%, SCR=75%, RQD=35% "Hard layers=9%, Maximum hard /		6 R1	SS /	50mm		15	10E									1								
3.1	layer thickness=25mm							ŀ																	
148.3	TCR=93%, SCR=93%, RQD=85% Hard layers=10%, Maximum hard _layer thickness=30mm		R2	RC			14	9																	
6.6	TCR=100%, SCR=97%, RQD=66%						14	8	-								4								
	Hard layers=18%, Maximum hard layer thickness=50mm		R3	RC				ŧ																	
146.8	•						14	7									+								
8.1	TCR=100%, SCR=100%, RQD=90%							F																	
445.0	Hard layers=19%, Maximum hard layer thickness=50mm		R4	RC			14	6																	
9.6	TCR=89%, SCR=63%, RQD=54%						14	5																	
	Hard layers=10%, Maximum hard layer thickness=50mm		R5	RC			'	Ĕ																	
143.9	layer unokness-somm						14	⊿ Ē																	
11.0	TCR=100%, SCR=100%, RQD=84%							Ē																	
	Hard layers=13%, Maximum hard		R6	RC			14	3Ē									4								
142.3	layer thickness=50mm							ŀ																	
12.6	TCR=100%, SCR=94%, RQD=94%					l∶∦	14	2		_						_	4								
	Hard layers=16%, Maximum hard layer thickness=50mm		R7	RC					41.8 ma	asl															
140.7							Jul 1		2023								4								
14.2	TCR=100%, SCR=100%,					ΙĦ	:	E																	
	RQD=93% Hard layers=20%, Maximum hard		R8	RC			14	οĒ									\dashv								
139.2	layer thickness=50mm							F	-																
139.2	TCR=99%, SCR=99%, RQD=91%						13	9	+								\dashv								
	Hard layers=15%, Maximum hard layer thickness=50mm		R9	RC				E																	
137.7 17.2							13	8								+	\dashv								
17.2	TCR=100%, SCR=100%, RQD=100%							ŧ																	
.	Hard layers=16%, Maximum hard		R10	RC			13	7									\dashv								
136.1	layer thickness=150mm						L	_[_		_		L	L			
18.8	END OF BOREHOLE: Notes:							T																	
	1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:																								
	Date: Water Level (mbgl): June 26, 2023 12.9																								
	July 19, 2023 13.1																								

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/19/2023 ENCL NO.: 9

	SOIL PROFILE		S	SAMPL	.ES				S	oil I	Head	d Sp	oace	e Va	apor	S	DI 40=	, NAT	TURAL	LIC:]	_⊢	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	BER		BLOWS 0.3 m	GROUND WATER	ELEVATION			PID ppm					CGE opm		W _P	,	TURAL STURE NTENT W	WL		NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO
58.2			NUMBER	TYPE	ż	GRO	ELE)	1	10 2	20 3	0 40	0	10) 2	0 3	0 40			ONTEN 20 :			Ž	GR SA SI
5 9.0 0.1	TOPSOIL: 100mm FILL: limestone screening, sand and gravel, surface vegetation, brown, moist, compact		1	SS	22		158	X									0	3					Metals, As, Sb, Se,
0.8	SILTY CLAY TILL: some sand, trace gravel, weathered shale inclusions, reddish brown, moist, hard	XXXXXXX	2	SS	31		157	 									C	3			=		B-HWS, CI EC, Cr(VI), Hg, pH and SAR, OCP PAHs and DUP-3 (PA
			3	SS	46		456	X										o					PHCs, BTE VOCs
55.8 2.4	SILTY CLAY TILL/SHALE COMPLEX: some sand, reddish brown, moist, hard	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	4	SS	50/ 130mn	m.	156	X									0						
55.0 3.2	SHALE BEDROCK: Queenston Formation, reddish brown, weathered		5	SS	50/ 130mr		155	X									0				-		
							W. L. Jul 19	154. 0, 202	1 ma 23	asl_											_		
			6	SS	50/ 50mm		150																
							100	-															
52.0 6.2	END OF BOREHOLE:		7	SS	50/			<u> </u>															
0.2	Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings:				\$0mm	1																	
	Date: Water Level(mbgl): June 26, 2023 4.1 July 19, 2023 4.1																						

GRAPH +

+ 3 , imes 3 : Numbers refer to Sensitivity

REF. NO.: 22-012-101

PROJECT: Phase Two ESA DRILLING DATA

CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm

DATUM: Geodetic Date: Jun/20/2023 ENCL NO.: 10

	SOIL PROFILE		S	SAMPL	.ES	~					Head	d S	pace					PLAST	IC NA	TURAL	LIQUII LIMI		™	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	3ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			PID opm	1)			(CGI ppn <u></u>	n)		W _P ⊢		w -0	W	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO (%)
156.0		STRA	NUMBER	TYPE	ż	GROI	ELEV	1	10 2	0 3	0 4	0	1	0 2	20 :	30 4	10			ONTEI 20			₹	GR SA SI
0.0	TOSPOIL: 250mm	1/ 1/v.					156	-																
0.3	FILL: clayey silt, trace sand, trace gravel, reddish brown, moist, stiff		1	SS	7			- -																OCPs and DUP-4
155.2 0.8	SILTY CLAY TILL: some sand,					-		-																(OCPs)
155.0	trace gravel, reddish brown, moist, hard						455	-																
1.0	SILTY CLAY TILL/SHALE COMPLEX: trace sand, reddish brown, moist, hard		2	SS	40	-	155	-											0			_		Metals, As, Sb, Se, B-HWS, Cl Cr(VI), Hg, and SAR, PAHs
								-																
			3	SS	50/ 130mn	n		-											•					PHCs, BTE and VOCs
!							154	-														-		
153.6					50/	-		-																
2.4 153.4	SHALE BEDROCK: Queenston Formation, reddish brown, weathered		4	SS	130mn	h		-										0						
2.6	END OF BOREHOLE: Notes: 1) Borehole dry at the bottom upon completion.																							

CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

Date: Jun/20/2023 ENCL NO.: 11

	SOIL PROFILE		S	SAMPL	.ES					l Hea	ad S	pace				DI	ASTIC	NATUI	RAL ,	ווטו ווי		5	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	P (pp	om)	T	1	(t	CGD opm) 40	W _F	WATEF	W 			POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	
155.4 0.0	TOPSOIL: 150mm	2/ 1/2	-	-	-	00	ш		1	-	+-	H			+0	+	Ť	1	Ť				GR SA SI
0.2	FILL: silty clay, trace rootlets, dark brown to brown, moist, stiff		1	SS	8	-	155	-										0					
1546		\otimes						-															
0.8 154.4	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, hard							-															
1.0	SILTY CLAY TILL/SHALE COMPLEX: some sand, trace gravel, reddish brown, moist, hard		2	SS	39		Þ	-									0						Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and SAR
154.0	END OF BOREHOLE:	1///	╄				154									+		+					SAR
	1) Borehole dry at the bottom upon completion.																						

GRAPH NOTES

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/20/2023 ENCL NO.: 12

	SOIL PROFILE		s	AMPL	.ES] _				Hea	ad S	pace				рі .	ASTIC N	IATUI	RAL ,	וווויוים		Ļ	REMARKS
(m) ELEV DEPTH 155.9	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	PI (pp	m)	1	1	(F	OGD opm) 	W _P	VATER	-0 -0 CON		W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
0.0	FILL: silty sand, some clay, some gravel, trace asphalt pieces, trace rootlets, brown, moist, loose		1	SS	9	-		- - - - -									0						
155.1 0.8	SILTY CLAY TILL: some sand, trace gravel, trace shale fragments, brown to reddish brown, moist, very stiff		2	SS	26		155	- - - - -									0						Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and SAR
1.4	END OF BOREHOLE: Notes: 1) Borehole is dry at the bottom upon completion.																						

GRAPH NOTES $+3, \times^3$: Numbers refer to Sensitivity

O ^{8=3%} Strain at Failure

CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/20/2023 ENCL NO.: 13

	SOIL PROFILE		s	AMPL	ES.	, _~					ead	Spac					PLASTI	NATI	JRAL	LIQUID		↓	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		(p		X		(CGE ppm	ı) 	V		ER CC	V D ONTEN	LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	
0.0	TOPSOIL: 180mm	S : 1/2 :	Ž	Ĺ	£	00	□	-	0 20	30	40		10 2	20 3	0 40	+	10) 2	0 3	30			GR SA SI
0.2	FILL: silty clay, trace rootlets, dark brown to reddish brown, moist, firm		1	SS	5		Þ											0					OCPs
155.1 0.8	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, stiff						155	-															
154.5 1.4	END OF BOREHOLE:		2	SS	13													0					Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and SAR
17	Notes: 1) Borehole dry at the bottom upon completion.																						

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

DS CONSULTANTS LTD. **LOG OF BOREHOLE BH23-14** 1 OF 1 DRILLING DATA PROJECT: Phase Two ESA CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101 DATUM: Geodetic Date: Jun/20/2023 ENCL NO.: 14 BH LOCATION: See Figure 5 N 4812993.67 E 601258.7 SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC NATURAL LIQUID MOISTURE LIMIT CONTENT LIMIT REMARKS GROUND WATER CONDITIONS PID CGD AND NATURAL UNIT (m) STRATA PLOT GRAIN SIZE (ppm) (ppm) BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 10 20 30 40 10 20 30 20 30 GR SA SI CL 155.0 TOPSOIL: 230mm 0.0 FILL: silty clay, trace rootlets, 0.2 SS 6 reddish brown, moist, firm OCPs 154.2 SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, 154 2 SS 32 0 153.6 END OF BOREHOLE: Notes: 1) Borehole dry at the bottom upon completion.

<u>GRAPH</u>

+ ³, × ³: Numbers refer to Sensitivity

O $^{8=3\%}$ Strain at Failure

DS ENVIRO 0~50 PPM-2021 22-012-101 ENV.GPJ DS.GDT 4/25/24

GROUNDWATER ELEVATIONS

CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

Date: Jun/16/2023 ENCL NO.: 15

	SOIL PROFILE		s	AMPL	.ES				S	oil F	lead	Sp	ace	Va	pors		D/ 1.2	TIC NAT	URAL]		REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	l" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		(t	PID opm)		•	(p	GD pm)	•	W _P	ATER C	W O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	
0.0	TOPSOIL: 150mm	. 7 _{1 1} γ.	ž	1	ż	ਹ ਹ	ⅲ	1	0 20	0 30	0 40	+	10	20	30	40	+	10	20 :	30			GR SA SI
154.8		(/ /																					
0.2	FILL: silty clay, trace rootlets, reddish brown, moist, stiff		1	SS	9			- 1	3									0					Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and SAR, OCP
0.8	SILTY CLAY TILL: some sand,	XX							$ \setminus $														
1	trace gravel, reddish brown, moist, very stiff		2	SS	27		154	-										0					PAHs, PHO BTEX, VO
153.6	END OF BOREHOLE:																						
1.4	Notes: 1) Borehole dry at the bottom upon completion.																						

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

DRILLING DATA

Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/16/2023 ENCL NO.: 16

	SOIL PROFILE		Ls	SAMPL	.ES]		L	S	oil F	lead	Sp	ace	Va	pors	3	DI	معتام	NATL	JRAL	רוטיייב		L	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	1	(t	PID opm))	10	(p	GD pm)	40	W _P	WATE	R CO	TURE TENT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTIO (%) GR SA SI
0.0	TOPSOIL: 230mm	1/ ½					_	-																
0.2	FILL: silty clay, trace rootlets, reddish brown, moist, firm to stiff		1	SS	7		454	-	X												0			Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and SAR, PAH
	trace organics, trace concrete						154	-																
	pieces at 0.8m		2	SS	11			- - - -	×										0					PHCs, BTE VOCs
153.3	END OF BOREHOLE: Notes:	XX																						
	Borehole was dry at the bottom upon completion.																							

 $\begin{array}{c|c} \underline{\mathsf{GROUNDWATER}\;\mathsf{ELEVATIONS}} \\ \mathsf{Measurement} & \overset{\mathsf{1st}}{\underbrace{\hspace{1em}}} & \overset{\mathsf{2nd}}{\underbrace{\hspace{1em}}} & \overset{\mathsf{3rd}}{\underbrace{\hspace{1em}}} & \overset{\mathsf{4th}}{\underbrace{\hspace{1em}}} \\ \end{array}$

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

DRILLING DATA

Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/16/2023 ENCL NO.: 17

OCATION: See Figure 5 N 4812938.88	E 6012	207.	53																			
SOIL PROFILE				ES.	띪					ead S	Spac					PLASTI	IC NAT	URAL STURE	LIQUIE	ż	TWT	REMARKS AND
DESCRIPTION	RATA PLOT	IMBER	JE.	BLOWS 0.3 m	SOUND WATE	EVATION				▶ ▼		(ppm	n) •••		W _P	•	w 0	WL	POCKET PER (Cu) (kPa)	NATURAL UNIT (kN/m³)	GRAIN SIZE DISTRIBUTIO (%)
		ž		Ž	P S	ᆸ	10	20	30	40	1	0 2	20 3	0 4	0	1	0 2	20	30			GR SA SI
FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand.		1	SS	11	-	154	*											0				Metals, As, Sb, Se, B-HWS, CN EC, Cr(VI), Hg, pH and
trace gravel, reddish brown, moist, very stiff to hard		2	SS	26		153		1									0					SĂR, OCPs PAHs
		3	SS SS	21	· ·											0	0					PHCs, BTE VOCs and DUP-1 (PH VOCs)
SHALE BEDROCK: Queentson		5]	SS	1 <u>(00mr)</u> 50/		152	- - - -									0						
Formation, reddish brown, weathered									:I													
		6	SS	50/		150	-									0						
						149	-															
END OF BOREHOLE:		7	_SS_	50/ 50mm			- - - -									0						
50mm dia. monitoring well installed upon completion. Water Level Readings:																						
June 26, 2023 3.7 July 19, 2023 3.7																						
	SOIL PROFILE DESCRIPTION TOPSOIL: 280mm FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered END OF BOREHOLE: Notes: 1) Somm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): June 26, 2023 3.7	SOIL PROFILE DESCRIPTION TOPSOIL: 280mm FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level (Readings: Date: Water Level((mbgl): June 26, 2023 3.7	SOIL PROFILE DESCRIPTION TOPSOIL: 280mm FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): June 26, 2023 3.7	DESCRIPTION Continue	SOIL PROFILE DESCRIPTION DESC	SOIL PROFILE DESCRIPTION DESCRIPTION TOPSOIL: 280mm FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered SHALE BEDROCK: Queentson Formation, reddish brown, weathered FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, very stiff to hard 2 SS 26 SHALE BEDROCK: Queentson Formation, reddish brown, weathered FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, very stiff to hard 2 SS 26 SHALE BEDROCK: Queentson Formation, reddish brown, weathered 5 SS 50/ 30mm/ SHALE BEDROCK: Queentson Formation, reddish brown, weathered	SOIL PROFILE DESCRIPTION Continue Cont	SOIL PROFILE DESCRIPTION Section Section	SOIL PROFILE DESCRIPTION DESC	SOIL PROFILE DESCRIPTION OLD WAY AND A SOUL MAN OF MOUNT OF BOREHOLE: Notes: 1 SOIL PROFILE SAMPLES SAMPLES SOIL HE PID (ppm) A SOUL MAN OF MOUNT ON THE PID (ppm) PID (ppm) SOIL PROFILE SAMPLES SOIL HE PID (ppm) A SOUL MAN OF MOUNT OF	SOIL PROFILE SAMPLES DESCRIPTION DESCRIPT	SOIL PROFILE SAMPLES SOIL PROFILE SAMPLES SOIL PROFILE SAMPLES SOIL PROFILE SOI	SOIL PROFILE SAMPLES Soil Head Space V PID (ppm) DESCRIPTION PID (ppm) TOPSOIL: 280mm FILL: silty clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered SHALE BEDROCK: Queentson Formation, reddish brown, weathered FID OF BOREHOLE: Notes: 1 SS 50/ 150 TOPSOIL: Silty Clay TilL: some sand, trace gravel, reddish brown, moist, very stiff to hard 2 SS 26 SHALE BEDROCK: Queentson Formation, reddish brown, weathered FID OF BOREHOLE: Notes: 1 SOII Head Space V PID (ppm) 1 D 2 30 40 10 2 TOPSOIL: Silty Clay TilL: some sand, trace gravel, reddish brown, moist, very stiff to hard 1 SS 50/ 4 SS 50/ 3 SS 21 151 TOPSOIL: Some sand, trace organics, black to brown, moist, very stiff to hard 1 SS 11 154 4 SS 50/ 3 SS 21 155 TOPSOIL: Some sand, trace organics, black to brown, moist, very stiff to hard 1 SS 11 154 155 TOPSOIL: Some sand, trace organics, black to brown, moist, very stiff to hard 1 SS 11 154 4 SS 50/ 50/ TOPSOIL: Some sand, trace organics, black to brown, moist, very stiff to hard 1 SS 11 154 155 TOPSOIL: Some sand, trace organics, black to brown, moist, very stiff to hard 1 SS 11 154 155 155 150 150 150 150 1	SOIL PROFILE SAMPLES Soil Head Space Vapor PID (ppm) CGI (ppm) TOPSOIL: 280mm FILL: silly clay, trace rootlets, trace asphalt, trace organics, black to brown, moist, very stiff to hard SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered Soil Head Space Vapor (ppm) 1 SS 11 SS 11 SS 21 SHALE BEDROCK: Queentson Formation, reddish brown, weathered Soil Head Space Vapor (ppm) 10 20 30 40 10 20 3 153 SHALE BEDROCK: Queentson Formation, reddish brown, weathered Soil Head Space Vapor (ppm) 10 20 30 40 10 20 3 154 SS 50/ SMD 154 SOII Head Space Vapor (ppm) 10 20 30 40 10 20 3 154 SS 50/ SMD 154 SMD 155 SMD	SOIL PROFILE SAMPLES BY SOIL PROFILE SAMPLES BY SOIL Head Space Vapors PID (ppm) CGD (ppm) TOPSOIL: 280mm FILL: silly clay, trace rooflets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very sliff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered SS SS SOI SMALE BEDROCK: Queentson Formation, reddish brown, weathered SS SS SOI SMALE BEDROCK: Queentson Formation, reddish brown, weathered SS SS SOI SMALE BEDROCK: Queentson Formation, reddish brown, weathered SS SS SOI SMALE BEDROCK: Queentson Formation, reddish brown, weathered SS SS SOI SOI Head Space Vapors PID (ppm) SS SS SOI 153 154 SMALE BEDROCK: Queentson Formation, reddish brown, weathered SMALE BEDROCK: Queentson Formation, reddish brown, weathered SMALE BEDROCK: Queentson Formation, reddish brown, weathered SS SS SOI 150 SMALE BEDROCK: Queentson Formation, reddish brown, weathered SMALE BEDROCK: Queentson Formation, reddish brown, weathered	SOIL PROFILE SAMPLES DESCRIPTION TOPSOIL: 280mm FILL: silty clay, frace routlets, trace asphalt, trace organics, black to brown, moist, stiff SILTY CLAY TILL: some sand, trace grayel, reddish brown, moist, very stiff to hard SHALE BEDROCK: Queentson Formation, reddish brown, weathered SHALE BEDROCK: Queentson weathered TOPSOIL: 280mm TOPSOIL: 280mm 1	SOIL PROFILE SAMPLES LY LY LY LY LY LY LY LY LY L	SOIL PROFILE SAMPLES DESCRIPTION DESCRIPT	SOIL PROFILE SAMPLES DESCRIPTION DESCRIPT	SOIL PROFILE SAMPLES DESCRIPTION L L L L L L L L L L L L L L L L L L	SOIL PROFILE SAMPLES DESCRIPTION DESCRIPT	SOIL PROFILE SAMPLES DESCRIPTION DESCRIPT

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/16/2023 ENCL NO.: 18

	SOIL PROFILE		S	SAMPL	ES				So	il He	ad S	Spac	e Va	apor	S	DI	ASTIC	, NATL	JRAL	LIOLIID		F	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	(p	PID pm) >■■	-■ 40	1	(1	CGD ppm O 30) -•	W	P	R CO	TURE FENT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZ DISTRIBUTI (%) GR SA SI
0.0	FILL: silty clay, trace organics, sand and gravel, brown, moist, firm		1	SS	7		154	-									0						Metals, As, Sb, Se, B-HWS, CN EC, Cr(VI), Hg, pH and SAR, OCPs and DUP-2
153.5 0.8 1 152.9	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff		2	SS	28		153	- - - - -										0					(Metals and ORPs)
1.4	END OF BOREHOLE: Notes: 1) Borehole dry at the bottom upon completion.																						

GRAPH NOTES +

+ 3 , imes 3 : Numbers refer to Sensitivity

LOG OF BOREHOLE BH23-19 1 OF 1 PROJECT: Phase Two ESA **DRILLING DATA** CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101 DATUM: Geodetic Date: Jun/16/2023 ENCL NO.: 19 BH LOCATION: See Figure 5 N 4812921.54 E 601228.89 SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC NATURAL LIQUID MOISTURE LIMIT CONTENT LIMIT REMARKS GROUND WATER CONDITIONS PID CGD AND NATURAL UNIT (m) STRATA PLOT GRAIN SIZE (ppm) (ppm) BLOWS 0.3 m ELEVATION ELEV DEPTH DISTRIBUTION **DESCRIPTION** NUMBER (%) WATER CONTENT (%) 10 20 30 10 20 30 20 30 154.4 GR SA SI CL 0.0 GRANULAR FILL: sand and gravel, 150mm 154.2 FILL: silty clay, organic staining, 0.2 Metals, As, black, moist, stiff to very stiff Sb, Se, B-HWS, CN-, EC, Cr(VI), Hg, pH and SAR, OCPs SS 26 0 154 SILTY CLAY TILL: some sand, PAHs 1.0 trace gravel, reddish brown, moist, 2 SS 12 153.0 153 END OF BOREHOLE: Notes: 1) Borehole dry at the bottom upon completion. DS ENVIRO 0~50 PPM-2021 22-012-101 ENV.GPJ DS.GDT 4/25/24

GROUNDWATER ELEVATIONS

CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

	SOIL PROFILE		S	SAMPL	ES			So	il Head	Spac	e Vap	ors	DI ACTIC	NATUR	AL , , o		F	REMARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	(p)	ID om) = 2 2 30 40		C(pr	GD om) ≥•	W _P	W O-R CON	AL LIQU RE LIM V FENT (%)	OCKET	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIOI (%) GR SA SI (
0.0	GRANULAR FILL: sand and gravel,180mm	X						-										GR SA SI I
0.2	FILL: silty clay, trace sand, trace gravel, brown, moist, very stiff		1	SS	16		154	1					0					Metals, As, Sb, Se, B-HWS, CN EC, Cr(VI), Hg, pH and SAR, OCPs
53.8							101	-										
0.8	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist, very stiff to hard	**********	2	SS	22			t					0					
								.										
		********	3	SS	38		153	1					0					PHCs, BTE VOCs
152.3 15 2 : 3	SHALE BEDROCK: reddish brown,		4	SS	50/	-		- - 1					0					
2.4	END OF BOREHOLE: Notes: 1) Borehole is dry at the bottom upon completion.				(\$30m													

PROJECT: Phase Two ESA DRILLING DATA CLIENT: NEATT Sixteen Mile Creek Inc. Method: Solid Stem Auger

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: 150mm REF. NO.: 22-012-101

DATUM: Geodetic Date: Jun/16/2023 ENCL NO.: 21

BH LC	OCATION: See Figure 5 N 4812905.65	E 60	1227	.53																				
	SOIL PROFILE		S	AMPL	.ES	· ~						d S	pace					PLAST	IC.NAT	URAL	LIQUIE		₽	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ЭE	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			PIC ppn	n)	1		(CGI ppn) 1) •		W _P		w 0	LIQUIE LIMIT W _L NT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTION (%)
154.2		STF	ž	TYPE	ż	9.0 8.0	E	1	0 2	20 3	30 4	10	1	0 2	20 3	0 4	0	1	10 2	20	30			GR SA SI CL
0.0 - 154.0	GRANULAR FILL: sand and gravel, 200mm	\bigotimes					154	-																
0.2	FILL: silty clay, trace organics, trace sand, dark brown, moist, very stiff		1	SS	15		154	-											0					PAHs, OCPs
153.4 0.8	SILTY CLAY TILL: some sand, trace gravel, reddish brown, moist,							-																Metals, As, Sb. Se.
<u>-1</u> - -	very stiff to hard		2	SS	20		153	- 1 -											0			-		Sb, Se, B-HWS, CN-, EC, Cr(VI), Hg, pH and SAR
- - - - -			3	SS	38		1	- - -											o					
151.9						-	152	-														-		
2.3	SILTY CLAY TILL/SHALE COMPLEX: trace sand, trace gravel, reddish brown, moist, hard		4	SS	50/ 75mm	1		-										0						PHCs, BTEX, VOCs
151.4 2.8	END OF BOREHOLE:							_																
2.	END OF BOREHOLE: Notes: 1) Borehole is dry upon completion.																							

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

DATUM: Geodetic Date: Jan/10/2022 ENCL NO.: 22

	SOIL PROFILE		s	AMPL	.ES						ead	Spa	ice \				PI AST	IC NAT	URAL	I IOI III		Ļ	REMARKS
(m) ELEV DEPTH	DECODIDATION	PLOT	~		BLOWS 0.3 m	O WATER IONS	NO		F (p	PID pm))		,	CG (pp	D m)		LIMIT W _P	CON	STURE ITENT W	LIQUIE LIMIT W _L T (%)	XET PEN. u) (kPa)	SAL UNIT W KN/m³)	AND GRAIN SIZ DISTRIBUTIO
156.1	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLO	GROUND WATER CONDITIONS	ELEVATION	10	0 20	30	40		10	20	30	4 0			ONTEN	T (%)	0))Od) NATU	(%) GR SA SI
15 0 :0	TOPSOIL:180mm SANDY SILT:reddish brown, moist,	<u> 111</u>					156		\dashv			+											
0.2	trace shale fragments		1	TP		-		-															Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and
			2	TP			155	-	+														SAR, PAH PHCs, BTI VOCs and
			3	TP			2	- 1															DUP 1 (Me and ORPs
153.8			4	TP			154	3				+											

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Phase Two ESA **DRILLING DATA** CLIENT: NEATT Sixteen Mile Creek Inc. Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

Date: Jan/10/2022 ENCL NO.: 23

	SOIL PROFILE		s	SAMPL	.ES	_				l He	ad S	pac				Di ∧	STIC NA	TURAL	HOUI		5	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	46	(pp		X		(t	CGD opm)) -•	W _P	STIC NA MC T CC	W O CONTEN	W _L √T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	
155.9	TOPSOIL:180mm	.71 1 ^N .	z	-	F	00	Ш	-	20	30	40	'	0 2	0 30	40	+	10	20	30			GR SA SI
159:9 0.2	SANDY SILT:reddish grey, moist, gravel		. 1	TP		-	155															Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI),
154.4			2	TP			133	-														Hg, pH, an
1.5	SAND:reddish grey, dry to moist, trace shale fragments		3	TP			154 2	-												_		рН
153.4 2.5	END OF BOREHOLE										+	\vdash				+				-		

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

DATUM: Geodetic Date: Jan/10/2022 ENCL NO.: 24

	SOIL PROFILE		s	AMPL	ES				Soil		id S	pace					LASTI	, NATI	JRAL		_	<u> </u>	REMARKS
(m) ELEV	DESCRIPTION.	PLOT	٧		WS m) WATER ONS	N O		PII (pp	D m)			()	CGD opm)	v	IMIT V _P	MOIS CON V	JRAL TURE TENT V	LIMIT	KET PEN. J) (kPa)	SAL UNIT M	AND GRAIN SIZ DISTRIBUTI
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	20			1	0 2	0 30	4 0		WAT		NTEN		P00.	RUTAN S	(%) GR SA SI
158:9	TOPSOIL:180mm	<u>11/4</u>														T							
0.2	SANDY SILT:reddish brown, moist, gravel		1	TP			158	1															Metals, As Sb, Se, B-HWS, C EC, Cr(VI) Hg, pH and SAR, PAH
156.8	CAMPubrous regist		2	TP			157	1															SAR, PAH and DUP 2 (PAHs)
156.1	SAND:brown, moist		3	TP				1															
2.2	SILTY SAND: reddish brown, moist, gravel		4	TP			156	i													=		рН
			5	TP			ı c	·															
155.3 3.0	END OF BOREHOLE	1111	H					_							+	+							<u> </u>

GRAPH +

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

DATUM: Geodetic Date: Jan/10/2022 ENCL NO.: 25

	SOIL PROFILE		S	AMPL	.ES	~					ıd Sı	pace		pors		Ы 76.	TIC NAT	URAL	ПОпп		Ţ.	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	10	PII (ppi	m)	1	10	(r	OGD Opm)	•	W _P ⊢ WA	TIC NAT MOIS CON TER CO	W O ONTEN	W _L	POCKET PEN. (Cu) (kPa)	_	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
158.8 15 9 : 9	TOPSOIL:170mm	21 1/2	-		=		ш	-	Ť	<u> </u>	Ť	H		- 1	<u> </u>	+	Ť					GR SA SI
0.2	SANDY SILT:reddish brown, moist		1	TP			158	- 1 - - -														Metals, As, Sb, Se, B-HWS, Cl
157.3			2	TP			100	- - - - - -														EC, Cr(VI), Hg, pH and SAR, PAHs and DUP 3 (PAHs)
1.5 156.6	SILTY SAND:brown, moist		3	TP			157	- - - 1														pН
2.2	SANDY SILT:reddish brown, trace shale fragments, moist		4	TP		-	156	- - - - -														
3.0 3.0	END OF BOREHOLE						150															

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Phase Two ESA **DRILLING DATA** CLIENT: NEATT Sixteen Mile Creek Inc. Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

Date: Jan/10/2022 ENCL NO.: 26

	SOIL PROFILE		s	AMPL	.ES					Hea	d S	pace				PI AS	TIC. NA	URAL	LIQUIF	_		REMARKS
(m) ELEV	DESCRIPTION	PLOT	<u>_</u>		BLOWS 0.3 m	GROUND WATER CONDITIONS	NOI		PII (ppi	m)			(p	GD pm)		LIMIT W _P	TIC NAT MOI COI	STURE NTENT W	LIQUID LIMIT W _L T (%)	CKET PEN. u) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZ DISTRIBUTIO
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N"	GROUNI	ELEVATION	10	20			10		30	40		ATER C	ONTEN		900	NATUL B)	(%) GR SA SI
158:2	TOPSOIL:170mm	711/2						-														
0.2	SANDY SILT:reddish brown, moist		1	TP			158	- 1 - -														Metals, As, Sb, Se, B-HWS, Cl
0.7 0.7	SILTY SAND: reddish brown, moist, gravel, shale fragments		2	TP			157	- - - 3														EC, Cr(VI), Hg, pH and SAR, PAH
			3	TP		_	137	- - - 3														
155.0			4	TP			156	-														PHCs, BTE
155.9 2.5	END OF BOREHOLE	1144						-								+						VOCs

GRAPH NOTES + 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

DATUM: Geodetic Date: Jan/10/2022 ENCL NO.: 27

	SOIL PROFILE	_	s	AMPL	ES						d Sp	ace '				DI VOTI	C NATI	JRAL	ווטוייי		F	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	l" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION			n) I		•	CG (ppr	n)			ER CC	V O ONTEN	W _L Γ (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZI DISTRIBUTIO (%)
158.8	T0000U 400	<u>7,1%</u>	ž	7	ż	<u> </u>	ш	10	20 :	30 4	0	10	20	30 4	0	1	0 2	0 3	0			GR SA SI
0.2	TOPSOIL:180mm SANDY SILT:reddish brown, gravel, moist		1	TP			Þ	- - - - -														PAHs
157 3			2	TP			158	- - - - -														Metals, As, Sb, Se, B-HWS, Cl
157.3 1.5	SILTY SAND:reddish grey, moist, trace shale fragments		3	TP			157	- - - - 1														B-HWS, C EC, Cr(VI), Hg, pH and SAR, PAH: pH
156.0 2.8	END OF BOREHOLE		4	TP			P	- - - 1														

 $\frac{\text{GRAPH}}{\text{NOTES}} \quad +^{\,3}, \times^{\,3} \colon \stackrel{\text{Numbers refer}}{\text{to Sensitivity}}$

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

DRILLING DATA

Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

DATUM: Geodetic Date: Jan/10/2022 ENCL NO.: 28

	SOIL PROFILE		s	AMPL	.ES	_					lead	Spa		-		PI AST	IC NAT	URAL	LIQUIE		₽	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION		(p	PID pm] >■			e	CG (pp	m) •	PLAST LIMIT W _P		w 0	WL	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (kN/m³)	AND GRAIN SIZE DISTRIBUTIO
159.9		STRA	NUMBER	TYPE	N	GROU	=LEV#	10	20		-■ 0 40		10		30 4			ONTEN 20 3		۵	¥	(%) GR SA SI
159.9	TOPSOIL:170mm	71 1/																				
0.2	SILTY SAND:reddish brown, moist, gravel, trace shale fragments		1	TP		_		1														Metals, As, Sb, Se, B-HWS, Cl EC, Cr(VI),
1			2	TP			159 1	1														Hg, pH and SAR, PAH: PAHs
2			3	TP			158															
			4	TP		-	157															PHCs, BTE
³ 156.8	END OF BOREHOLE	lili						-	_			+		_								VOCs

PROJECT: Phase Two ESA

CLIENT: NEATT Sixteen Mile Creek Inc.

Method: Excavator

PROJECT LOCATION: 3056 Neyagawa Blvd. & 1039 Dundas St. W., Oakville, ONDiameter: REF. NO.: 22-012-101

DATUM: Geodetic Date: Jan/10/2022 ENCL NO.: 29

trace sha	DESCRIPTION L:180mm SILT:reddish grey, moist, ale fragments		1 NUMBER	TP TP	"N" BLOWS	GROUND WATER CONDITIONS	159	10	PII (pp	m)	·	10	(pp	30 4	•		ER CO	DNTENT	W _L Γ (%)	POCKET PEN. (Cu) (kPa)	2	GR SA SI (
159.9 TOPSOI 0.2 SANDY: trace sha			1	TP TP			159	-	20	30 4	10	10	20	30 4	40	1	0 2	0 3	0			GR SA SI Metals. As.
0.2 SANDY trace sha				\TP_			159	-														Metals, As, Sb, Se,
156.1						-		1													1 1	
156.1			3	TP		l		-														Sb, Se, B-HWS, Cl EC, Cr(VI), Hg, pH and SAR, PAH
156.1						-	158	-														
3.5 END OF			4	TP			157															
	BOREHOLE	<u> </u>						-	+				+				\dashv				Н	

GRAPH NOTES

Appendix C

CA40062-FEB22 R

22-012-100, 3056 Neyagawa Blvd

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Kirstin Olsen	Telephone	2165
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	jill.campbell@sgs.com
Email	kirstin.olsen@dsconsultants.ca	SGS Reference	CA40062-FEB22
Project	22-012-100, 3056 Neyagawa Blvd	Received	02/03/2022
Order Number		Approved	02/09/2022
Samples	Soil (3)	Report Number	CA40062-FEB22 R
		Date Reported	02/09/2022

COMMENTS

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number:NA

CN spike made with wrong std (1000mg/l) accepting on before and after working spike

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

www.sgs.com

TABLE OF CONTENTS

First Page	1-2
Index	
Results	4-6
Exceedance Summary	7
Holding Time Summary	8-9
QC Summary	10-15
Legend	16
Annexes	17

SGS

FINAL REPORT

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd

Project Manager: Kirstin Olsen
Samplers: Ryan Zhang

MATRIX: SOIL			Sample Number	9	10	11
WATNA. SOIL			Sample Name	DUP 1	DUP 2	DUP 3
L1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/P	Darkland LINDEFINED		Sample Matrix		Soil	Soil
LT = REG153 / SOIL / COARSE - TABLE 2 - Residential/P	Parkiand - UNDEFINED		Sample Date	03/02/2022	03/02/2022	03/02/2022
Parameter	Units	RL	 L1	Result	Result	Result
Hydrides						
Antimony	μg/g	0.8	7.5	< 0.8		
Arsenic	μg/g	0.5	18	4.1		
Selenium	μg/g	0.7	2.4	< 0.7		
Metals and Inorganics			I			
Moisture Content	%	no		13.6	15.4	13.4
Barium	µg/g	0.1	390	76		
Beryllium	μg/g	0.02	4	0.76		
Boron	µg/g	1	120	9		
Cadmium		0.05	1.2	0.12		
Chromium	μg/g	0.03	160	25		
	μg/g					
Cobalt	μg/g	0.01	22	15		
Copper	μg/g	0.1	140	12		
Lead	μg/g	0.1	120	14		
Molybdenum	hā/ā	0.1	6.9	0.7		
Nickel	µg/g	0.5	100	33		
Silver	μg/g	0.05	20	< 0.05		
Thallium	hā/ā	0.02	1	0.09		
Uranium	μg/g	0.002	23	0.50		
Vanadium	μg/g	3	86	30		
Zinc	μg/g	0.7	340	66		
Water Soluble Boron	μg/g	0.5	1.5	< 0.5		

SGS

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd

Project Manager: Kirstin Olsen
Samplers: Ryan Zhang

MATRIX: SOIL			Sample Number	9	10	11
			Sample Name	DUP 1	DUP 2	DUP 3
= REG153 / SOIL / COARSE - TABLE 2 - Re	esidential/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	03/02/2022	03/02/2022	03/02/2022
Parameter	Units	RL	L1	Result	Result	Result
ther (ORP)						
Mercury	ug/g	0.05	0.27	< 0.05		
Sodium Adsorption Ratio	No unit	0.2	5	0.2		
SAR Calcium	mg/L	0.2		38.3		
SAR Magnesium	mg/L	0.3		3.0		
SAR Sodium	mg/L	0.1		5.7		
Conductivity	mS/cm	0.002	0.7	0.24		
pH	pH Units	0.05		7.68		
Chromium VI	μg/g	0.2	8	< 0.2		
Free Cyanide	hâ\â	0.05	0.051	< 0.05		
AHs						
Acenaphthene	ha/a	0.05	7.9		< 0.05	< 0.05
Acenaphthylene	ha/a	0.05	0.15		< 0.05	< 0.05
Anthracene	ha/a	0.05	0.67		< 0.05	< 0.05
Benzo(a)anthracene	ha/a	0.05	0.5		< 0.05	< 0.05
Benzo(a)pyrene	ha/a	0.05	0.3		< 0.05	< 0.05
Benzo(b+j)fluoranthene	μg/g	0.05	0.78		< 0.05	< 0.05
Benzo(ghi)perylene	μg/g	0.1	6.6		< 0.1	< 0.1
Benzo(k)fluoranthene	μg/g	0.05	0.78		< 0.05	< 0.05
Chrysene	μg/g	0.05	7		< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.06	0.1		< 0.06	< 0.06
Fluoranthene	ha/a	0.05	0.69		< 0.05	< 0.05
Fluorene	μg/g	0.05	62		< 0.05	< 0.05

SGS

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd

Project Manager: Kirstin Olsen

MATRIX: SOIL			5	Sample Number	9	10	11
				Sample Name	DUP 1	DUP 2	DUP 3
= REG153 / SOIL / COARSE - TABLE 2 - Resident	tial/Parkland - UNDEFINED			Sample Matrix	Soil	Soil	Soil
				Sample Date	03/02/2022	03/02/2022	03/02/2022
Parameter	Units	RL	L1		Result	Result	Result
PAHs (continued)							
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38			< 0.1	< 0.1
1-Methylnaphthalene	μg/g	0.05				< 0.05	< 0.05
2-Methylnaphthalene	μg/g	0.05				< 0.05	< 0.05
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99			< 0.05	< 0.05
Naphthalene	μg/g	0.05	0.6			< 0.05	< 0.05
Phenanthrene	μg/g	0.05	6.2			< 0.05	< 0.05
Pyrene	μg/g	0.05	78			< 0.05	< 0.05
SVOC Surrogates							
Surr Nitrobenzene-d5	Surr Rec %	no				98	101
Surr 2-Fluorobiphenyl	Surr Rec %	no				97	99
Surr 4-Terphenyl-d14	Surr Rec %	no				104	120
Surr 2-Fluorophenol	Surr Rec %	no				99	98
Surr Phenol-d6	Surr Rec %	no				101	103
Surr 2,4,6-Tribromophenol	Surr Rec %	no				98	107

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20220209 7 / 17

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved		
Conductivity										
Method: EPA 6010/SM 2510 Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006										
DUP 1	EWL0092-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/04/2022	03/03/2022	02/07/2022		

02/03/2022

02/03/2022

02/03/2022

02/03/2022

02/04/2022

02/04/2022

02/04/2022

02/04/2022

03/03/2022

03/03/2022

02/07/2022

02/07/2022

10

Cyanide by SFA

DUP 2

DUP 3

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

DUP 1	SKA5026-FEB22	9	02/03/2022	02/03/2022	02/17/2022	02/08/2022
DUP 2		10	02/03/2022	02/03/2022	02/17/2022	02/08/2022
DUP 3		11	02/03/2022	02/03/2022	02/17/2022	02/08/2022

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

DUP 1	SKA5027-FEB22	9	02/03/2022	02/03/2022	02/08/2022	02/08/2022	03/05/2022	02/09/2022
DUP 2		10	02/03/2022	02/03/2022	02/08/2022	02/08/2022	03/05/2022	02/09/2022
DUP 3		11	02/03/2022	02/03/2022	02/08/2022	02/08/2022	03/05/2022	02/09/2022

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

DUP 1	EMS0031-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/04/2022	03/03/2022	02/08/2022
DUP 2		10	02/03/2022	02/03/2022	02/04/2022	02/04/2022	03/03/2022	02/08/2022
DUP 3		11	02/03/2022	02/03/2022	02/04/2022	02/04/2022	03/03/2022	02/08/2022

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

DUP 1	ESG0015-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/07/2022	08/02/2022	02/07/2022
DUP 2		10	02/03/2022	02/03/2022	02/04/2022	02/07/2022	08/02/2022	02/07/2022
DUP 3		11	02/03/2022	02/03/2022	02/04/2022	02/07/2022	08/02/2022	02/07/2022

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

DUP 1	EMS0031-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/04/2022	08/02/2022	02/08/2022
DUP 2		10	02/03/2022	02/03/2022	02/04/2022	02/04/2022	08/02/2022	02/08/2022
DUP 3		11	02/03/2022	02/03/2022	02/04/2022	02/04/2022	08/02/2022	02/08/2022

Moisture

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

DUP 1	GCM0069-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/05/2022	04/04/2022	02/05/2022
DUP 2	GCM0069-FEB22	10	02/03/2022	02/03/2022	02/04/2022	02/05/2022	04/04/2022	02/05/2022
DUP 3	GCM0069-FEB22	11	02/03/2022	02/03/2022	02/04/2022	02/05/2022	04/04/2022	02/05/2022

20220209 8 / 17

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
pН								
Method: SM 4500 Inter	rnal ref.: ME-CA-[ENV]EWL-LAK-A	AN-001						
DUP 1	ARD0023-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/04/2022	03/05/2022	02/04/2022
DUP 1	ARD0023-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/04/2022	03/05/2022	02/04/2022

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

DUP 1		9	02/03/2022	02/03/2022	02/05/2022	02/07/2022	02/17/2022	02/08/2022
DUP 2	GCM0073-FEB22	10	02/03/2022	02/03/2022	02/05/2022	02/07/2022	04/04/2022	02/08/2022
DUP 3	GCM0073-FEB22	11	02/03/2022	02/03/2022	02/05/2022	02/07/2022	02/17/2022	02/08/2022

Sodium adsorption ratio (SAR)

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]ARD-LAK-AN-021

DUP 1	9	02/03/2022	02/03/2022	02/04/2022	02/07/2022	08/02/2022	02/07/2022
DUP 2	10	02/03/2022	02/03/2022	02/04/2022	02/07/2022	08/02/2022	02/07/2022
DUP 3	11	02/03/2022	02/03/2022	02/04/2022	02/07/2022	08/02/2022	02/07/2022

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

DUP 1	ESG0010-FEB22	9	02/03/2022	02/03/2022	02/04/2022	02/04/2022	08/02/2022	02/04/2022
DUP 2		10	02/03/2022	02/03/2022	02/04/2022	02/04/2022	08/02/2022	02/04/2022
DUP 3		11	02/03/2022	02/03/2022	02/04/2022	02/04/2022	08/02/2022	02/04/2022

9 / 17 20220209

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	Matrix Spike / Ref.	
	Reference			Blank	RPD	RPD AC (%)		Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0092-FEB22	mS/cm	0.002	<0.002	0	10	101	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	Matrix Spike / Ref.	
	Reference			Blank	RPD	•	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5026-FEB22	μg/g	0.05	<0.05	ND	20	11	80	120	101	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	· · · · · · · · · · · · · · · · · · ·		Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5027-FEB22	ug/g	0.2	<0.2	ND	20	95	80	120	100	75	125

20220209 10 / 17

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	Matrix Spike / Ref.	
	Reference			Blank	RPD			Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0031-FEB22	ug/g	0.05	<0.05	ND	20	96	80	120	98	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike	Recove	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0015-FEB22	mg/L	0.2	<0.09	2	20	109	80	120	89	70	130
SAR Magnesium	ESG0015-FEB22	mg/L	0.3	<0.02	3	20	106	80	120	89	70	130
SAR Sodium	ESG0015-FEB22	mg/L	0.1	<0.15	2	20	108	80	120	115	70	130

20220209 11 / 17

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0031-FEB22	ug/g	0.05	<0.05	7	20	90	70	130	99	70	130
Arsenic	EMS0031-FEB22	μg/g	0.5	<0.5	2	20	100	70	130	107	70	130
Barium	EMS0031-FEB22	ug/g	0.1	<0.1	0	20	103	70	130	107	70	130
Beryllium	EMS0031-FEB22	μg/g	0.02	<0.02	8	20	98	70	130	95	70	130
Boron	EMS0031-FEB22	μg/g	1	<1	8	20	98	70	130	84	70	130
Cadmium	EMS0031-FEB22	ug/g	0.05	<0.05	12	20	103	70	130	115	70	130
Cobalt	EMS0031-FEB22	μg/g	0.01	<0.01	8	20	107	70	130	116	70	130
Chromium	EMS0031-FEB22	μg/g	0.5	<0.5	1	20	108	70	130	118	70	130
Copper	EMS0031-FEB22	μg/g	0.1	<0.1	4	20	108	70	130	118	70	130
Molybdenum	EMS0031-FEB22	μg/g	0.1	<0.1	11	20	106	70	130	113	70	130
Nickel	EMS0031-FEB22	ug/g	0.5	<0.5	5	20	107	70	130	118	70	130
Lead	EMS0031-FEB22	ug/g	0.1	<0.1	0	20	99	70	130	104	70	130
Antimony	EMS0031-FEB22	μg/g	0.8	<0.8	ND	20	97	70	130	117	70	130
Selenium	EMS0031-FEB22	μg/g	0.7	<0.7	ND	20	101	70	130	113	70	130
Thallium	EMS0031-FEB22	μg/g	0.02	<0.02	11	20	100	70	130	112	70	130
Uranium	EMS0031-FEB22	μg/g	0.002	<0.002	3	20	93	70	130	106	70	130
Vanadium	EMS0031-FEB22	μg/g	3	<3	6	20	108	70	130	119	70	130
Zinc	EMS0031-FEB22	μg/g	0.7	<0.7	2	20	106	70	130	115	70	130

20220209 12 / 17

CA40062-FEB22 R

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0023-FEB22	pH Units	0.05		1	20	100	80	120			

20220209 13 / 17

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	101	50	140	104	50	140
2-Methylnaphthalene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	101	50	140	103	50	140
Acenaphthene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	108	50	140	109	50	140
Acenaphthylene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	97	50	140	102	50	140
Anthracene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	107	50	140	107	50	140
Benzo(a)anthracene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	102	50	140	105	50	140
Benzo(a)pyrene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	98	50	140	102	50	140
Benzo(b+j)fluoranthene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	99	50	140	106	50	140
Benzo(ghi)perylene	GCM0073-FEB22	μg/g	0.1	< 0.1	ND	40	109	50	140	107	50	140
Benzo(k)fluoranthene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	108	50	140	108	50	140
Chrysene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	107	50	140	108	50	140
Dibenzo(a,h)anthracene	GCM0073-FEB22	μg/g	0.06	< 0.06	ND	40	109	50	140	109	50	140
Fluoranthene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	108	50	140	108	50	140
Fluorene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	113	50	140	114	50	140
Indeno(1,2,3-cd)pyrene	GCM0073-FEB22	μg/g	0.1	< 0.1	ND	40	113	50	140	114	50	140
Naphthalene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	103	50	140	103	50	140
Phenanthrene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	107	50	140	107	50	140
Pyrene	GCM0073-FEB22	μg/g	0.05	< 0.05	ND	40	106	50	140	106	50	140

20220209 14 / 17

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0010-FEB22	μg/g	0.5	<0.5	ND	20	107	80	120	94	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20220209

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20220209 16 / 17

ŝ

of J

Page 1

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUSTG

Environment, Health 8, Splety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

-London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only

eceived By:	J A		Received By (signature):	ignature):	Labora	Laboratory Information Section - Lab use only	ormati	on Sec	tion - L	ab use	ying /										
eceived Date: 02/37	(hr:min)		Custody Seal Present: Custody Seal Intact:		Yes No		Cooli	ng Agent erature U	Cooling Agent Present: Yes Temperature Upon Receipt (*C)	Yes Dipt(CO)	2.5	3 Type:		3				LABL	LAB LIMS #:	X	A YCCCL Feez
REPORT INFORMATION	SMATION	2	INVOICE INFORMATION	MATION																	
company: DS Consultants		(same as Report Information)	port Informati	ou)		Quotation #:	#								P.	P.O.#:					
contact: Kirstin Olsen		Company: DS				Project #:		22-012-100							Sign	Site Location/ID	;i	À	050	Se	Weyagowa Sh
	iit 16. Vaughan.	Contact							THE PERSON			TUR	NAROL	IND TI	ME (TAT)	TURNAROUND TIME (TAT) REQUIRED	0	SALES SEE			2
	Ontario	Address:				D	Regular	Regular TAT (5-7days)	7days)						TAT	are quote	d in busine	ss days	(exclude veekend	statutory s: TAT be	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day
hone:		o con				RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	T (Addi	tional C	harges I	May Ap	oly): MITH S(SS REP	☐ 1 Day	TATE I	Days	RUSH TAT (Additional Charges May Apply): ☐ 1 Day ☐ 2 Days ☐ 3 Days ☐ 4 Days PLEASE CONFIRM FUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION] 4 Day	10			
axkirstin.olsen@dsconsultants.ca	consultants.ca	Email: accoun	accounting@dsconsultants.ca	ultants.ca		Specify Due Date:	ue Date					NOTE	DRINK	ING (PO	TABLE) W.	BLE) WATER SAMPLES FOR HUMAN CONSUMPTIC WITH SGS DRINKING WATER CHAIN OF CUSTODY	PLES FO	R HUMA	N CONS	UMPTION	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SIGS DRINKING WATER CHAIN OF CUSTODY
1	REG	2	The state of the s	Month of the second	2000年の日本			III CO			ANALYSIS REQUESTED	YSIS	, REC	SUES	TED						
Regulation 153/04:		Other Regulations:	ls:	Sewer	Sewer By-Law:		₩ 8		SVOC	PCB	3 PHC		000	Pest		Other	(please specify)	ocify)		TCLP	
Table 1 Res/Park Table 2 Ind/Com Table 3 Agri/Other	K Soil Texture: Coarse or Medium/	Reg 347/558	Reg 347/558 (3 Day min TAT) PWQO		Sanitary Storm Inicipality:					Diction Diction									ation Pkg	Specify TCLP tests	
RECORD OF SIT	RECORD OF SITE CONDITION (RSC)	تا	ON			A 62 11 1	əjii			nA				эндо Қ					sine: etxa	No.	COMMENTS:
SAMPLE IDENTIFICATION	FICATION	DATE	TIME # OF SAMPLED BOTTLES	# OF BOTTLES	MATRIX	Field Filtered () Metals & Inorginal Col. Ha-waler) (Cl. Na-waler)	(Cl. Na-water) Full Metals Suitchers ICP metals plus B(HWS-sc	ICP Metals onl se, se, se, se, s, cd, cc, co, c .x, v, u, r, g4, e2	PAHs only	PCBs Total	F1-F4 + BTEX	F1-F4 only	BTEX only	Pesticides Organochionne or speci				Sewer Use:	Water Charac		
年 一种	1 and a	Feb 3 2022		-	Soil	7				L		F					H				
2 (11) (1) (1) (1) (1) (1) (1) (1) (1) (1	10up 2	Feb 3 2022		-	Soil				7				_								
1 Tedat	Suc. 2	Feb 3 2022	,	-	Soil				7			F	H				H			925	
-						H	H		Ħ	H	П	Ħ	H	П	Ħ		Н	П	П		
10 #						┿	╪		\dagger	+	Ţ	Ť	┿	Ţ	\dagger	1	+	Ţ	Ī	200	
						╪	╪		t	╄	Ţ	t	┾	Ţ	t	ļ	╪	Ţ	T	20 5 81	
8						Ħ				┢		İ		L						10.50	
							H			\sqsubseteq			H							Upres	
. 0						Ħ	\blacksquare			\exists		f	\dashv				=				
-						Ħ	╡		\dagger	4	\Box	Ħ	4	\exists	\exists	1	+	\Box			
2						肙	丩		Ħ	_		Ħ	4				ᅦ				
bservations/Comments/Special Instructions	Instructions					S	\	,													
ampled By (NAME):	Ryan Zhang			Signature:		7							Date:		_	,		(mm/dd/yy)		٦	Pink Copy - Client
elinquished by (NAME):	Ryan Zhang			Signature:		(0)		1	1				Date:		,	,	_	(ww/dd/yy)			Yellow & White Copy - SGS
Note: 5 ste of Issue: 13 Oct, 2019	ubmission of samples to St the contract, or in an altern	SS is acknowledgement the native format (e.g. shipping http://	g documents). (3)	provided directi Results may be me and conditi	on on sample coll s sent by email to one htm. (Printed	action/handi an unlimited	ing and tra I number o	nsportation f addresse:	of sample: s for no add	i. (2) Subn litional cos n is drawn	ilssion of s L. Fax is a to the limi	amples to valiable up	SGS is co on reques billy, inde	insidered st. This do amplification	suthorization cument is is on and lurisd	for completi sued by the o ction issues	on of work. Company u	Signature oder Its Gr min.	s may ap neral Cor	ditions of S	Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handing and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be relatived to fine in the contract, or in an alternative format (e.g. statis may lead by the Company under its General Conditions of Sarvice accessible at the contract, or in an alternative format (e.g. statis by submission than its accessible at the contract, or in an alternative format (e.g. statis may be about 10 and 10 an
			-		The State of the S															١	

Date of Issue: 13 Oct, 2019

CA40064-JAN22 R

22-012-100, 3056 Neyagawa Blvd.

Prepared for

DS Consultants

First Page

CLIENT DETAIL:	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Kirstin Olsen	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	kirstin.olsen@dsconsultants.ca	SGS Reference	CA40064-JAN22
Project	22-012-100, 3056 Neyagawa Blvd.	Received	01/11/2022
Order Number		Approved	01/19/2022
Samples	Soil (16)	Report Number	CA40064-JAN22 R
		Date Reported	01/19/2022

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the $\,$

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:024176

Dichlorodifluoromethane Matrix Spike; Recovery is outside control limits; the overall quality control for this analysis has been assessed and and was determined to be acceptable.

SIGNATORIES

Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

www.sgs.com

three compounds: YES

PHC F4 (C34-C50) Duplicate: RPD for this parameter is outside control limits. The average of the two duplicates is less than five times the RL, therefore a greater uncertainty is expected.

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-15
Exceedance Summary	16
Holding Time Summary	17-23
QC Summary	24-32
Legend	
Annexes.	

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

MATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
= REG153 / SOIL / COARSE - TABLE 2 - Residentia	al/Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/202
Parameter	Units	RL	L1	Result							
TEX											
Benzene	μg/g	0.02	0.21	< 0.02							
Ethylbenzene	µg/g	0.05	1.1	< 0.05							
Toluene	μg/g	0.05	2.3	< 0.05							
Xylene (total)	μg/g	0.05	3.1	< 0.05							
m/p-xylene	μg/g	0.05		< 0.05							
o-xylene	μg/g	0.05		< 0.05							
ydrides											
Antimony	μg/g	0.8	7.5	< 0.8	< 0.8		< 0.8		< 0.8		< 0.8
Arsenic	μg/g	0.5	18	4.4	4.2		6.1		4.6		5.9
Selenium	μg/g	0.7	2.4	< 0.7	< 0.7		< 0.7		< 0.7		< 0.7
etals and Inorganics											
Moisture Content	%	no		15.2	13.9	9.4	16.5	10.2	15.3	13.5	15.1
Barium	μg/g	0.1	390	95	130		120		130		94
Beryllium	μg/g	0.02	4	0.88	0.77		0.87		0.76		0.80
Boron	μg/g	1	120	12	9		7		8		6
Cadmium	μg/g	0.05	1.2	0.10	0.10		0.15		0.28		0.15
Chromium	μg/g	0.5	160	24	23		26		22		23
Cobalt	μg/g	0.01	22	14	13		15		13		13
Copper	μg/g	0.1	140	14	10		34		16		35
Lead	μg/g	0.1	120	15	13		19		18		18
Molybdenum	μg/g	0.1	6.9	0.6	0.4		0.4		0.7		0.3

SGS FINAL REPORT

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

MATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkl	and - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
letals and Inorganics (continued)											
Nickel	μg/g	0.5	100	32	29		36		26		32
Silver	μg/g	0.05	20	< 0.05	< 0.05		< 0.05		0.09		< 0.05
Thallium	μg/g	0.02	1	0.11	0.10		0.16		0.13		0.17
Uranium	μg/g	0.002	23	0.59	0.53		0.56		0.75		0.55
Vanadium	μg/g	3	86	30	27		32		27		29
Zinc	μg/g	0.7	340	67	65		77		75		78
Water Soluble Boron	μg/g	0.5	1.5	< 0.5	< 0.5		< 0.5		< 0.5		< 0.5
ther (ORP)											
Mercury	ug/g	0.05	0.27	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	0.4	0.3		0.4		0.4		0.2
SAR Calcium	mg/L	0.2		48.3	38.5		45.7		38.1		36.5
SAR Magnesium	mg/L	0.3		4.1	2.8		2.0		5.5		1.3
SAR Sodium	mg/L	0.1		10.7	6.0		10.4		9.4		5.6
Conductivity	mS/cm	0.002	0.7	0.27	0.21		0.25		0.19		0.17
рН	pH Units	0.05		7.63	7.65	7.80	7.61	7.76	7.52	7.59	7.71
Chromium VI	μg/g	0.2	8	< 0.2	< 0.2		< 0.2		< 0.2		< 0.2
Free Cyanide	μg/g	0.05	0.051	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05

SGS

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

ATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
= REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
AHs											
Acenaphthene	μg/g	0.05	7.9	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Acenaphthylene	μg/g	0.05	0.15	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Anthracene	μg/g	0.05	0.67	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Benzo(a)anthracene	μg/g	0.05	0.5	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Benzo(a)pyrene	μg/g	0.05	0.3	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Benzo(b+j)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Benzo(ghi)perylene	μg/g	0.1	6.6	< 0.1	< 0.1		< 0.1		< 0.1		< 0.1
Benzo(k)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Chrysene	μg/g	0.05	7	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	< 0.06	< 0.06		< 0.06		< 0.06		< 0.06
Fluoranthene	μg/g	0.05	0.69	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Fluorene	μg/g	0.05	62	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38	< 0.1	< 0.1		< 0.1		< 0.1		< 0.1
1-Methylnaphthalene	μg/g	0.05		< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
2-Methylnaphthalene	μg/g	0.05		< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Naphthalene	μg/g	0.05	0.6	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Phenanthrene	μg/g	0.05	6.2	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05
Pyrene	μg/g	0.05	78	< 0.05	< 0.05		< 0.05		< 0.05		< 0.05

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

ATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	- UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
HCs											
F1 (C6-C10)	μg/g	10	55	< 10							
F1-BTEX (C6-C10)	μg/g	10	55	< 10							
F2 (C10-C16)	μg/g	10	98	< 10							
F3 (C16-C34)	μg/g	50	300	< 50							
F4 (C34-C50)	μg/g	50	2800	< 50							
Chromatogram returned to baseline at nC50	Yes / No	no		YES							
/OC Surrogates											
Surr Nitrobenzene-d5	Surr Rec %	no		91	90		84		93		90
Surr 2-Fluorobiphenyl	Surr Rec %	no		85	85		86		90		84
Surr 4-Terphenyl-d14	Surr Rec %	no		95	95		92		109		98
Surr 2-Fluorophenol	Surr Rec %	no		86	85		80		90		84
Surr Phenol-d6	Surr Rec %	no		90	88		84		92		88
Surr 2,4,6-Tribromophenol	Surr Rec %	no		85	88		86		95		85

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

MATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
I = REG153 / SOIL / COARSE - TABLE 2 - Residential/I	Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
HMs (VOC)											
Bromodichloromethane	μg/g	0.05	1.5	< 0.05							
Bromoform	μg/g	0.05	0.27	< 0.05							
Dibromochloromethane	μg/g	0.05	2.3	< 0.05							
OC Surrogates											
Surr 1,2-Dichloroethane-d4	Surr Rec %	no		100							
Surr 4-Bromofluorobenzene	Surr Rec %	no		91							
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no		87							
OCs Control of the co											
Acetone	μg/g	0.5	16	< 0.5							
Bromomethane	μg/g	0.05	0.05	< 0.05							
Carbon tetrachloride	μg/g	0.05	0.05	< 0.05							
Chlorobenzene	μg/g	0.05	2.4	< 0.05							
Chloroform	μg/g	0.05	0.05	< 0.05							
1,2-Dichlorobenzene	μg/g	0.05	1.2	< 0.05							
1,3-Dichlorobenzene	ha\a	0.05	4.8	< 0.05							
1,4-Dichlorobenzene	μg/g	0.05	0.083	< 0.05							
Dichlorodifluoromethane	μg/g	0.05	16	< 0.05							
1,1-Dichloroethane	μg/g	0.05	0.47	< 0.05							
1,2-Dichloroethane	μg/g	0.05	0.05	< 0.05							
1,1-Dichloroethylene	μg/g	0.05	0.05	< 0.05							
trans-1,2-Dichloroethylene	μg/g	0.05	0.084	< 0.05							

SGS

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

ATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1-1	TP2-1	TP2-3	TP3-1	TP3-4	TP4-1	TP4-3	TP5-1
REG153 / SOIL / COARSE - TABLE 2 - Residential/Par	kland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
OCs (continued)											
cis-1,2-Dichloroethylene	μg/g	0.05	1.9	< 0.05							
1,2-Dichloropropane	μg/g	0.05	0.05	< 0.05							
cis-1,3-dichloropropene	μg/g	0.03		< 0.03							
trans-1,3-dichloropropene	μg/g	0.03		< 0.03							
1,3-dichloropropene (total)	μg/g	0.05	0.05	< 0.05							
Ethylenedibromide	μg/g	0.05	0.05	< 0.05							
n-Hexane	μg/g	0.05	2.8	< 0.05							
Methyl ethyl ketone	μg/g	0.5	16	< 0.5							
Methyl isobutyl ketone	μg/g	0.5	1.7	< 0.5							
Methyl-t-butyl Ether	μg/g	0.05	0.75	< 0.05							
Methylene Chloride	μg/g	0.05	0.1	< 0.05							
Styrene	μg/g	0.05	0.7	< 0.05							
Tetrachloroethylene	μg/g	0.05	0.28	< 0.05							
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058	< 0.05							
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	< 0.05							
1,1,1-Trichloroethane	μg/g	0.05	0.38	< 0.05							
1,1,2-Trichloroethane	μg/g	0.05	0.05	< 0.05							
Trichloroethylene	μg/g	0.05	0.061	< 0.05							
Trichlorofluoromethane	μg/g	0.05	4	< 0.05							
Vinyl Chloride	μg/g	0.02	0.02	< 0.02							

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

ATRIX: SOIL			Sample Number	17	18	19	20	21	22	23	24
			Sample Name	TP5-4	TP6-1	TP6-2	TP6-3	TP7-1	TP7-2	TP7-4	TP8-1
= REG153 / SOIL / COARSE - TABLE 2 - Resident	tial/Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/202
Parameter	Units	RL	L1	Result							
TEX											
Benzene	ha/a	0.02	0.21	< 0.02						< 0.02	
Ethylbenzene	μg/g	0.05	1.1	< 0.05						< 0.05	
Toluene	μg/g	0.05	2.3	< 0.05						< 0.05	
Xylene (total)	μg/g	0.05	3.1	< 0.05						< 0.05	
m/p-xylene	μg/g	0.05		< 0.05						< 0.05	
o-xylene	μg/g	0.05		< 0.05						< 0.05	
ydrides											
Antimony	μg/g	0.8	7.5			< 0.8		< 0.8			< 0.8
Arsenic	μg/g	0.5	18			4.9		4.9			6.8
Selenium	μg/g	0.7	2.4			< 0.7		< 0.7			< 0.7
etals and Inorganics											
Moisture Content	%	no		8.4	12.1	10.4	10.5	12.5	11.8	8.7	19.1
Barium	μg/g	0.1	390			110		94			140
Beryllium	μg/g	0.02	4			0.60		0.65			1.1
Boron	μg/g	1	120			8		7			6
Cadmium	μg/g	0.05	1.2			0.11		0.12			0.20
Chromium	μg/g	0.5	160			19		20			28
Cobalt	μg/g	0.01	22			12		12			17
Copper	μg/g	0.1	140			27		26			35
Lead	μg/g	0.1	120			11		11			17
Molybdenum	μg/g	0.1	6.9			0.4		0.3			0.5

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

MATRIX: SOIL			Sample Number	17	18	19	20	21	22	23	24
			Sample Name	TP5-4	TP6-1	TP6-2	TP6-3	TP7-1	TP7-2	TP7-4	TP8-1
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/P	Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
Metals and Inorganics (continued)											
Nickel	μg/g	0.5	100			27		26			37
Silver	μg/g	0.05	20			< 0.05		< 0.05			< 0.05
Thallium	μg/g	0.02	1			0.15		0.15			0.17
Uranium	μg/g	0.002	23			0.62		0.54			0.67
Vanadium	μg/g	3	86			25		25			35
Zinc	μg/g	0.7	340			63		68			82
Water Soluble Boron	μg/g	0.5	1.5			< 0.5		< 0.5			< 0.5
Other (ORP)											
Mercury	ug/g	0.05	0.27			< 0.05		< 0.05			< 0.05
Sodium Adsorption Ratio	No unit	0.2	5			0.3		0.4			0.5
SAR Calcium	mg/L	0.2				25.1		48.0			31.4
SAR Magnesium	mg/L	0.3				2.9		5.9			4.0
SAR Sodium	mg/L	0.1				6.6		11.8			11.3
Conductivity	mS/cm	0.002	0.7			0.14		0.14			0.20
рН	pH Units	0.05				7.79		7.77			7.27
Chromium VI	μg/g	0.2	8			< 0.2		< 0.2			< 0.2
Free Cyanide	μg/g	0.05	0.051			< 0.05		< 0.05			< 0.05

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

Samplers: Ryan Zhang

ATRIX: SOIL			Sample Number	17	18	19	20	21	22	23	24
			Sample Name	TP5-4	TP6-1	TP6-2	TP6-3	TP7-1	TP7-2	TP7-4	TP8-1 Soil
= REG153 / SOIL / COARSE - TABLE 2 - Residential/P	Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
AHs											
Acenaphthene	μg/g	0.05	7.9		< 0.05				< 0.05		< 0.05
Acenaphthylene	μg/g	0.05	0.15		< 0.05				< 0.05		< 0.05
Anthracene	μg/g	0.05	0.67		< 0.05				< 0.05		< 0.05
Benzo(a)anthracene	μg/g	0.05	0.5		< 0.05				< 0.05		< 0.05
Benzo(a)pyrene	μg/g	0.05	0.3		< 0.05				< 0.05		< 0.05
Benzo(b+j)fluoranthene	μg/g	0.05	0.78		< 0.05				< 0.05		< 0.05
Benzo(ghi)perylene	μg/g	0.1	6.6		< 0.1				< 0.1		< 0.1
Benzo(k)fluoranthene	μg/g	0.05	0.78		< 0.05				< 0.05		< 0.05
Chrysene	μg/g	0.05	7		< 0.05				< 0.05		< 0.05
Dibenzo(a,h)anthracene	μg/g	0.06	0.1		< 0.06				< 0.06		< 0.06
Fluoranthene	μg/g	0.05	0.69		< 0.05				< 0.05		< 0.05
Fluorene	μg/g	0.05	62		< 0.05				< 0.05		< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38		< 0.1				< 0.1		< 0.1
1-Methylnaphthalene	μg/g	0.05			< 0.05				< 0.05		< 0.05
2-Methylnaphthalene	μg/g	0.05			< 0.05				< 0.05		< 0.05
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99		< 0.05				< 0.05		< 0.05
Naphthalene	μg/g	0.05	0.6		< 0.05				< 0.05		< 0.05
Phenanthrene	μg/g	0.05	6.2		< 0.05				< 0.05		< 0.05
Pyrene	μg/g	0.05	78		< 0.05				< 0.05		< 0.05

FINAL REPORT

SGS FINAL REPORT

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

IATRIX: SOIL			Sample Number	17	18	19	20	21	22	23	24
			Sample Name	TP5-4	TP6-1	TP6-2	TP6-3	TP7-1	TP7-2	TP7-4	TP8-1 Soil 10/01/2022
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	- UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	
Parameter	Units	RL	L1	Result							
HCs											
F1 (C6-C10)	μg/g	10	55	< 10						< 10	
F1-BTEX (C6-C10)	μg/g	10	55	< 10						< 10	
F2 (C10-C16)	μg/g	10	98	< 10						< 10	
F3 (C16-C34)	μg/g	50	300	< 50						< 50	
F4 (C34-C50)	μg/g	50	2800	< 50						< 50	
Chromatogram returned to baseline at nC50	Yes / No	no		YES						YES	
VOC Surrogates											
Surr Nitrobenzene-d5	Surr Rec %	no			92				91		90
Surr 2-Fluorobiphenyl	Surr Rec %	no			90				90		90
Surr 4-Terphenyl-d14	Surr Rec %	no			99				101		99
Surr 2-Fluorophenol	Surr Rec %	no			87				86		88
Surr Phenol-d6	Surr Rec %	no			90				90		92
Surr 2,4,6-Tribromophenol	Surr Rec %	no			92				89		91

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

MATRIX: SOIL			Sample Number	17	18	19	20	21	22	23	24
			Sample Name	TP5-4	TP6-1	TP6-2	TP6-3	TP7-1	TP7-2	TP7-4	TP8-1
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
HMs (VOC)											
Bromodichloromethane	μg/g	0.05	1.5	< 0.05						< 0.05	
Bromoform	μg/g	0.05	0.27	< 0.05						< 0.05	
Dibromochloromethane	μg/g	0.05	2.3	< 0.05						< 0.05	
OC Surrogates											
Surr 1,2-Dichloroethane-d4	Surr Rec %	no		100						100	
Surr 4-Bromofluorobenzene	Surr Rec %	no		90						90	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no		86						86	
/OCs											
Acetone	μg/g	0.5	16	< 0.5						< 0.5	
Bromomethane	μg/g	0.05	0.05	< 0.05						< 0.05	
Carbon tetrachloride	μg/g	0.05	0.05	< 0.05						< 0.05	
Chlorobenzene	μg/g	0.05	2.4	< 0.05						< 0.05	
Chloroform	μg/g	0.05	0.05	< 0.05						< 0.05	
1,2-Dichlorobenzene	μg/g	0.05	1.2	< 0.05						< 0.05	
1,3-Dichlorobenzene	μg/g	0.05	4.8	< 0.05						< 0.05	
1,4-Dichlorobenzene	μg/g	0.05	0.083	< 0.05						< 0.05	
Dichlorodifluoromethane	μg/g	0.05	16	< 0.05						< 0.05	
1,1-Dichloroethane	ha/a	0.05	0.47	< 0.05						< 0.05	
1,2-Dichloroethane	μg/g	0.05	0.05	< 0.05						< 0.05	
1,1-Dichloroethylene	μg/g	0.05	0.05	< 0.05						< 0.05	
trans-1,2-Dichloroethylene	μg/g	0.05	0.084	< 0.05						< 0.05	

Client: DS Consultants

Project: 22-012-100, 3056 Neyagawa Blvd.

Project Manager: Kirstin Olsen

ATRIX: SOIL			Sample Number	17	18	19	20	21	22	23	24
			Sample Name	TP5-4	TP6-1	TP6-2	TP6-3	TP7-1	TP7-2	TP7-4	TP8-1 Soil
= REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
Parameter	Units	RL	L1	Result							
OCs (continued)											
cis-1,2-Dichloroethylene	μg/g	0.05	1.9	< 0.05						< 0.05	
1,2-Dichloropropane	μg/g	0.05	0.05	< 0.05						< 0.05	
cis-1,3-dichloropropene	μg/g	0.03		< 0.03						< 0.03	
trans-1,3-dichloropropene	μg/g	0.03		< 0.03						< 0.03	
1,3-dichloropropene (total)	μg/g	0.05	0.05	< 0.05						< 0.05	
Ethylenedibromide	μg/g	0.05	0.05	< 0.05						< 0.05	
n-Hexane	μg/g	0.05	2.8	< 0.05						< 0.05	
Methyl ethyl ketone	μg/g	0.5	16	< 0.5						< 0.5	
Methyl isobutyl ketone	μg/g	0.5	1.7	< 0.5						< 0.5	
Methyl-t-butyl Ether	μg/g	0.05	0.75	< 0.05						< 0.05	
Methylene Chloride	μg/g	0.05	0.1	< 0.05						< 0.05	
Styrene	μg/g	0.05	0.7	< 0.05						< 0.05	
Tetrachloroethylene	μg/g	0.05	0.28	< 0.05						< 0.05	
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058	< 0.05						< 0.05	
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	< 0.05						< 0.05	
1,1,1-Trichloroethane	μg/g	0.05	0.38	< 0.05						< 0.05	
1,1,2-Trichloroethane	μg/g	0.05	0.05	< 0.05						< 0.05	
Trichloroethylene	μg/g	0.05	0.061	< 0.05						< 0.05	
Trichlorofluoromethane	μg/g	0.05	4	< 0.05						< 0.05	
Vinyl Chloride	μg/g	0.02	0.02	< 0.02						< 0.02	

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20220119 16 / 35

HOLDING TIME SUMMARY

Sample Name	QC Batch	Sample	Sampled	Received	Extracted/	Analysed	Holding	Approved
	Reference	Number			Prepared		Time	
Conductivity								
Method: EPA 6010/SM 2510 Int	ernal ref.: ME-CA-[ENV]	EWL-LAK-	AN-006					
TP1-1	EWL0167-JAN22	9	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP2-1	EWL0167-JAN22	10	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP2-3		11	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP3-1	EWL0167-JAN22	12	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP3-4		13	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP4-1	EWL0167-JAN22	14	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP4-3		15	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP5-1	EWL0167-JAN22	16	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP5-4		17	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP6-1		18	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP6-2	EWL0167-JAN22	19	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP6-3		20	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP7-1	EWL0167-JAN22	21	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP7-2		22	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022
TP7-4		23	01/10/2022	01/11/2022	01/12/2022	01/13/2022	02/07/2022	01/13/2022

01/10/2022

24

01/11/2022

Cyanide by SFA

TP8-1

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

EWL0167-JAN22

TP1-1	SKA5029-JAN22	9	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP2-1	SKA5029-JAN22	10	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP2-3		11	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP3-1	SKA5029-JAN22	12	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP3-4		13	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP4-1	SKA5029-JAN22	14	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP4-3		15	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP5-1	SKA5029-JAN22	16	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP5-4		17	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP6-1		18	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP6-2	SKA5029-JAN22	19	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP6-3		20	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP7-1	SKA5029-JAN22	21	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP7-2		22	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP7-4		23	01/10/2022	01/11/2022	01/24/2022	01/14/2022
TP8-1	SKA5029-JAN22	24	01/10/2022	01/11/2022	01/24/2022	01/14/2022

01/12/2022

01/13/2022

02/07/2022

01/13/2022

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

								- 1
TP1-1	SKA5044-JAN22	9	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022

20220119 17 / 35

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Hexavalent Chromium by SFA (c	continued)							
Method: EPA218.6/EPA3060A	Internal ref.: ME-CA-[EN	/]SKA-LAI	K-AN-012					
TP2-1	SKA5044-JAN22	10	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP2-3		11	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP3-1	SKA5044-JAN22	12	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP3-4		13	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP4-1	SKA5044-JAN22	14	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP4-3		15	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP5-1	SKA5044-JAN22	16	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022
TP5-4		17	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/09/2022	01/18/2022

01/10/2022

01/10/2022

01/10/2022

01/10/2022

01/10/2022

01/10/2022

01/10/2022

01/11/2022

01/11/2022

01/11/2022

01/11/2022

01/11/2022

01/11/2022

01/11/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

02/09/2022

02/09/2022

02/09/2022

02/09/2022

02/09/2022

02/09/2022

02/09/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

01/18/2022

18

19

20

21

22

23

24

SKA5044-JAN22

SKA5044-JAN22

SKA5044-JAN22

Mercury by CVAAS

TP6-1

TP6-2

TP6-3

TP7-1

TP7-2

TP7-4

TP8-1

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

TP1-1	EMS0108-JAN22	9	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP2-1	EMS0108-JAN22	10	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP2-3		11	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP3-1	EMS0108-JAN22	12	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP3-4		13	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP4-1	EMS0108-JAN22	14	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP4-3		15	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP5-1	EMS0108-JAN22	16	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP5-4		17	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP6-1		18	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP6-2	EMS0108-JAN22	19	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP6-3		20	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP7-1	EMS0108-JAN22	21	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP7-2		22	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP7-4		23	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022
TP8-1	EMS0108-JAN22	24	01/10/2022	01/11/2022	01/18/2022	01/18/2022	02/07/2022	01/18/2022

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

TP1-1	ESG0026-JAN22	9	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP2-1	ESG0026-JAN22	10	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022

20220119 18 / 35

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Metals in aqueous samples - ICP-OES	6 (continued)							
Method: MOE 4696e01/EPA 6010 In	iternal ref.: ME-CA	-[ENV]SPE-	LAK-AN-003					

TP2-3		11	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP3-1	ESG0026-JAN22	12	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP3-4		13	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP4-1	ESG0026-JAN22	14	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP4-3		15	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP5-1	ESG0026-JAN22	16	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP5-4		17	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP6-1		18	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP6-2	ESG0026-JAN22	19	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP6-3		20	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP7-1	ESG0026-JAN22	21	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP7-2		22	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP7-4		23	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP8-1	ESG0026-JAN22	24	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

		01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
01/18/2022 01/18/2022	07/09/2022	01/18/2022
	11/18/2022 01/18/2022 11/18/2022 01/18/2022	11/18/2022 01/18/2022 07/09/2022 11/18/2022 01/18/2022 07/09/2022

Moisture

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

TP1-1	GCM0113-JAN22	9	01/10/2022	01/11/2022	03/11/2022	01/13/2022
TP2-1	GCM0113-JAN22	10	01/10/2022	01/11/2022	03/11/2022	01/13/2022
TP2-3	GCM0113-JAN22	11	01/10/2022	01/11/2022	03/11/2022	01/13/2022

20220119 19 / 35

HOLDING TIME SUMMARY

Sample Name	QC Batch	Sample	Sampled	Received	Extracted/	Analysed	Holding	Approved
	Reference	Number			Prepared		Time	
Moisture (continued)								
Method: CCME Tier 1 Int	ernal ref.: ME-CA-[ENV]GC-LA	K-AN-010						
TP3-1	GCM0113-JAN22	12	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP3-4	GCM0113-JAN22	13	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP4-1	GCM0113-JAN22	14	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP4-3	GCM0113-JAN22	15	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP5-1	GCM0113-JAN22	16	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP5-4	GCM0113-JAN22	17	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP6-1	GCM0113-JAN22	18	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP6-2	GCM0113-JAN22	19	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP6-3	GCM0113-JAN22	20	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP7-1	GCM0113-JAN22	21	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP7-2	GCM0113-JAN22	22	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP7-4	GCM0113-JAN22	23	01/10/2022	01/11/2022			03/11/2022	01/13/2022
TP8-1	GCM0113-JAN22	24	01/10/2022	01/11/2022			03/11/2022	01/13/2022

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

TP1-1	GCM0115-JAN22	9	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP2-1		10	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP2-3		11	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP3-1		12	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP3-4		13	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP4-1		14	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP4-3		15	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP5-1		16	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP5-4	GCM0115-JAN22	17	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP6-1		18	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP6-2		19	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP6-3		20	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP7-1		21	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP7-2		22	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP7-4	GCM0115-JAN22	23	01/10/2022	01/11/2022	01/24/2022	01/13/2022
TP8-1		24	01/10/2022	01/11/2022	01/24/2022	01/13/2022

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

TP1-1	GCM0145-JAN22	9	01/10/2022	01/11/2022	01/24/2022	01/19/2022
TP2-1		10	01/10/2022	01/11/2022	02/19/2022	01/19/2022
TP2-3		11	01/10/2022	01/11/2022	01/24/2022	01/19/2022
TP3-1		12	01/10/2022	01/11/2022	01/24/2022	01/19/2022

20220119 20 / 35

02/19/2022

02/19/2022

01/19/2022

01/19/2022

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Petroleum Hydrocarbons (F2-F4) (continued	d)							
Method: CCME Tier 1 Internal ref.: ME-C/	A-[ENV]GC-LAP	C-AN-010						
TP3-4		13	01/10/2022	01/11/2022			01/24/2022	01/19/2022
TP4-1		14	01/10/2022	01/11/2022			01/24/2022	01/19/2022
TP4-3		15	01/10/2022	01/11/2022			02/19/2022	01/19/2022
TP5-1		16	01/10/2022	01/11/2022			01/24/2022	01/19/2022
TP5-4	GCM0145-JAN22	17	01/10/2022	01/11/2022			01/24/2022	01/19/2022
TP6-1		18	01/10/2022	01/11/2022			01/24/2022	01/19/2022
TP6-2		19	01/10/2022	01/11/2022			02/19/2022	01/19/2022
TP6-3		20	01/10/2022	01/11/2022			02/19/2022	01/19/2022
TP7-1		21	01/10/2022	01/11/2022			01/24/2022	01/19/2022
TP7-2		22	01/10/2022	01/11/2022			01/24/2022	01/19/2022

01/10/2022

01/10/2022

23

24

01/11/2022

01/11/2022

pН

TP7-4

TP8-1

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

GCM0145-JAN22

TP1-1	ARD0059-JAN22	9	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP2-1	ARD0059-JAN22	10	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP2-3	ARD0059-JAN22	11	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP3-1	ARD0059-JAN22	12	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP3-4	ARD0059-JAN22	13	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP4-1	ARD0059-JAN22	14	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP4-3	ARD0059-JAN22	15	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP5-1	ARD0059-JAN22	16	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP5-4		17	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP6-1		18	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP6-2	ARD0059-JAN22	19	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP6-3		20	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP7-1	ARD0059-JAN22	21	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP7-2		22	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP7-4		23	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022
TP8-1	ARD0059-JAN22	24	01/10/2022	01/11/2022	01/12/2022	01/12/2022	02/09/2022	01/12/2022

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

TP1-1	GCM0103-JAN22	9	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP2-1	GCM0103-JAN22	10	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP2-3		11	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP3-1	GCM0103-JAN22	12	01/10/2022	01/11/2022	01/12/2022	01/12/2022	03/11/2022	01/14/2022
TP3-4		13	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022

20220119 21 / 35

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved
Sami Valatila Organica (continued)								

Semi-Volatile Organics (continued)

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

TP4-1	GCM0103-JAN22	14	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP4-3		15	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP5-1	GCM0103-JAN22	16	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP5-4		17	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP6-1	GCM0103-JAN22	18	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP6-2		19	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP6-3		20	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP7-1		21	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP7-2	GCM0103-JAN22	22	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/14/2022
TP7-4		23	01/10/2022	01/11/2022	01/12/2022	01/12/2022	03/11/2022	01/14/2022
TP8-1	GCM0103-JAN22	24	01/10/2022	01/11/2022	01/12/2022	01/12/2022	03/11/2022	01/14/2022

Sodium adsorption ratio (SAR)

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]ARD-LAK-AN-021

TP1-1	9	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP2-1	10	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP2-3	11	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP3-1	12	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP3-4	13	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP4-1	14	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP4-3	15	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP5-1	16	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP5-4	17	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP6-1	18	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP6-2	19	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP6-3	20	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP7-1	21	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP7-2	22	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP7-4	23	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022
TP8-1	24	01/10/2022	01/11/2022	01/13/2022	01/13/2022	07/09/2022	01/13/2022

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

TP1-1	GCM0114-JAN22	9	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP2-1		10	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP2-3		11	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP3-1		12	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP3-4		13	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP4-1		14	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022

20220119 22 / 35

HOLDING TIME SUMMARY

Sample Name	QC Batch Reference	Sample Number	Sampled	Received	Extracted/ Prepared	Analysed	Holding Time	Approved

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

TP4-3		15	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP5-1		16	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP5-4	GCM0114-JAN22	17	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP6-1		18	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP6-2		19	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP6-3		20	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP7-1		21	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP7-2		22	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP7-4	GCM0114-JAN22	23	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022
TP8-1		24	01/10/2022	01/11/2022	01/12/2022	01/12/2022	01/24/2022	01/13/2022

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

TP1-1	ESG0032-JAN22	9	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP2-1	ESG0032-JAN22	10	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP2-3		11	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP3-1	ESG0032-JAN22	12	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP3-4		13	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP4-1	ESG0032-JAN22	14	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP4-3		15	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP5-1	ESG0032-JAN22	16	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP5-4		17	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP6-1		18	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP6-2	ESG0032-JAN22	19	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP6-3		20	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP7-1	ESG0032-JAN22	21	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP7-2		22	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP7-4		23	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022
TP8-1	ESG0032-JAN22	24	01/10/2022	01/11/2022	01/17/2022	01/17/2022	07/09/2022	01/17/2022

20220119 23 / 35

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate LCS/Spike Blank		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0167-JAN22	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC Spike (%) Recovery			ry Limits 6)	Spike Recovery	Recove	ry Limits %)
						Recovery (%)	Low	High	(%)	Low	High	
Free Cyanide	SKA5029-JAN22	μg/g	0.05	<0.05	ND	20	105	80	120	79	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
				(%)	Recovery (%)	Low	High	(%)	Low	High		
Chromium VI	SKA5044-JAN22	ug/g	0.2	<0.2	ND	20	103	80	120	98	75	125

20220119 24 / 35

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	RPD AC (%)			ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0108-JAN22	ug/g	0.05	<0.05	ND	20	94	80	120	96	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	<u>.</u>
	Reference			Blank	RPD	AC (%)	Spike	Recove	•	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0026-JAN22	mg/L	0.2	<0.09	1	20	104	80	120	NV	70	130
SAR Magnesium	ESG0026-JAN22	mg/L	0.3	<0.02	9	20	103	80	120	NV	70	130
SAR Sodium	ESG0026-JAN22	mg/L	0.1	<0.15	4	20	98	80	120	NV	70	130

20220119 25 / 35

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0108-JAN22	ug/g	0.05	<0.05	ND	20	97	70	130	106	70	130
Arsenic	EMS0108-JAN22	μg/g	0.5	<0.5	2	20	92	70	130	106	70	130
Barium	EMS0108-JAN22	ug/g	0.1	<0.1	0	20	102	70	130	93	70	130
Beryllium	EMS0108-JAN22	μg/g	0.02	<0.02	1	20	95	70	130	101	70	130
Boron	EMS0108-JAN22	μg/g	1	<1	2	20	100	70	130	98	70	130
Cadmium	EMS0108-JAN22	ug/g	0.05	<0.05	9	20	95	70	130	105	70	130
Cobalt	EMS0108-JAN22	μg/g	0.01	<0.01	3	20	94	70	130	112	70	130
Chromium	EMS0108-JAN22	μg/g	0.5	<0.5	1	20	93	70	130	110	70	130
Copper	EMS0108-JAN22	μg/g	0.1	<0.1	1	20	97	70	130	108	70	130
Molybdenum	EMS0108-JAN22	μg/g	0.1	<0.1	3	20	94	70	130	95	70	130
Nickel	EMS0108-JAN22	ug/g	0.5	<0.5	1	20	99	70	130	110	70	130
Lead	EMS0108-JAN22	ug/g	0.1	<0.1	2	20	100	70	130	101	70	130
Antimony	EMS0108-JAN22	μg/g	0.8	<0.8	ND	20	106	70	130	121	70	130
Selenium	EMS0108-JAN22	μg/g	0.7	<0.7	ND	20	92	70	130	100	70	130
Thallium	EMS0108-JAN22	μg/g	0.02	<0.02	7	20	99	70	130	105	70	130
Uranium	EMS0108-JAN22	μg/g	0.002	<0.002	1	20	94	70	130	126	70	130
Vanadium	EMS0108-JAN22	μg/g	3	<3	0	20	94	70	130	109	70	130
Zinc	EMS0108-JAN22	μg/g	0.7	<0.7	1	20	96	70	130	109	70	130

20220119 26 / 35

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
F1 (C6-C10)	GCM0115-JAN22	μg/g	10	<10	ND	30	107	80	120	92	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	<u>.</u>
	Reference		Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0145-JAN22	μg/g	10	<10	ND	30	110	80	120	91	60	140
F3 (C16-C34)	GCM0145-JAN22	μg/g	50	<50	11	30	110	80	120	91	60	140
F4 (C34-C50)	GCM0145-JAN22	μg/g	50	<50	68	30	110	80	120	91	60	140

20220119 27 / 35

CA40064-JAN22 R

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	RPD AC (%)			ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0059-JAN22	pH Units	0.05		1	20	100	80	120			

20220119 28 / 35

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>[.</i>
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(76)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	91	50	140	89	50	140
2-Methylnaphthalene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	87	50	140	85	50	140
Acenaphthene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	96	50	140	93	50	140
Acenaphthylene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	89	50	140	87	50	140
Anthracene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	92	50	140	88	50	140
Benzo(a)anthracene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	91	50	140	88	50	140
Benzo(a)pyrene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	83	50	140	80	50	140
Benzo(b+j)fluoranthene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	87	50	140	84	50	140
Benzo(ghi)perylene	GCM0103-JAN22	μg/g	0.1	< 0.1	ND	40	89	50	140	84	50	140
Benzo(k)fluoranthene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	89	50	140	86	50	140
Chrysene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	94	50	140	90	50	140
Dibenzo(a,h)anthracene	GCM0103-JAN22	μg/g	0.06	< 0.06	ND	40	87	50	140	83	50	140
Fluoranthene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	92	50	140	89	50	140
Fluorene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	94	50	140	91	50	140
Indeno(1,2,3-cd)pyrene	GCM0103-JAN22	μg/g	0.1	< 0.1	ND	40	90	50	140	85	50	140
Naphthalene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	92	50	140	90	50	140
Phenanthrene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	92	50	140	89	50	140
Pyrene	GCM0103-JAN22	μg/g	0.05	< 0.05	ND	40	94	50	140	90	50	140

20220119 29 / 35

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	93	60	130	93	50	140
1,1,1-Trichloroethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	91	50	140
1,1,2,2-Tetrachloroethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	93	60	130	97	50	140
1,1,2-Trichloroethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	95	60	130	97	50	140
1,1-Dichloroethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	85	60	130	97	50	140
1,1-Dichloroethylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	88	60	130	92	50	140
1,2-Dichlorobenzene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	93	60	130	94	50	140
1,2-Dichloroethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	90	60	130	92	50	140
1,2-Dichloropropane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	90	60	130	94	50	140
1,3-Dichlorobenzene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	93	60	130	93	50	140
1,4-Dichlorobenzene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	92	60	130	92	50	140
Acetone	GCM0114-JAN22	μg/g	0.5	< 0.5	18	50	94	50	140	103	50	140
Benzene	GCM0114-JAN22	μg/g	0.02	< 0.02	ND	50	91	60	130	92	50	140
Bromodichloromethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	90	60	130	89	50	140
Bromoform	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	87	50	140
Bromomethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	85	50	140	79	50	140
Carbon tetrachloride	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	90	60	130	88	50	140
Chlorobenzene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	93	50	140
Chloroform	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	92	60	130	93	50	140
cis-1,2-Dichloroethylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	92	50	140

20220119 30 / 35

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>i</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0114-JAN22	μg/g	0.03	< 0.03	ND	50	90	60	130	86	50	140
Dibromochloromethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	89	50	140
Dichlorodifluoromethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	63	50	140	49	50	140
Ethylbenzene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	92	50	140
Ethylenedibromide	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	92	60	130	92	50	140
n-Hexane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	88	60	130	74	50	140
m/p-xylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	89	60	130	90	50	140
Methyl ethyl ketone	GCM0114-JAN22	μg/g	0.5	< 0.5	ND	50	93	50	140	101	50	140
Methyl isobutyl ketone	GCM0114-JAN22	μg/g	0.5	< 0.5	ND	50	92	50	140	99	50	140
Methyl-t-butyl Ether	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	96	60	130	102	50	140
Methylene Chloride	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	89	60	130	95	50	140
o-xylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	93	60	130	94	50	140
Styrene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	91	60	130	93	50	140
Tetrachloroethylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	90	60	130	87	50	140
Toluene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	90	60	130	90	50	140
trans-1,2-Dichloroethylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	89	60	130	93	50	140
trans-1,3-dichloropropene	GCM0114-JAN22	μg/g	0.03	< 0.03	ND	50	91	60	130	85	50	140
Trichloroethylene	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	89	60	130	87	50	140
Trichlorofluoromethane	GCM0114-JAN22	μg/g	0.05	< 0.05	ND	50	87	50	140	98	50	140
Vinyl Chloride	GCM0114-JAN22	μg/g	0.02	< 0.02	ND	50	80	50	140	78	50	140

20220119 31 / 35

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	latrix Spike / Ref	f.
	Reference	Reference		Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0032-JAN22	μg/g	0.5	<0.5	ND	20	110	80	120	103	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20220119 32 / 35

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20220119 33 / 35

Request for Laboratory Services and CHAIN OF CUSTODY

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

	-	_
	age	ੋੰ
	ľ	2
	١.	0
	의	\rightarrow
	N	7
1	1/	ഗ

low & White Copy - SGS	3: Date: May 2 Mount 2 Months Signature: Date: May 10 1 722 (mm/dd/yy) Yellow & White Copy - SGS	121	un lo 1	ž	Date:	in the second	100				7)	ling change are well	Signature:	æ	CIM Zhou	7	y (NAME):	Relinquished by (NAME):
Pink Copy - Client	(mm/dd/yy) Pir	200	10/1	5	Date:					MILLS.	7	(3)		Signature:		avij	KAT ZARING	AME):	Sampled By (NAME):
			-	1										į.)		
			X							(100 mg/s)						-	ructions	Observations/Comments/Special Instructions	12 Observations/Co
		-	**				-			72		V	-		-	_		TP6-2	==
									X	1					_			TP6-1	10
					/ \	X			-	15								TD5-4	9
			×						X	11	1	Y						TP5-1	8
			X							of Di		di.			_	_		TP4-73	7
			X						X			V						TP4-1	6
			У							ES.						,		TP 3-4	5
			X						X	X/		×			_			TP3-1	4
			X							100		#						TP2-3	ω
			×						Λ	V		X						TP2-1	2
			X		/-	×				1	^	1	35	+				101	
COMMENTS:	Specify pkg: Water Characterization Pkg General Extended Management Specific Specif	Sewer Use:	PH PH	Pesticides Organochlorine or specify other	BTEX only	ro BTEX VOCs all incl BTEX	F1-F4 + BTEX F1-F4 only	PCBs Total Aroclor	PAHs only SVOCs all inci PAHs, ABNs, CPs	ICP Metals only Sb.As,Ba,Be,B,Cd,Cr,Co,Cu,Pb,Mo,Ni,	inci CrVI, CN.Hg pH,(B(HWS),EC,SAR-soil) (Cl. Na-water) Full Metals Suite ICP metals plus B(HWS-soil only) Hg, CrVI	Field Filtered (Y/N) Metals & Inorganics	Municipality: Matrix Es Matrix	7 9	DATE DATE DATE DATE DATE TIME SAMPLED SAM	DATE SAMPLED JONES DATE SAMPLED JONES J	Medium/Fine >350m3 ONDITION (RSC)	Ind/Com Coarse Agri/Other Medium/Fine Appx. Lume 350m3 >350m3 RECORD OF SITE CONDITION (RSC) SAMPLE IDENTIFICATION	Table 2 Table 3 Soil Volume REC
office in	SPLP TCLP Specify Specify	Otner (please specify)		Pest	_ \delta		_ H.	PCB	SVOC		- ×		Sewer By-Law: Sanitary		her Regulations: Reg 347/558 (3 Day min TAT)	Other Regulations:	O.Reg 406/19 Soil Texture:	Res/Park	O.Reg 153/04
				UES	VALYSIS REQUESTED	SISA	NAL	A				DATE OF THE PARTY				REGULATIONS	REGUL		
MUST BE SUBMITTED	*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	INKING WAT	WITH SGS DR	NG (PO)	DRINKI	NOTE					ue Date:	Specify Due Date:				Email:	as answering	n. dsen(a)	Email: Kirstin
	N. S.	UBMISSIO):	TATIVE	1 Day RESEN	S REP	S	ay App	arges M FEASIB	RUSH	RUSH TAT (Additional Charges May Apply): PLEASE CONFIRM RUSH FEASIBILITY WITH	RUSH TA				Phone:	JAPAG.	105 264 C	Phone: 4
olidays & weekends). ns next business day	(TAT) REQUIRED TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	JIRED loted in busin eived after 6p	TURNAROUND TIME (TAT) REQUIRED TAT's are quoted in Samples received at	ND TIN	VAROU	TURN			days)	AT (5-7)	Regular TAT (5-7days)	Ó				Contact: Address:		14 12.C	Address:
er Blue	356 Neyagawa	12	P.O. #:_ Site Loca					12	C12	22-	#	Quotation # Project #:	7	fectur ter	eport Informa	[] (same as Report Information) Company: カター かこじゅ	100 C	NO SC	Company:
						156/1181								RMATION	NVOICE INFORMATION	Z	NOIT	REPORT INFORMATION	2
JAN22	LABLIMS# JANZZ			3	Type: Δα		× =	0	Cooling Agent Present: Yes Temperature Upon Receipt (°C).	Agent Pr	Cooling Tempera			Present: Yes Intact: Yes	Custody Seal Intact:		22 (mm/dd/yy) (hr:min)	1 1 KZ	Received Date: Received Time:
- h98	Wh U						Vin	o use c	on - La	Section	ormation	Laboratory Information Section - Lab use only	The abor	(signature):	Received By (signature):		marman	- E0 W	Received By:

Request for Laboratory Services and CHAIN OF CUSTODY

o.

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, NBE 288 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-872-0361

form or be retained on file in struce accessible at	ures may appear on this Seneral Conditions of S	ork. Signatu y under its G	letion of wo	in for comp ssued by th	authorizatio	rsidered a	GS is con	able upor	on of san	Submissi	mples. (2)	ation of sa	r of addre	dling and	ction/han in unlimit	ction on sample collection on sample collection of sample collections.	been provided din s). (3) Results ma	nt that you have	is acknowledgemer ive format (e.g. ship	Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization of completion of work. Signatures may appear on this form or by organized from the contract or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fex is available upon request. This document is issued by the Company under its General Conditions of Sancia accessible at	Revision #: 1.3 Note Date of issue: 13 Oct, 2019	Revisi Date o
Yellow & White Copy - SGS	(VV)	(mm/dd/)	252	21.2	W/.		Date:								1	サイ	Signature:		5	1 Racin 2	Relinquished by (NAME):	Roll
Pink Copy - Client		(mm/dd/yy)	12	1	100	-	Date:					-			1	C.	Signature:			100 1 10 Col	Sampled By (NAME):	Sam
			3			á	+							1	1		1			* 1101 1 × *		1
																				ial Instructions	Observations/Comments/Special Instructions	Obs
								F	L	L		-	F	F	Ļ							12
		H		F	F	ĺ		⊨	Ł	L		H	H	┝	┢							3
		F		F			T	H	L	L		t	F	F	┡							6
		F						H	L			1	F	H	┢							9
							T	H	H			F	F	H	╞							8
								H	H			F	H	L		-						7
	ON FITT							F	H			-	H									6
	DE COM	\vdash		\vdash				H	H			F		L		2						55
					×				_			X	H	*						1	301	4
				H	905		$\hat{}$	X	\triangleright			H	H							+	197	ω
				H	7-8-			H	H			X	H							<i>(</i>)	777	2
	13)*			H	X			H	L			H	H	×		Jan Jan				1	E AL	_
**	Water Charac General	Sewer Use: Specify pkg:			根份	Pesticides Organochlorine or spec	BTEX only	VOCs	F1-F4 + BTEX F1-F4 only	PCBs Total	SVOCs all incl PAHs, ABNs, CPs	PAHs only	ICP metals plus B(HWS-ICP Metals on Sh.As, Ba.Be, B.Cd, Cr, Co, La.Ag, TI, U, V, Zh	Metals & Inor incl CrVI, CN,Hg pH,(B(H (CI, Na-water) Full Metals S	Field Filtered (MATRIX	# OF BOTTLES	TIME SAMPLED	DATE SAMPLED	TIFICATION	SAMPLE IDENTIFICATION	1 1 1 1 1 1 1
COMMENTS:	Ext					ify othe				the late of		cu,Pb,I	soil only		1			No	DYES [RECORD OF SITE CONDITION (RSC)	RECORD OF S	
	atio					,				oclor		no,Ni,		,SAR-s	1	Municipality:	Mus	Ciner	MISA	Fine	Table Agriconer	
	Pky Specify]			n	oil)	(Visit	Storm		PWQO MMER	D Pwoo			Q
	TCLP	(please specify)	er (pleas	Other	-	Pest	- 8	O	PHC	РСВ	SVOC	S	┤¯	Z 00	4	Sewer By-Law:		ions:	Other Regulations:		n 153/04:	⊒ R
		1000	To the second		VALYSIS REQUESTED	UES	REC	SIS	NAL	2	5170								REGULATIONS	REGU		
MUST BE SUBMITTED	NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE WITH SGS DRINKING WATER CHAIN OF CUSTODY	ATER CHA	NKING W	NATER S	WITH S	ING (PO	DRINKI	NOTE	Ľ				ate:	Specify Due Date	specify		accounting@dsconsultants.ca	ounting@ds	Email: acc	efuange:khumban@dsconsultants.ca	1	Email:
		ays	RUSH TAT (Additional Charges May Apply): ☐ 1 Day ☐ 2 Days ☐ 3 Days ☐ 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	3 Days	Days □	TATIVE	1 Day	R D	TH SGS	Apply	ASIBIL	RUSH TAT (Additional Charges May Apply) PLEASE CONFIRM RUSH FEASIBILITY WIT	ditiona FIRM R	F CONI	LEASI	70.20			Phone:	7 @ Cl SCHONTEN	c. Creth ols	Phone:
TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	ys (exclude statutory n weekends: TAT be	siness day 6pm or on	oted in but	ples rece	Sam						ys)	(5-7days)	Regular TAT	1	þ				Address:	1	Ontario	1
	1 2		RED) REQU	TURNAROUND TIME (TAT) REQUIRED	ND TI	NAROU	TUR	TO SHEET STATES									3	Contact:	16, Vaughan, 8	Address: 6221 Hwy 7, L	Add
ance Klud	156 Menagawa	ن	ion/ID:	Site Location/ID:	<u>s</u> -						100	012-	22-		Project #:	7	decent.	1)5	Company:	- Wistwi,	Contact: -efuenge khumbah	င္ပ
A STATE OF THE PARTY OF THE PAR		D. W. S.	Section Section	D #	0	and and a second	Constitution of the last		100000000000000000000000000000000000000	Contraction of the Contraction o	0.000	- Contraction	11.22600500	n #	Quotation	AND THE PROPERTY OF THE PERSON NAMED IN	mation)	(same as Report Information)	(same as	STORY OF STREET, STREE	Company DS Consultants	3
の		STORES !		The Party		County S.		THE SE									ᅙ	INVOICE IF	A CONTRACT OF STREET	ORMATION	EPORT IN	
	LAB LIMS #	LAB				a	400	Jype:	×	Yes No	#	Cooling Agent Present: Yes Temperature Upon Receipt (*C)	mperatu	7 C			Custody Seal Present: Custody Seal Intact:	Custody !	3	(hr:min)	Received Date: L / LL Received Time: 12 : 45	Rec
						1	1		۱ ا	-					1	a sur live of	Received By (signature):	Received		BOWEYMARK	Received By: 80	Rec
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW										use or	Lap	VACCION.	S UOILE	ntorma	II Alou	Labora						-

http://www.sgs.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

CA40197-JUN23 R

22-012-101, 3056 Neyagawa Blvd, Oakville

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 6	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Fahmida Anwar	Telephone	2165
Telephone	647-879-3866	Facsimile	705-652-6365
Facsimile		Email	jill.campbell@sgs.com
Email	fanwar@dsconsultants.ca	SGS Reference	CA40197-JUN23
Project	22-012-101, 3056 Neyagawa Blvd, Oakville	Received	06/20/2023
Order Number		Approved	06/29/2023
Samples	Soil (17)	Report Number	CA40197-JUN23 R
		Date Reported	06/29/2023

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present:ves

Custody Seal Present:yes

Chain of Custody Number:NA

BH23-17 SS1: TCMX surrogate was slightly low for pesticide analysis, which is likely due to sample matrix. Decachlorobiphenyl surrogate was fine.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

three compounds: YES

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-20
Exceedance Summary	21
QC Summary	22-32
Legend	33
Annexes	34-35

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL				Sample Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-15 SS1	BH23-15 SS2	BH23-16 SS1	BH23-16 SS2	BH23-17 SS1	BH23-17 SS2	BH23-17 SS3	BH23-18 SS
1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/	/Commercial - UNDEFINED			Sample Matrix	Soil							
2 = REG153 / SOIL / COARSE - TABLE 2 - Residentia	al/Parkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
TEX												
Benzene	μg/g	0.02	0.32	0.21		< 0.02		< 0.02			< 0.02	
Ethylbenzene	μg/g	0.05	1.1	1.1		< 0.05		< 0.05			< 0.05	
Toluene	hâ\â	0.05	6.4	2.3		< 0.05		< 0.05			< 0.05	
Xylene (total)	ha\a	0.05	26	3.1		< 0.05		< 0.05			< 0.05	
m/p-xylene	μg/g	0.05				< 0.05		< 0.05			< 0.05	
o-xylene	μg/g	0.05				< 0.05		< 0.05			< 0.05	
ydrides				'								
Antimony	ha\a	0.8	40	7.5	< 0.8		< 0.8		< 0.8			< 0.8
Arsenic	ha\a	0.5	18	18	5.9		7.0		4.4			5.8
Selenium	ha\a	0.1	5.5	2.4	0.2		0.3		0.4			0.2
letals and Inorganics												
Moisture Content	%	no			13.2	15.4	16.9	12.5	15.3	10.0	10.1	10.9
Barium	hâ\â	0.1	670	390	120		89		94			100
Beryllium	ha\a	0.02	8	4	0.95		0.77		0.76			0.89
Boron	ha\a	1	120	120	8		11		4			8
Cadmium	ha\a	0.05	1.9	1.2	0.19		0.24		0.17			0.13
Chromium	ha\a	0.5	160	160	23		19		21			23
Cobalt	ha\a	0.01	80	22	13		10		12			13
Copper	ha\a	0.1	230	140	27		96		19			29
Lead	μg/g	0.1	120	120	19		51		18			15
Molybdenum	μg/g	0.1	40	6.9	0.6		1.1		0.7			0.6

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL			Sa	mple Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-15 SS1	BH23-15 SS2	BH23-16 SS1	BH23-16 SS2	BH23-17 SS1	BH23-17 SS2	BH23-17 SS3	BH23-18 SS1
1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercial -	UNDEFINED		:	Sample Matrix	Soil							
2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - L	UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
Metals and Inorganics (continued)												
Nickel	μg/g	0.5	270	100	31		23		20			29
Silver	μg/g	0.05	40	20	< 0.05		0.07		< 0.05			< 0.05
Thallium	μg/g	0.02	3.3	1	0.18		0.13		0.16			0.19
Uranium	μg/g	0.002	33	23	0.56		0.77		0.59			0.58
Vanadium	μg/g	3	86	86	31		29		32			30
Zinc	μg/g	0.7	340	340	62		79		55			61
Water Soluble Boron	μg/g	0.5	2	1.5	< 0.5		< 0.5		< 0.5			< 0.5
Organochlorine Pests (OCs)												
Aldrin	μg/g	0.05	0.088	0.05	< 0.05				< 0.05			< 0.05
alpha-Chlordane	μg/g	0.02			< 0.02				< 0.02			< 0.02
gamma-Chlordane	μg/g	0.02			< 0.02				< 0.02			< 0.02
Chlordane (total)	μg/g	0.05	0.05	0.05	< 0.05				< 0.05			< 0.05
o,p-DDD	μg/g	0.02			< 0.02				< 0.02			< 0.02
pp-DDD	µg/g	0.02			< 0.02				< 0.02			< 0.02
DDD (total)	µg/g	0.05	4.6	3.3	< 0.05				< 0.05			< 0.05
o,p-DDE	μg/g	0.02			< 0.02				< 0.02			< 0.02
pp-DDE	µg/g	0.02			< 0.02				< 0.02			< 0.02
DDE (total)	μg/g	0.05	0.52	0.26	< 0.05				< 0.05			< 0.05
op-DDT	μg/g	0.02			< 0.02				< 0.02			< 0.02
pp-DDT	μg/g	0.02			< 0.02				< 0.02			< 0.02
DDT (total)	μg/g	0.05	1.4	1.4	< 0.05				< 0.05			< 0.05
Dieldrin	μg/g	0.05	0.088	0.05	< 0.05				< 0.05			< 0.05

SGS FINAL REPORT

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

IATRIX: SOIL			S	ample Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-15 SS1	BH23-15 SS2	BH23-16 SS1	BH23-16 SS2	BH23-17 SS1	BH23-17 SS2	BH23-17 SS3	BH23-18 S
= REG153 / SOIL / COARSE - TABLE 2 - Industrial/C	Commercial - UNDEFINED			Sample Matrix	Soil							
e = REG153 / SOIL / COARSE - TABLE 2 - Residential	l/Parkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
rganochlorine Pests (OCs) (continu	ued)											
gamma-BHC	μg/g	0.01	0.056	0.056	< 0.01				< 0.01			< 0.01
Endosulfan I	μg/g	0.02			< 0.02				< 0.02			< 0.02
Endosulfan II	μg/g	0.02			< 0.02				< 0.02			< 0.02
Endosulfan (total)	μg/g	0.04	0.3	0.04	< 0.04				< 0.04			< 0.04
Endrin	μg/g	0.04	0.04	0.04	< 0.04				< 0.04			< 0.04
Heptachlor	μg/g	0.01	0.19	0.15	< 0.01				< 0.01			< 0.01
Heptachlor epoxide	ha/a	0.01	0.05	0.05	< 0.01				< 0.01			< 0.01
Hexachlorobenzene	ha/a	0.01	0.66	0.52	< 0.01				< 0.01			< 0.01
Hexachlorobutadiene	ha/a	0.01	0.031	0.012	< 0.01				< 0.01			< 0.01
Hexachloroethane	ha/a	0.01	0.21	0.089	< 0.01				< 0.01			< 0.01
Methoxychlor	ha/a	0.05	1.6	0.13	< 0.05				< 0.05			< 0.05
ther (ORP)				'								
Mercury	ug/g	0.05	3.9	0.27	< 0.05		< 0.05		< 0.05			< 0.05
Sodium Adsorption Ratio	No unit	0.2	12	5	0.3		< 0.2		< 0.2			< 0.2
SAR Calcium	mg/L	0.2			15.4		37.4		30.2			35.9
SAR Magnesium	mg/L	0.3			1.7		3.6		3.1			3.0
SAR Sodium	mg/L	0.1			3.9		2.4		3.0			3.2
Conductivity	mS/cm	0.002	1.4	0.7	0.11		0.22		0.19			0.21
рН	pH Units	0.05			7.26		7.48		6.87			7.12
Chromium VI	ha\a	0.2	8	8	0.3		< 0.2		0.9			< 0.2
Free Cyanide	μg/g	0.05	0.051	0.051	< 0.05		< 0.05		< 0.05			< 0.05

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

IATRIX: SOIL			5	Sample Number Sample Name	9 BH23-15 SS1	10 BH23-15 SS2	11 BH23-16 SS1	12 BH23-16 SS2	13 BH23-17 SS1	14 BH23-17 SS2	15 BH23-17 SS3	16 BH23-18 SS1
= REG153 / SOIL / COARSE - TABLE 2 - Industrial/Co	mmercial - UNDEFINED			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
= REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	Result	Result	Result	Result
AHs												
Acenaphthene	μg/g	0.05	21	7.9		< 0.05	< 0.05			< 0.05		
Acenaphthylene	μg/g	0.05	0.15	0.15		< 0.05	< 0.05			< 0.05		
Anthracene	μg/g	0.05	0.67	0.67		< 0.05	< 0.05			< 0.05		
Benzo(a)anthracene	μg/g	0.05	0.96	0.5		< 0.05	0.12			< 0.05		
Benzo(a)pyrene	μg/g	0.05	0.3	0.3		< 0.05	0.14			< 0.05		
Benzo(b+j)fluoranthene	μg/g	0.05	0.96	0.78		< 0.05	0.16			< 0.05		
Benzo(ghi)perylene	μg/g	0.1	9.6	6.6		< 0.1	< 0.1			< 0.1		
Benzo(k)fluoranthene	μg/g	0.05	0.96	0.78		< 0.05	0.06			< 0.05		
Chrysene	μg/g	0.05	9.6	7		< 0.05	0.12			< 0.05		
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	0.1		< 0.06	< 0.06			< 0.06		
Fluoranthene	μg/g	0.05	9.6	0.69		< 0.05	0.25			< 0.05		
Fluorene	μg/g	0.05	62	62		< 0.05	< 0.05			< 0.05		
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.76	0.38		< 0.1	< 0.1			< 0.1		
1-Methylnaphthalene	μg/g	0.05				< 0.05	< 0.05			< 0.05		
2-Methylnaphthalene	μg/g	0.05				< 0.05	< 0.05			< 0.05		
Methylnaphthalene, 2-(1-)	μg/g	0.05	30	0.99		< 0.05	< 0.05			< 0.05		
Naphthalene	μg/g	0.05	9.6	0.6		< 0.05	< 0.05			< 0.05		
Phenanthrene	μg/g	0.05	12	6.2		< 0.05	0.12			< 0.05		
Pyrene	μg/g	0.05	96	78		< 0.05	0.22			< 0.05		

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL			s	Sample Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-15 SS1	BH23-15 SS2	BH23-16 SS1	BH23-16 SS2	BH23-17 SS1	BH23-17 SS2	BH23-17 SS3	BH23-18 SS
1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercia	al - UNDEFINED			Sample Matrix	Soil							
2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	- UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
esticides Surrogate												
Surr Decachlorobiphenyl	Surr Rec %				96				73			100
HCs												
F1 (C6-C10)	μg/g	10	55	55		< 10		< 10			< 10	
F1-BTEX (C6-C10)	μg/g	10	55	55		< 10		< 10			< 10	
F2 (C10-C16)	μg/g	10	230	98		< 10		< 10			< 10	
F3 (C16-C34)	μg/g	50	1700	300		< 50		< 50			54	
F4 (C34-C50)	μg/g	50	3300	2800		< 50		< 50			128	
Chromatogram returned to baseline at nC50	Yes / No	no				YES		YES			YES	
VOC Surrogates												
Surr 2-Fluorobiphenyl	Surr Rec %	no				108	100			105		
Surr 4-Terphenyl-d14	Surr Rec %	no				104	90			94		
Surr 2-Methylnaphthalene-D10	Surr Rec %	no				104	93			97		
Surr Fluoranthene-D10	Surr Rec %	no				98	86			90		

SGS

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL			s	ample Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-15 SS1	BH23-15 SS2	BH23-16 SS1	BH23-16 SS2	BH23-17 SS1	BH23-17 SS2	BH23-17 SS3	BH23-18 SS
1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Co	mmercial - UNDEFINED			Sample Matrix	Soil							
2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
HMs (VOC)												
Bromodichloromethane	μg/g	0.05	1.5	1.5		< 0.05		< 0.05			< 0.05	
Bromoform	μg/g	0.05	0.61	0.27		< 0.05		< 0.05			< 0.05	
Dibromochloromethane	μg/g	0.05	2.3	2.3		< 0.05		< 0.05			< 0.05	
OC Surrogates												
Surr 1,2-Dichloroethane-d4	Surr Rec %	no				100		102			102	
Surr 4-Bromofluorobenzene	Surr Rec %	no				97		96			96	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no				95		95			95	
Surr TCMX	Surr Rec %	no			81				22			79
/OCs				'								
Acetone	μg/g	0.5	16	16		< 0.5		< 0.5			< 0.5	
Bromomethane	μg/g	0.05	0.05	0.05		< 0.05		< 0.05			< 0.05	
Carbon tetrachloride	μg/g	0.05	0.21	0.05		< 0.05		< 0.05			< 0.05	
Chlorobenzene	μg/g	0.05	2.4	2.4		< 0.05		< 0.05			< 0.05	
Chloroform	μg/g	0.05	0.47	0.05		< 0.05		< 0.05			< 0.05	
1,2-Dichlorobenzene	μg/g	0.05	1.2	1.2		< 0.05		< 0.05			< 0.05	
1,3-Dichlorobenzene	μg/g	0.05	9.6	4.8		< 0.05		< 0.05			< 0.05	
1,4-Dichlorobenzene	μg/g	0.05	0.2	0.083		< 0.05		< 0.05			< 0.05	
Dichlorodifluoromethane	μg/g	0.05	16	16		< 0.05		< 0.05			< 0.05	
1,1-Dichloroethane	μg/g	0.05	0.47	0.47		< 0.05		< 0.05			< 0.05	
1,2-Dichloroethane	μg/g	0.05	0.05	0.05		< 0.05		< 0.05			< 0.05	
1,1-Dichloroethylene	μg/g	0.05	0.064	0.05		< 0.05		< 0.05			< 0.05	

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

IATRIX: SOIL				ample Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-15 SS1	BH23-15 SS2	BH23-16 SS1	BH23-16 SS2	BH23-17 SS1	BH23-17 SS2	BH23-17 SS3	BH23-18 SS
= REG153 / SOIL / COARSE - TABLE 2 - Industrial/Cor	nmercial - UNDEFINED			Sample Matrix	Soil							
= REG153 / SOIL / COARSE - TABLE 2 - Residential/P	arkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
OCs (continued)												
trans-1,2-Dichloroethylene	μg/g	0.05	1.3	0.084		< 0.05		< 0.05			< 0.05	
cis-1,2-Dichloroethylene	μg/g	0.05	1.9	1.9		< 0.05		< 0.05			< 0.05	
1,2-Dichloropropane	μg/g	0.05	0.16	0.05		< 0.05		< 0.05			< 0.05	
cis-1,3-dichloropropene	μg/g	0.03				< 0.03		< 0.03			< 0.03	
trans-1,3-dichloropropene	μg/g	0.03				< 0.03		< 0.03			< 0.03	
1,3-dichloropropene (total)	μg/g	0.05	0.059	0.05		< 0.05		< 0.05			< 0.05	
Ethylenedibromide	μg/g	0.05	0.05	0.05		< 0.05		< 0.05			< 0.05	
n-Hexane	μg/g	0.05	46	2.8		< 0.05		< 0.05			< 0.05	
Methyl ethyl ketone	ha/a	0.5	70	16		< 0.5		< 0.5			< 0.5	
Methyl isobutyl ketone	μg/g	0.5	31	1.7		< 0.5		< 0.5			< 0.5	
Methyl-t-butyl Ether	μg/g	0.05	1.6	0.75		< 0.05		< 0.05			< 0.05	
Methylene Chloride	μg/g	0.05	1.6	0.1		< 0.05		< 0.05			< 0.05	
Styrene	μg/g	0.05	34	0.7		< 0.05		< 0.05			< 0.05	
Tetrachloroethylene	μg/g	0.05	1.9	0.28		< 0.05		< 0.05			< 0.05	
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.087	0.058		< 0.05		< 0.05			< 0.05	
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05		< 0.05		< 0.05			< 0.05	
1,1,1-Trichloroethane	ha/a	0.05	6.1	0.38		< 0.05		< 0.05			< 0.05	
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05		< 0.05		< 0.05			< 0.05	
Trichloroethylene	μg/g	0.05	0.55	0.061		< 0.05		< 0.05			< 0.05	
Trichlorofluoromethane	μg/g	0.05	4	4		< 0.05		< 0.05			< 0.05	
Vinyl Chloride	μg/g	0.02	0.032	0.02		< 0.02		< 0.02			< 0.02	

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL				Sample Number	17 BH23-19 SS1	18 BH23-19 SS2	19 BH23-20 SS1	20 BH23-20 SS3	21 BH23-21 SS1	22 BH23-21 SS2	23 BH23-21 SS4	24 Dup-1
.1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/C	Commercial - UNDEFINED			Sample Matrix	Soil	Soil						
.2 = REG153 / SOIL / COARSE - TABLE 2 - Residential				Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result	Result						
BTEX												
Benzene	μg/g	0.02	0.32	0.21				< 0.02			< 0.02	< 0.02
Ethylbenzene	μg/g	0.05	1.1	1.1				< 0.05			< 0.05	< 0.05
Toluene	μg/g	0.05	6.4	2.3				< 0.05			< 0.05	< 0.05
Xylene (total)	μg/g	0.05	26	3.1				< 0.05			< 0.05	< 0.05
m/p-xylene	μg/g	0.05						< 0.05			< 0.05	< 0.05
o-xylene	ha/a	0.05						< 0.05			< 0.05	< 0.05
Hydrides												
Antimony	μg/g	0.8	40	7.5	< 0.8		< 0.8			< 0.8		
Arsenic	μg/g	0.5	18	18	7.4		3.5			5.2		
Selenium	μg/g	0.1	5.5	2.4	0.2		0.2			< 0.1		
Metals and Inorganics												
Moisture Content	%	no			8.7	15.1	16.0	9.9	14.3	14.7	7.5	8.2
Barium	μg/g	0.1	670	390	49		88			66		
Beryllium	μg/g	0.02	8	4	0.39		0.58			0.63		
Boron	μg/g	1	120	120	10		6			10		
Cadmium	μg/g	0.05	1.9	1.2	0.33		0.14			0.10		
Chromium	μg/g	0.5	160	160	14		18			19		
Cobalt	μg/g	0.01	80	22	6.9		11			12		
Copper	μg/g	0.1	230	140	38		18			25		
Lead	ha/a	0.1	120	120	46		18			11		
Molybdenum	μg/g	0.1	40	6.9	1.4		0.6			0.5		

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL			s	ample Number	17	18	19	20	21	22	23	24
				Sample Name	BH23-19 SS1	BH23-19 SS2	BH23-20 SS1	BH23-20 SS3	BH23-21 SS1	BH23-21 SS2	BH23-21 SS4	Dup-1
L1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercial	I - UNDEFINED			Sample Matrix	Soil							
L2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland -	- UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
Metals and Inorganics (continued)												
Nickel	μg/g	0.5	270	100	18		20			25		
Silver	μg/g	0.05	40	20	0.07		< 0.05			< 0.05		
Thallium	μg/g	0.02	3.3	1	0.13		0.13			0.14		
Uranium	μg/g	0.002	33	23	0.48		0.46			0.55		
Vanadium	μg/g	3	86	86	25		26			23		
Zinc	μg/g	0.7	340	340	100		58			50		
Water Soluble Boron	μg/g	0.5	2	1.5	< 0.5		< 0.5			< 0.5		
Organochlorine Pests (OCs)												
Aldrin	μg/g	0.05	0.088	0.05	< 0.05		< 0.05		< 0.05			
alpha-Chlordane	μg/g	0.02			< 0.02		< 0.02		< 0.02			
gamma-Chlordane	μg/g	0.02			< 0.02		< 0.02		< 0.02			
Chlordane (total)	μg/g	0.05	0.05	0.05	< 0.05		< 0.05		< 0.05			
o,p-DDD	μg/g	0.02			< 0.02		< 0.02		< 0.02			
pp-DDD	μg/g	0.02			< 0.02		< 0.02		< 0.02			
DDD (total)	μg/g	0.05	4.6	3.3	< 0.05		< 0.05		< 0.05			
o,p-DDE	μg/g	0.02			< 0.02		< 0.02		< 0.02			
pp-DDE	μg/g	0.02			< 0.02		< 0.02		< 0.02			
DDE (total)	μg/g	0.05	0.52	0.26	< 0.05		< 0.05		< 0.05			
op-DDT	μg/g	0.02			< 0.02		< 0.02		< 0.02			
pp-DDT	μg/g	0.02			< 0.02		< 0.02		< 0.02			
DDT (total)	μg/g	0.05	1.4	1.4	< 0.05		< 0.05		< 0.05			
Dieldrin	μg/g	0.05	0.088	0.05	< 0.05		< 0.05		< 0.05			

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

IATRIX: SOIL			S	ample Number	17	18	19	20	21	22	23	24
				Sample Name	BH23-19 SS1	BH23-19 SS2	BH23-20 SS1	BH23-20 SS3	BH23-21 SS1	BH23-21 SS2	BH23-21 SS4	Dup-1
= REG153 / SOIL / COARSE - TABLE 2 - Industrial/C	commercial - UNDEFINED			Sample Matrix	Soil	Soil						
= REG153 / SOIL / COARSE - TABLE 2 - Residential	/Parkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/202
Parameter	Units	RL	L1	L2	Result	Result						
rganochlorine Pests (OCs) (continu	ued)											
gamma-BHC	μg/g	0.01	0.056	0.056	< 0.01		< 0.01		< 0.01			
Endosulfan I	μg/g	0.02			< 0.02		< 0.02		< 0.02			
Endosulfan II	μg/g	0.02			< 0.02		< 0.02		< 0.02			
Endosulfan (total)	ha/a	0.04	0.3	0.04	< 0.04		< 0.04		< 0.04			
Endrin	ha/a	0.04	0.04	0.04	< 0.04		< 0.04		< 0.04			
Heptachlor	ha/a	0.01	0.19	0.15	< 0.01		< 0.01		< 0.01			
Heptachlor epoxide	μg/g	0.01	0.05	0.05	< 0.01		< 0.01		< 0.01			
Hexachlorobenzene	ha/a	0.01	0.66	0.52	< 0.01		< 0.01		< 0.01			
Hexachlorobutadiene	ha/a	0.01	0.031	0.012	< 0.01		< 0.01		< 0.01			
Hexachloroethane	μg/g	0.01	0.21	0.089	< 0.01		< 0.01		< 0.01			
Methoxychlor	μg/g	0.05	1.6	0.13	< 0.05		< 0.05		< 0.05			
ther (ORP)				,								
Mercury	ug/g	0.05	3.9	0.27	< 0.05		< 0.05			< 0.05		
Sodium Adsorption Ratio	No unit	0.2	12	5	0.3		< 0.2			0.3		
SAR Calcium	mg/L	0.2			38.3		47.0			25.2		
SAR Magnesium	mg/L	0.3			4.6		3.8			2.7		
SAR Sodium	mg/L	0.1			6.2		5.1			6.1		
Conductivity	mS/cm	0.002	1.4	0.7	0.29		0.31			0.18		
рН	pH Units	0.05			7.72		7.30			7.48		
Chromium VI	μg/g	0.2	8	8	< 0.2		< 0.2			< 0.2		
Free Cyanide	μg/g	0.05	0.051	0.051	< 0.05		< 0.05			< 0.05		

SGS

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

IATRIX: SOIL				Sample Number Sample Name	17 BH23-19 SS1	18 BH23-19 SS2	19 BH23-20 SS1	20 BH23-20 SS3	21 BH23-21 SS1	22 BH23-21 SS2	23 BH23-21 SS4	24 Dup-1
= REG153 / SOIL / COARSE - TABLE 2 - Industrial/Com	mercial - UNDEFINED			Sample Matrix	Soil	Soil						
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Par	rkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result	Result						
AHs												
Acenaphthene	μg/g	0.05	21	7.9		< 0.05			< 0.05			
Acenaphthylene	μg/g	0.05	0.15	0.15		< 0.05			< 0.05			
Anthracene	μg/g	0.05	0.67	0.67		< 0.05			< 0.05			
Benzo(a)anthracene	μg/g	0.05	0.96	0.5		< 0.05			0.14			
Benzo(a)pyrene	μg/g	0.05	0.3	0.3		< 0.05			0.15			
Benzo(b+j)fluoranthene	μg/g	0.05	0.96	0.78		< 0.05			0.18			
Benzo(ghi)perylene	μg/g	0.1	9.6	6.6		< 0.1			0.10			
Benzo(k)fluoranthene	μg/g	0.05	0.96	0.78		< 0.05			0.08			
Chrysene	μg/g	0.05	9.6	7		< 0.05			0.14			
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	0.1		< 0.06			< 0.06			
Fluoranthene	μg/g	0.05	9.6	0.69		< 0.05			0.32			
Fluorene	μg/g	0.05	62	62		< 0.05			< 0.05			
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.76	0.38		< 0.1			< 0.1			
1-Methylnaphthalene	μg/g	0.05				< 0.05			< 0.05			
2-Methylnaphthalene	μg/g	0.05				< 0.05			< 0.05			
Methylnaphthalene, 2-(1-)	μg/g	0.05	30	0.99		< 0.05			< 0.05			
Naphthalene	μg/g	0.05	9.6	0.6		< 0.05			< 0.05			
Phenanthrene	μg/g	0.05	12	6.2		< 0.05			0.19			
Pyrene	μg/g	0.05	96	78		< 0.05			0.27			

CA40197-JUN23 R

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL			s	ample Number	17	18	19	20	21	22	23	24
				Sample Name	BH23-19 SS1	BH23-19 SS2	BH23-20 SS1	BH23-20 SS3	BH23-21 SS1	BH23-21 SS2	BH23-21 SS4	Dup-1
				Sample Matrix	Soil							
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	I - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
esticides Surrogate												
Surr Decachlorobiphenyl	Surr Rec %				112		96		106			
HCs												
F1 (C6-C10)	μg/g	10	55	55				< 10			< 10	< 10
F1-BTEX (C6-C10)	μg/g	10	55	55				< 10			< 10	< 10
F2 (C10-C16)	μg/g	10	230	98				< 10			< 10	< 10
F3 (C16-C34)	μg/g	50	1700	300				< 50			< 50	< 50
F4 (C34-C50)	μg/g	50	3300	2800				133			< 50	124
Chromatogram returned to baseline at nC50	Yes / No	no						YES			YES	YES
VOC Surrogates												
Surr 2-Fluorobiphenyl	Surr Rec %	no				106			121			
Surr 4-Terphenyl-d14	Surr Rec %	no				100			102			
Surr 2-Methylnaphthalene-D10	Surr Rec %	no				95			100			
Surr Fluoranthene-D10	Surr Rec %	no				93			97			

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

MATRIX: SOIL			5	Sample Number	17	18	19	20	21	22	23	24
				Sample Name	BH23-19 SS1	BH23-19 SS2	BH23-20 SS1	BH23-20 SS3	BH23-21 SS1	BH23-21 SS2	H23-21 SS2 BH23-21 SS4 Soil Soil	Dup-1
1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Co	mmercial - UNDEFINED			Sample Matrix	Soil	Soil						
2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/P	arkland - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result	Result						
HMs (VOC)												
Bromodichloromethane	μg/g	0.05	1.5	1.5				< 0.05			< 0.05	< 0.05
Bromoform	μg/g	0.05	0.61	0.27				< 0.05			< 0.05	< 0.05
Dibromochloromethane	ha/a	0.05	2.3	2.3				< 0.05			< 0.05	< 0.05
OC Surrogates												
Surr 1,2-Dichloroethane-d4	Surr Rec %	no						102			101	102
Surr 4-Bromofluorobenzene	Surr Rec %	no						96			96	96
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no						95			94	94
Surr TCMX	Surr Rec %	no			87		71		87			
/OCs												
Acetone	μg/g	0.5	16	16				< 0.5			< 0.5	< 0.5
Bromomethane	μg/g	0.05	0.05	0.05				< 0.05			< 0.05	< 0.05
Carbon tetrachloride	μg/g	0.05	0.21	0.05				< 0.05			< 0.05	< 0.05
Chlorobenzene	μg/g	0.05	2.4	2.4				< 0.05			< 0.05	< 0.05
Chloroform	μg/g	0.05	0.47	0.05				< 0.05			< 0.05	< 0.05
1,2-Dichlorobenzene	μg/g	0.05	1.2	1.2				< 0.05			< 0.05	< 0.05
1,3-Dichlorobenzene	μg/g	0.05	9.6	4.8				< 0.05			< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.05	0.2	0.083				< 0.05			< 0.05	< 0.05
Dichlorodifluoromethane	μg/g	0.05	16	16				< 0.05			< 0.05	< 0.05
1,1-Dichloroethane	μg/g	0.05	0.47	0.47				< 0.05			< 0.05	< 0.05
1,2-Dichloroethane	μg/g	0.05	0.05	0.05				< 0.05			< 0.05	< 0.05
1,1-Dichloroethylene	μg/g	0.05	0.064	0.05				< 0.05			< 0.05	< 0.05

SGS

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

Samplers: Fahmida Anwar

ATRIX: SOIL			s	sample Number	17	18	19	20	21	22	23	24
				Sample Name	BH23-19 SS1	BH23-19 SS2	BH23-20 SS1	BH23-20 SS3	BH23-21 SS1	BH23-21 SS2	BH23-21 SS4	Dup-1
REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercial	al - UNDEFINED			Sample Matrix	Soil							
REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	d - UNDEFINED			Sample Date	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023	16/06/2023
Parameter	Units	RL	L1	L2	Result							
Cs (continued)												
trans-1,2-Dichloroethylene	μg/g	0.05	1.3	0.084				< 0.05			< 0.05	< 0.05
cis-1,2-Dichloroethylene	μg/g	0.05	1.9	1.9				< 0.05			< 0.05	< 0.05
1,2-Dichloropropane	μg/g	0.05	0.16	0.05				< 0.05			< 0.05	< 0.05
cis-1,3-dichloropropene	μg/g	0.03						< 0.03			< 0.03	< 0.03
trans-1,3-dichloropropene	μg/g	0.03						< 0.03			< 0.03	< 0.03
1,3-dichloropropene (total)	μg/g	0.05	0.059	0.05				< 0.05			< 0.05	< 0.05
Ethylenedibromide	μg/g	0.05	0.05	0.05				< 0.05			< 0.05	< 0.05
n-Hexane	μg/g	0.05	46	2.8				< 0.05			< 0.05	< 0.05
Methyl ethyl ketone	μg/g	0.5	70	16				< 0.5			< 0.5	< 0.5
Methyl isobutyl ketone	μg/g	0.5	31	1.7				< 0.5			< 0.5	< 0.5
Methyl-t-butyl Ether	μg/g	0.05	1.6	0.75				< 0.05			< 0.05	< 0.05
Methylene Chloride	μg/g	0.05	1.6	0.1				< 0.05			< 0.05	< 0.05
Styrene	μg/g	0.05	34	0.7				< 0.05			< 0.05	< 0.05
Tetrachloroethylene	μg/g	0.05	1.9	0.28				< 0.05			< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.087	0.058				< 0.05			< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05				< 0.05			< 0.05	< 0.05
1,1,1-Trichloroethane	μg/g	0.05	6.1	0.38				< 0.05			< 0.05	< 0.05
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05				< 0.05			< 0.05	< 0.05
Trichloroethylene	μg/g	0.05	0.55	0.061				< 0.05			< 0.05	< 0.05
Trichlorofluoromethane	μg/g	0.05	4	4				< 0.05			< 0.05	< 0.05
Vinyl Chloride	μg/g	0.02	0.032	0.02				< 0.02			< 0.02	< 0.02

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar **Samplers:** Fahmida Anwar

MATRIX: SOIL			Sa	ample Number	25
			;	Sample Name	Dup-2
L1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercial - UNI	IDEFINED		:	Sample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - UND	DEFINED			Sample Date	16/06/2023
Parameter	Units	RL	L1	L2	Result
Hydrides					
Antimony	μg/g	0.8	40	7.5	< 0.8
Arsenic	μg/g	0.5	18	18	8.7
Selenium	μg/g	0.1	5.5	2.4	0.2
Metals and Inorganics	100				
_	0/				7.0
Moisture Content	%	no			7.6
Barium	μg/g	0.1	670	390	80
Beryllium	μg/g	0.02	8	4	0.68
Boron	μg/g	1	120	120	9
Cadmium	μg/g	0.05	1.9	1.2	0.23
Chromium	μg/g	0.5	160	160	19
Cobalt	μg/g	0.01	80	22	10
Copper	μg/g	0.1	230	140	39
Lead	μg/g	0.1	120	120	43
Molybdenum	μg/g	0.1	40	6.9	1.1
Nickel	μg/g	0.5	270	100	22
Silver	μg/g	0.05	40	20	0.07
Thallium	μg/g	0.02	3.3	1	0.17
Uranium	μg/g	0.002	33	23	0.53
Vanadium	μg/g	3	86	86	27
Zinc	μg/g	0.7	340	340	86
Water Soluble Boron	μg/g	0.5	2	1.5	< 0.5

CA40197-JUN23 R

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

Samplers: Fahmida Anwar

MATRIX: SOIL			S	Sample Number	25
				Sample Name	Dup-2
L1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Co	ommercial - UNDEFINED			Sample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/f	Parkland - UNDEFINED			Sample Date	16/06/2023
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
Mercury	ug/g	0.05	3.9	0.27	< 0.05
Sodium Adsorption Ratio	No unit	0.2	12	5	< 0.2
SAR Calcium	mg/L	0.2			41.2
SAR Magnesium	mg/L	0.3			4.0
SAR Sodium	mg/L	0.1			3.0
Conductivity	mS/cm	0.002	1.4	0.7	0.24
Conductivity			1.4	0.1	
pH	pH Units	0.05			7.31
Chromium VI	μg/g	0.2	8	8	0.3
Free Cyanide	μg/g	0.05	0.051	0.051	< 0.05

CA40197-JUN23 R

Client: DS Consultants

Project: 22-012-101, 3056 Neyagawa Blvd, Oakville

Project Manager: Fahmida Anwar

Samplers: Fahmida Anwar

MATRIX: SOIL

Sample Number

Sample Number

Dup-2

L1 = REG153 / SOIL / COARSE - TABLE 2 - Industrial/Commercial - UNDEFINED

L2 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - UNDEFINED

Sample Date

16/06/2023

Parameter Units RL L1 L2 Result

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20230629 21 / 35

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0601-JUN23	mS/cm	0.002	<0.002	4	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5085-JUN23	μg/g	0.05	<0.05	ND	20	99	80	120	96	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		ī.
	Reference			Blank	Blank RPD AC Spike (%) Recovery (%)		Recovery Limits (%)		Spike Recovery		ry Limits %)	
						(%)	_	Low	High	(%)	Low	High
Chromium VI	SKA5088-JUN23	ug/g	0.2	<0.2	ND	20	94	80	120	97	75	125

20230629 22 / 35

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0197-JUN23	ug/g	0.05	<0.05	ND	20	107	80	120	82	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(76)	(%)	Low	High	(%)	Low	High
SAR Calcium	ESG0051-JUN23	mg/L	0.2	<0.2	1	20	101	80	120	NV	70	130
SAR Magnesium	ESG0051-JUN23	mg/L	0.3	<0.3	1	20	103	80	120	NV	70	130
SAR Sodium	ESG0051-JUN23	mg/L	0.1	<0.1	1	20	100	80	120	NV	70	130
SAR Calcium	ESG0055-JUN23	mg/L	0.2	<0.2	1	20	99	80	120	99	70	130
SAR Magnesium	ESG0055-JUN23	mg/L	0.3	<0.3	ND	20	103	80	120	101	70	130
SAR Sodium	ESG0055-JUN23	mg/L	0.1	<0.1	3	20	108	80	120	96	70	130

20230629 23 / 35

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0197-JUN23	ug/g	0.05	<0.05	ND	20	104	70	130	102	70	130
Arsenic	EMS0197-JUN23	μg/g	0.5	<0.5	1	20	92	70	130	92	70	130
Barium	EMS0197-JUN23	ug/g	0.1	<0.1	0	20	98	70	130	103	70	130
Beryllium	EMS0197-JUN23	μg/g	0.02	<0.02	1	20	100	70	130	97	70	130
Boron	EMS0197-JUN23	μg/g	1	<1	3	20	98	70	130	90	70	130
Cadmium	EMS0197-JUN23	ug/g	0.05	<0.05	6	20	98	70	130	93	70	130
Cobalt	EMS0197-JUN23	μg/g	0.01	<0.01	1	20	98	70	130	96	70	130
Chromium	EMS0197-JUN23	μg/g	0.5	<0.5	2	20	97	70	130	95	70	130
Copper	EMS0197-JUN23	μg/g	0.1	<0.1	2	20	100	70	130	93	70	130
Molybdenum	EMS0197-JUN23	μg/g	0.1	<0.1	15	20	106	70	130	101	70	130
Nickel	EMS0197-JUN23	ug/g	0.5	<0.5	2	20	99	70	130	95	70	130
Lead	EMS0197-JUN23	ug/g	0.1	<0.1	1	20	104	70	130	98	70	130
Antimony	EMS0197-JUN23	μg/g	0.8	<0.8	ND	20	109	70	130	113	70	130
Selenium	EMS0197-JUN23	ug/g	0.1	<0.1	3	20	104	70	130	93	70	130
Thallium	EMS0197-JUN23	μg/g	0.02	<0.02	2	20	99	70	130	102	70	130
Uranium	EMS0197-JUN23	μg/g	0.002	<0.002	4	20	103	70	130	NV	70	130
Vanadium	EMS0197-JUN23	μg/g	3	<3	1	20	99	70	130	94	70	130
Zinc	EMS0197-JUN23	µg/g	0.7	<0.7	2	20	98	70	130	88	70	130

20230629 24 / 35

QC SUMMARY

Pesticides

Method: EPA 3541/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Aldrin	GCM0381-JUN23	μg/g	0.05	< 0.05	ND	40	83	50	140	81	50	140
alpha-Chlordane	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	81	50	140	90	50	140
Dieldrin	GCM0381-JUN23	μg/g	0.05	< 0.05	ND	40	87	50	140	85	50	140
Endosulfan I	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	82	50	140	86	50	140
Endosulfan II	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	88	50	140	92	50	140
Endrin	GCM0381-JUN23	μg/g	0.04	< 0.04	ND	40	91	50	140	92	50	140
gamma-BHC	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	83	50	140	81	50	140
gamma-Chlordane	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	81	50	140	90	50	140
Heptachlor epoxide	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	81	50	140	86	50	140
Heptachlor	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	83	50	140	83	50	140
Hexachlorobenzene	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	82	50	140	84	50	140
Hexachlorobutadiene	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	82	50	140	85	50	140
Hexachloroethane	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	81	50	140	83	50	140
Methoxychlor	GCM0381-JUN23	μg/g	0.05	< 0.05	ND	40	88	50	140	131	50	140
o,p-DDD	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	93	50	140	108	50	140
o,p-DDE	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	82	50	140	91	50	140
op-DDT	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	89	50	140	73	50	140
pp-DDD	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	90	50	140	122	50	140
pp-DDE	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	83	50	140	94	50	140
pp-DDT	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	89	50	140	123	50	140

20230629 25 / 35

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank RPD AC Spike (%) Recovery (%) Low	•	Spike Recovery	Recove	ry Limits 6)				
						(%)	_	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0370-JUN23	μg/g	10	<10	ND	30	105	80	120	93	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0364-JUN23	μg/g	10	<10	ND	30	114	80	120	113	60	140
F3 (C16-C34)	GCM0364-JUN23	μg/g	50	<50	ND	30	114	80	120	113	60	140
F4 (C34-C50)	GCM0364-JUN23	μg/g	50	<50	ND	30	114	80	120	113	60	140

20230629 26 / 35

CA40197-JUN23 R

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0092-JUN23	pH Units	0.05		0	20	100	80	120			

20230629 27 / 35

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	90	50	140	80	50	140
2-Methylnaphthalene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	89	50	140	83	50	140
Acenaphthene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	93	50	140	78	50	140
Acenaphthylene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	90	50	140	80	50	140
Anthracene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	86	50	140	75	50	140
Benzo(a)anthracene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	85	50	140	77	50	140
Benzo(a)pyrene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	86	50	140	77	50	140
Benzo(b+j)fluoranthene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	87	50	140	79	50	140
Benzo(ghi)perylene	GCM0351-JUN23	μg/g	0.1	< 0.1	ND	40	89	50	140	77	50	140
Benzo(k)fluoranthene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	87	50	140	77	50	140
Chrysene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	89	50	140	79	50	140
Dibenzo(a,h)anthracene	GCM0351-JUN23	μg/g	0.06	< 0.06	ND	40	81	50	140	73	50	140
Fluoranthene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	81	50	140	74	50	140
Fluorene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	97	50	140	81	50	140
Indeno(1,2,3-cd)pyrene	GCM0351-JUN23	μg/g	0.1	< 0.1	ND	40	83	50	140	74	50	140
Naphthalene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	95	50	140	82	50	140
Phenanthrene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	86	50	140	76	50	140
Pyrene	GCM0351-JUN23	μg/g	0.05	< 0.05	ND	40	87	50	140	75	50	140
1-Methylnaphthalene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	97	50	140	93	50	140
2-Methylnaphthalene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	96	50	140	91	50	140

20230629

QC SUMMARY

Semi-Volatile Organics (continued)

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Acenaphthene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	96	50	140	93	50	140
Acenaphthylene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	93	50	140	82	50	140
Anthracene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	92	50	140	88	50	140
Benzo(a)anthracene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	96	50	140	92	50	140
Benzo(a)pyrene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	93	50	140	90	50	140
Benzo(b+j)fluoranthene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	100	50	140	92	50	140
Benzo(ghi)perylene	GCM0357-JUN23	μg/g	0.1	< 0.1	ND	40	94	50	140	90	50	140
Benzo(k)fluoranthene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	96	50	140	92	50	140
Chrysene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	96	50	140	93	50	140
Dibenzo(a,h)anthracene	GCM0357-JUN23	μg/g	0.06	< 0.06	ND	40	92	50	140	85	50	140
Fluoranthene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	88	50	140	84	50	140
Fluorene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	105	50	140	90	50	140
Indeno(1,2,3-cd)pyrene	GCM0357-JUN23	μg/g	0.1	< 0.1	ND	40	89	50	140	84	50	140
Naphthalene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	96	50	140	92	50	140
Phenanthrene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	93	50	140	89	50	140
Pyrene	GCM0357-JUN23	μg/g	0.05	< 0.05	ND	40	94	50	140	90	50	140

20230629 29 / 35

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>I</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	99	60	130	99	50	140
1,1,1-Trichloroethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	100	50	140
1,1,2,2-Tetrachloroethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	97	60	130	NV	50	140
1,1,2-Trichloroethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	94	60	130	91	50	140
1,1-Dichloroethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	101	50	140
1,1-Dichloroethylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	115	60	130	112	50	140
1,2-Dichlorobenzene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	NV	50	140
1,2-Dichloroethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	98	60	130	98	50	140
1,2-Dichloropropane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	100	50	140
1,3-Dichlorobenzene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	104	60	130	NV	50	140
1,4-Dichlorobenzene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	NV	50	140
Acetone	GCM0369-JUN23	μg/g	0.5	< 0.5	ND	50	99	50	140	100	50	140
Benzene	GCM0369-JUN23	μg/g	0.02	< 0.02	ND	50	102	60	130	99	50	140
Bromodichloromethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	99	60	130	98	50	140
Bromoform	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	98	60	130	98	50	140
Bromomethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	101	50	140	93	50	140
Carbon tetrachloride	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	104	60	130	100	50	140
Chlorobenzene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	99	50	140
Chloroform	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	100	50	140
cis-1,2-Dichloroethylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	101	50	140

20230629 30 / 35

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0369-JUN23	μg/g	0.03	< 0.03	ND	50	102	60	130	96	50	140
Dibromochloromethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	99	50	140
Dichlorodifluoromethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	87	50	140	69	50	140
Ethylbenzene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	98	50	140
Ethylenedibromide	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	98	60	130	98	50	140
n-Hexane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	96	60	130	82	50	140
m/p-xylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	99	50	140
Methyl ethyl ketone	GCM0369-JUN23	μg/g	0.5	< 0.5	ND	50	98	50	140	89	50	140
Methyl isobutyl ketone	GCM0369-JUN23	μg/g	0.5	< 0.5	ND	50	103	50	140	97	50	140
Methyl-t-butyl Ether	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	95	50	140
Methylene Chloride	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	100	50	140
o-xylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	101	50	140
Styrene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	98	50	140
Tetrachloroethylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	103	60	130	99	50	140
Toluene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	101	50	140
trans-1,2-Dichloroethylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	99	50	140
trans-1,3-dichloropropene	GCM0369-JUN23	μg/g	0.03	< 0.03	ND	50	101	60	130	95	50	140
Trichloroethylene	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	100	50	140
Trichlorofluoromethane	GCM0369-JUN23	μg/g	0.05	< 0.05	ND	50	97	50	140	91	50	140
Vinyl Chloride	GCM0369-JUN23	μg/g	0.02	< 0.02	ND	50	97	50	140	90	50	140

20230629 31 / 35

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	·		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)		
								(%)	(%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0038-JUN23	μg/g	0.5	<0.5	ND	20	100	80	120	98	70	130		

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230629 32 / 35

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

20230629 33 / 35

Request for Laboratory Services and CHAIN OF CUSTODY

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 240 Phone: 705-852-2000 Fax: 705-852-6365 Web: www.sgs.com/environment

-London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Page ë

PABLIMS #: CAUCIGT-2m23 *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED COMMENTS: 3056 Neyagawa Bluel., Samples received after 6pm or on weekends: TAT begins next business day TAT's are quoted in business days (exclude statutory holidays & weekends) Pink Copy - Client oskillië, ou Dvoc WITH SGS DRINKING WATER CHAIN OF CUSTODY - Mai - PCB 08(a) tests TCLP Screen.... Sewer Use:
Specify pkg:
Water Characterization Pkg
Maren Characterization Pkg (mm/dd/yy) Other (please specify) Screening Levels Table: 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Appendix 2: 406/19 Leachate Site Location/ID: TURNAROUND TIME (TAT) REQUIRED 3 2/61 P.O. #: 2 ANALYSIS REQUESTED 90 o Pest ify other (OCP.) Pesticides 000 VOCs PHC Cooling Agent Present: Yes No Temperature Upon Receipt (°C) 4. Laboratory Information Section - Lab use only F1-F4 + BTEX RUSH TAT (Additional Charges May Apply): 22-012-101 PCB Aroclor Total SVOC SVOCS ABNS, CPS Regular TAT (5-7days) Vino sHA9 CP Metals only ha.e.s.e.e.c.,c.,c.,rb,Mo,Ni. Full Metals Suite ICP metals plus B(HWS-soil only) Hg, C/VI Specify Due Date: Μœ Metals & Inorganics Ind Crv., Cv., Hg PH. (B(HWS), EC. SAR-Quotation #: Project #: Field Filtered (Y/N) MATRIX accounting Galsconsultants. Ca ž Sewer By-Law: Soil Custody Seal Present: Yes No Custody Seal Intact: Yes No Banitary Storm unicipality: SAMPLED BOTTLES Signature: INVOICE INFORMATION 2 4 Received By (signature): 3 6 CV 9 N d Goet 5 3 ODWS Not Reportable *See note (same as Report Information) Reg 347/558 (3 Day min TAT) Pm Bindu Dther: MMER Other Regulations: SAMPLED 16/06/23 PWQO CCME YES MISA Company: REGULATIONS Address: Contact: Phone: Email: ANNOR (mm/dd/yy) RECORD OF SITE CONDITION (RSC) Medium/Fin 7,001 16 anwar@ds.consultants.ca O.Reg 406/19 Coarse Soil Texture: (hr: min) FAHM IDA >350m3 leceived Date: 04 / 20 120 28 Phone: 649-874-3866 Fahmida Anwar Observations/Comments/Special Instructions SAMPLE IDENTIFICATION REPORT INFORMATION 20 552 252 SS Ahneel 28 553 53 Agri/Other SS SSI Res/Park Address: \$221, Hwy Ind/Com Vauyhan, ON 00 12 BH23-20 11 BH23-20 Relinquished by (NAME): Soil Volume k350m3 SA BH23-19 5H23-15 BH23-15 4 BH23 - 16 9 BH23-19 3 BH 23 - 16 BH23-17 8 BH23-18 6 BH23-17 BH23-17 Sampled By (NAME): VO.Reg 153/04 Received Time: Received By: Table 1 Company: Table 2 Table 3 Table Contact:

Ubatics of samples to SGS is acknowledgement that you have been provided direction on sample collective financial and transportation of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at him. (Addresses and conditions than (Addresses and conditions of Service accessible at Note: Submission of samples to SGS is acknowledg

ate of Issue: 22 May, 2020

Request for Laboratory Services and CHAIN OF CUSTODY

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

6

Page

ŝ

*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Ovoc COMMENTS: TAT's are quoted in business days (exclude statutory holidays & weekends), Samples received after 6pm or on weekends: TAT begins next business day glud, Site Location/ID: 2056 Negadawa pepneix3 □ PCB DB(a) WITH SGS DRINKING WATER CHAIN OF CUSTODY TCLP DABN Dign. TCLP tests LAB LIMS #: Characterization Pkg Water Sewer Use: Other (please specify) Screening Levels Table : 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION TURNAROUND TIME (TAT) REQUIRED P.O. #: 06,19 ANALYSIS REQUESTED specify other (OCP) 200 F1-F4 only VOCS PHC Cooling Agent Present: Yes No Laboratory Information Section - Lab use only F1-F4 + BTEX RUSH TAT (Additional Charges May Apply): 22-012-10 PCB Temperature Upon Receipt (°C) Arodor Total ысв⊡ SAOCS SAOCS SVOC Regular TAT (5-7days) Vino sHA9 CP Metals only b.As.Be.Be.B.Cd.Cr.Co.Cu.Pb.Mo.Ni. Full Metals Suite ICP metals plus B(HWS-soil only) Hg. CrvI accounting edeconultants Especity Due Date. -⊗ × Metals & Inorganics Incl Crvi, Cu, Hg PH.(B(HWS), EC. SAR-(Ci, Na-water) Quotation #: Project #: Field Filtered (Y/N) Accounting-Bindu Goel Custody Seal Present: Yes No Custody Seal Intact: Yes No MATRIX Soil Sewer By-Law: Banitary | lunicipality: SAMPLED BOTTLES INVOICE INFORMATION Received By (signature): # OF S N CV (same as Report Information) ODWS Not Reportable *See note Reg 347/558 (3 Day min TAT) PP ON. Other Regulations: 16/06/23 SAMPLED PWGO CCME YES MISA Company: REGULATIONS Contact: Address: Phone: Email: FAHMIDA AWWAR Received Date: 06 / 20 / 2023 (mm/dd/yy) Medium/Fine RECORD OF SITE CONDITION (RSC) Address: 6221, Hwy +7, Unit 16, O.Reg 406/19 anwar Edsensu Hants.ca Coarse Soil Texture: Fahmida Anwar Thone: 647-879-3866 >350m3 Observations/Comments/Special Instructions SAMPLE IDENTIFICATION REPORT INFORMATION hSS 282 SSI Aprice | Agri/Other Res/Park Mud/Com Vaughan, Or BH 23-21 BH23-21 BH23-21 O.Reg 153/04 DUP-1 DUP2 Received By: Company: Table 1 Table 2 Table 3 Contact: Table

1 2 3 (mm/dd/yy) Yellow & White Copy - SG: on for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g., shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Eax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at himman and conditione him (Potent contains are available montre are available mon request.) Alteration is drawn to the limitation of labellity indemnification and indeptition terms and conditions him (Potent contains are available montre). ortation of samples. (2) Submission of samples to SGS is considered author nent that you have been

Signature: Signature:

FAHMIDA ANWAR

Pink Copy - Client

(mm/dd/yy)

23

10 190

Date: Date:

ste of Issue: 22 May, 2020

Relinquished by (NAME):

Sampled By (NAME):

Your Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Your C.O.C. #: 862749-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2022/01/28

Report #: R6980732 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C217346 Received: 2022/01/21, 15:16

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	5	N/A	2022/01/27	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	5	N/A	2022/01/27		EPA 8260C m
Chloride by Automated Colourimetry	5	N/A	2022/01/25	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	5	N/A	2022/01/25	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	5	N/A	2022/01/24	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1)	5	2022/01/26	2022/01/26	CAM SOP-00316	CCME PHC-CWS m
Mercury	5	2022/01/25	2022/01/25	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	5	N/A	2022/01/25	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	1	2022/01/26	2022/01/26	CAM SOP-00318	EPA 8270D m
PAH Compounds in Water by GC/MS (SIM)	4	2022/01/26	2022/01/27	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs	5	N/A	2022/01/26	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Your Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Your C.O.C. #: 862749-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2022/01/28

Report #: R6980732 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C217346 Received: 2022/01/21, 15:16

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Bureau Veritas

28 Jan 2022 11:59:53

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ashton Gibson, Project Manager

Email: A shton. Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Report Date: 2022/01/28

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			RRD592			RRD592			RRD593		
Sampling Date			2022/01/20			2022/01/20			2022/01/20		
COC Number			862749-01-01			862749-01-01			862749-01-01		
	UNITS	Criteria	BH1	RDL	QC Batch	BH1 Lab-Dup	RDL	QC Batch	BH2	RDL	QC Batch
Inorganics											
WAD Cyanide (Free)	ug/L	66	<1	1	7796846				<1	1	7796846
Dissolved Chloride (CI-)	mg/L	790	900	10	7796788				520	6.0	7796788
Metals											
Chromium (VI)	ug/L	25	<0.50	0.50	7796180	<0.50	0.50	7796180	<0.50	0.50	7796180
Mercury (Hg)	ug/L	0.29	<0.10	0.10	7798095				<0.10	0.10	7798095
Dissolved Antimony (Sb)	ug/L	6.0	0.57	0.50	7797531	<0.50	0.50	7797531	0.55	0.50	7797531
Dissolved Arsenic (As)	ug/L	25	<1.0	1.0	7797531	<1.0	1.0	7797531	1.3	1.0	7797531
Dissolved Barium (Ba)	ug/L	1000	180	2.0	7797531	180	2.0	7797531	230	2.0	7797531
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	7797531	<0.40	0.40	7797531	<0.40	0.40	7797531
Dissolved Boron (B)	ug/L	5000	150	10	7797531	150	10	7797531	150	10	7797531
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	7797531	<0.090	0.090	7797531	<0.090	0.090	7797531
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	7797531	<5.0	5.0	7797531	<5.0	5.0	7797531
Dissolved Cobalt (Co)	ug/L	3.8	<0.50	0.50	7797531	<0.50	0.50	7797531	<0.50	0.50	7797531
Dissolved Copper (Cu)	ug/L	87	0.92	0.90	7797531	0.96	0.90	7797531	<0.90	0.90	7797531
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	7797531	<0.50	0.50	7797531	<0.50	0.50	7797531
Dissolved Molybdenum (Mo)	ug/L	70	6.9	0.50	7797531	6.8	0.50	7797531	5.0	0.50	7797531
Dissolved Nickel (Ni)	ug/L	100	<1.0	1.0	7797531	<1.0	1.0	7797531	1.1	1.0	7797531
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	7797531	<2.0	2.0	7797531	<2.0	2.0	7797531
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	7797531	<0.090	0.090	7797531	<0.090	0.090	7797531
Dissolved Sodium (Na)	ug/L	490000	420000	100	7797531	430000	100	7797531	190000	100	7797531
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	7797531	<0.050	0.050	7797531	<0.050	0.050	7797531
Dissolved Uranium (U)	ug/L	20	4.7	0.10	7797531	4.6	0.10	7797531	5.6	0.10	7797531
Dissolved Vanadium (V)	ug/L	6.2	0.57	0.50	7797531	0.50	0.50	7797531	0.71	0.50	7797531
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	7797531	<5.0	5.0	7797531	<5.0	5.0	7797531
			-			-			-		

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2022/01/28

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			RRD594	RRD595		RRD596			RRD596		
Sampling Date			2022/01/20	2022/01/20		2022/01/20			2022/01/20		
COC Number			862749-01-01	862749-01-01		862749-01-01			862749-01-01		
	UNITS	Criteria	ВН4	DUP1	RDL	DUP2	RDL	QC Batch	DUP2 Lab-Dup	RDL	QC Batch
Inorganics											
WAD Cyanide (Free)	ug/L	66	<1	<1	1	<1	1	7796846			
Dissolved Chloride (Cl-)	mg/L	790	30	29	1.0	900	10	7796788			
Metals											
Chromium (VI)	ug/L	25	<0.50	<0.50	0.50	<0.50	0.50	7796180			
Mercury (Hg)	ug/L	0.29	<0.10	<0.10	0.10	<0.10	0.10	7798095	<0.10	0.10	7798095
Dissolved Antimony (Sb)	ug/L	6.0	<0.50	<0.50	0.50	<0.50	0.50	7797531			
Dissolved Arsenic (As)	ug/L	25	1.1	1.1	1.0	<1.0	1.0	7797531			
Dissolved Barium (Ba)	ug/L	1000	140	140	2.0	190	2.0	7797531			
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	<0.40	0.40	<0.40	0.40	7797531			
Dissolved Boron (B)	ug/L	5000	120	120	10	140	10	7797531			
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	<0.090	0.090	<0.090	0.090	7797531			
Dissolved Chromium (Cr)	ug/L	50	<5.0	<5.0	5.0	<5.0	5.0	7797531			
Dissolved Cobalt (Co)	ug/L	3.8	<0.50	<0.50	0.50	<0.50	0.50	7797531			
Dissolved Copper (Cu)	ug/L	87	<0.90	<0.90	0.90	<0.90	0.90	7797531			
Dissolved Lead (Pb)	ug/L	10	<0.50	<0.50	0.50	<0.50	0.50	7797531			
Dissolved Molybdenum (Mo)	ug/L	70	3.0	3.0	0.50	6.4	0.50	7797531			
Dissolved Nickel (Ni)	ug/L	100	<1.0	<1.0	1.0	<1.0	1.0	7797531			
Dissolved Selenium (Se)	ug/L	10	<2.0	<2.0	2.0	<2.0	2.0	7797531			
Dissolved Silver (Ag)	ug/L	1.5	<0.090	<0.090	0.090	<0.090	0.090	7797531			
Dissolved Sodium (Na)	ug/L	490000	23000	23000	100	430000	100	7797531			
Dissolved Thallium (TI)	ug/L	2.0	<0.050	<0.050	0.050	<0.050	0.050	7797531			
Dissolved Uranium (U)	ug/L	20	3.7	3.7	0.10	4.7	0.10	7797531			
Dissolved Vanadium (V)	ug/L	6.2	0.60	0.51	0.50	0.57	0.50	7797531			
Dissolved Zinc (Zn)	ug/L	1100	<5.0	<5.0	5.0	<5.0	5.0	7797531			

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

O.REG 153 PAHS (WATER)

Bureau Veritas ID			RRD592	RRD593	RRD594	RRD595	RRD596		
Sampling Date			2022/01/20	2022/01/20	2022/01/20	2022/01/20	2022/01/20		
COC Number			862749-01-01	862749-01-01	862749-01-01	862749-01-01	862749-01-01		
	UNITS	Criteria	BH1	BH2	BH4	DUP1	DUP2	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	<0.071	<0.071	<0.071	<0.071	0.071	7796615
Polyaromatic Hydrocarbons	4	!							
Acenaphthene	ug/L	4.1	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Acenaphthylene	ug/L	1	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Anthracene	ug/L	2.4	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Benzo(a)anthracene	ug/L	1.0	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Benzo(a)pyrene	ug/L	0.01	<0.0090	<0.0090	<0.0090	<0.0090	<0.0090	0.0090	7801529
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Benzo(k)fluoranthene	ug/L	0.1	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Chrysene	ug/L	0.1	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Fluoranthene	ug/L	0.41	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Fluorene	ug/L	120	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
1-Methylnaphthalene	ug/L	3.2	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
2-Methylnaphthalene	ug/L	3.2	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Naphthalene	ug/L	11	<0.050	<0.050	0.070	0.069	<0.050	0.050	7801529
Phenanthrene	ug/L	1	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	7801529
Pyrene	ug/L	4.1	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	7801529
Surrogate Recovery (%)						-	-		
D10-Anthracene	%	-	84	100	100	88	100		7801529
D14-Terphenyl (FS)	%	-	88	92	95	83	104		7801529
D8-Acenaphthylene	%	-	77	94	91	80	94		7801529

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2022/01/28

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			RRD592	RRD593	RRD594	RRD595	RRD596		
Sampling Date			2022/01/20	2022/01/20	2022/01/20	2022/01/20	2022/01/20		
COC Number			862749-01-01	862749-01-01	862749-01-01	862749-01-01	862749-01-01		
	UNITS	Criteria	BH1	BH2	BH4	DUP1	DUP2	RDL	QC Batch
Calculated Parameters								-	
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796324
Volatile Organics					•				
Acetone (2-Propanone)	ug/L	2700	<10	<10	<10	<10	<10	10	7796661
Benzene	ug/L	5.0	<0.17	<0.17	<0.17	<0.17	<0.17	0.17	7796661
Bromodichloromethane	ug/L	16.0	<0.50	0.56	<0.50	<0.50	<0.50	0.50	7796661
Bromoform	ug/L	25.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	7796661
Bromomethane	ug/L	0.89	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
Carbon Tetrachloride	ug/L	0.79	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Chlorobenzene	ug/L	30	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Chloroform	ug/L	2.4	0.42	0.52	0.34	0.30	0.45	0.20	7796661
Dibromochloromethane	ug/L	25.0	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,2-Dichlorobenzene	ug/L	3.0	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,3-Dichlorobenzene	ug/L	59	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,4-Dichlorobenzene	ug/L	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	7796661
1,1-Dichloroethane	ug/L	5	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
1,2-Dichloroethane	ug/L	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,1-Dichloroethylene	ug/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,2-Dichloropropane	ug/L	5.0	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	7796661
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	7796661
Ethylbenzene	ug/L	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Ethylene Dibromide	ug/L	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Hexane	ug/L	51	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	7796661
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7796661
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	<10	<10	<10	<10	10	7796661
Methyl Isobutyl Ketone	ug/L	640	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7796661

No Fill Grey Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			RRD592	RRD593	RRD594	RRD595	RRD596		
Sampling Date			2022/01/20	2022/01/20	2022/01/20	2022/01/20	2022/01/20		
COC Number			862749-01-01	862749-01-01	862749-01-01	862749-01-01	862749-01-01		
	UNITS	Criteria	BH1	BH2	BH4	DUP1	DUP2	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
Styrene	ug/L	5.4	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
Tetrachloroethylene	ug/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Toluene	ug/L	24	<0.20	0.22	0.21	<0.20	<0.20	0.20	7796661
1,1,1-Trichloroethane	ug/L	200	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
1,1,2-Trichloroethane	ug/L	4.7	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
Trichloroethylene	ug/L	1.6	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7796661
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
p+m-Xylene	ug/L	-	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
o-Xylene	ug/L	-	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
Total Xylenes	ug/L	300	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	7796661
F1 (C6-C10)	ug/L	750	<25	<25	<25	<25	<25	25	7796661
F1 (C6-C10) - BTEX	ug/L	750	<25	<25	<25	<25	<25	25	7796661
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	<100	<100	<100	<100	100	7801542
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	<200	<200	<200	<200	200	7801542
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	<200	<200	<200	<200	200	7801542
Reached Baseline at C50	ug/L	-	Yes	Yes	Yes	Yes	Yes		7801542
Surrogate Recovery (%)									
o-Terphenyl	%	-	97	91	91	88	87		7801542
4-Bromofluorobenzene	%	-	101	100	98	100	100		7796661
D4-1,2-Dichloroethane	%	-	99	101	102	106	109		7796661
D8-Toluene	%	-	92	91	91	90	89		7796661

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Report Date: 2022/01/28

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

TEST SUMMARY

Bureau Veritas ID: RRD592

Collected:

2022/01/20

Sample ID: BH1 Matrix: Water Shipped:

Received: 2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7796615	N/A	2022/01/27	Automated Statchk
1,3-Dichloropropene Sum	CALC	7796324	N/A	2022/01/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	7796788	N/A	2022/01/25	Alina Dobreanu
Chromium (VI) in Water	IC	7796180	N/A	2022/01/25	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7796846	N/A	2022/01/24	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7801542	2022/01/26	2022/01/26	(Kent) Maolin Li
Mercury	CV/AA	7798095	2022/01/25	2022/01/25	Gagandeep Rai
Dissolved Metals by ICPMS	ICP/MS	7797531	N/A	2022/01/25	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7801529	2022/01/26	2022/01/26	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7796661	N/A	2022/01/26	Juan Pangilinan

Bureau Veritas ID: RRD592 Dup

Collected: 2022/01/20

Sample ID: BH1 Matrix: Water Shipped:

Received: 2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	7796180	N/A	2022/01/25	Theodora LI
Dissolved Metals by ICPMS	ICP/MS	7797531	N/A	2022/01/25	Nan Raykha

Bureau Veritas ID: RRD593

Collected:

2022/01/20

Sample ID: BH2 Matrix: Water

Shipped: Received:

2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7796615	N/A	2022/01/27	Automated Statchk
1,3-Dichloropropene Sum	CALC	7796324	N/A	2022/01/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	7796788	N/A	2022/01/25	Alina Dobreanu
Chromium (VI) in Water	IC	7796180	N/A	2022/01/25	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7796846	N/A	2022/01/24	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7801542	2022/01/26	2022/01/26	(Kent) Maolin Li
Mercury	CV/AA	7798095	2022/01/25	2022/01/25	Gagandeep Rai
Dissolved Metals by ICPMS	ICP/MS	7797531	N/A	2022/01/25	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7801529	2022/01/26	2022/01/27	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7796661	N/A	2022/01/26	Juan Pangilinan

Bureau Veritas ID: RRD594

Collected: Shipped:

2022/01/20

Sample ID: Matrix: Water

BH4

Received:

2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7796615	N/A	2022/01/27	Automated Statchk
1,3-Dichloropropene Sum	CALC	7796324	N/A	2022/01/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	7796788	N/A	2022/01/25	Alina Dobreanu
Chromium (VI) in Water	IC	7796180	N/A	2022/01/25	Theodora LI

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

TEST SUMMARY

Bureau Veritas ID: RRD594

Collected: Shipped:

2022/01/20

Sample ID: BH4 Matrix: Water

Received: 2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	SKAL/CN	7796846	N/A	2022/01/24	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7801542	2022/01/26	2022/01/26	(Kent) Maolin Li
Mercury	CV/AA	7798095	2022/01/25	2022/01/25	Gagandeep Rai
Dissolved Metals by ICPMS	ICP/MS	7797531	N/A	2022/01/25	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7801529	2022/01/26	2022/01/27	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7796661	N/A	2022/01/26	Juan Pangilinan

Bureau Veritas ID: RRD595

Collected: 2022/01/20

Sample ID: DUP1 Matrix: Water

Shipped: **Received:** 2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7796615	N/A	2022/01/27	Automated Statchk
1,3-Dichloropropene Sum	CALC	7796324	N/A	2022/01/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	7796788	N/A	2022/01/25	Alina Dobreanu
Chromium (VI) in Water	IC	7796180	N/A	2022/01/25	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7796846	N/A	2022/01/24	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7801542	2022/01/26	2022/01/26	(Kent) Maolin Li
Mercury	CV/AA	7798095	2022/01/25	2022/01/25	Gagandeep Rai
Dissolved Metals by ICPMS	ICP/MS	7797531	N/A	2022/01/25	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7801529	2022/01/26	2022/01/27	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7796661	N/A	2022/01/26	Juan Pangilinan

Bureau Veritas ID: RRD596 Sample ID: DUP2

Matrix: Water

Collected: 2022/01/20

Shipped:

Received: 2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	7796615	N/A	2022/01/27	Automated Statchk
1,3-Dichloropropene Sum	CALC	7796324	N/A	2022/01/27	Automated Statchk
Chloride by Automated Colourimetry	KONE	7796788	N/A	2022/01/25	Alina Dobreanu
Chromium (VI) in Water	IC	7796180	N/A	2022/01/25	Theodora LI
Free (WAD) Cyanide	SKAL/CN	7796846	N/A	2022/01/24	Nimarta Singh
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	7801542	2022/01/26	2022/01/26	(Kent) Maolin Li
Mercury	CV/AA	7798095	2022/01/25	2022/01/25	Gagandeep Rai
Dissolved Metals by ICPMS	ICP/MS	7797531	N/A	2022/01/25	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	7801529	2022/01/26	2022/01/27	Jonghan Yoon
Volatile Organic Compounds and F1 PHCs	GC/MSFD	7796661	N/A	2022/01/26	Juan Pangilinan

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

TEST SUMMARY

Bureau Veritas ID: RRD596 Dup

Collected: 2022/01/20

Sample ID: DUP2 Matrix: Water Shipped:

Received: 2022/01/21

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury	CV/AA	7798095	2022/01/25	2022/01/25	Gagandeep Rai

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	1.7°C	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

			Matrix	Matrix Spike		BLANK	Method	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7796661	4-Bromofluorobenzene	2022/01/26	114	70 - 130	113	70 - 130	100	%		
7796661	D4-1,2-Dichloroethane	2022/01/26	101	70 - 130	99	70 - 130	103	%		
7796661	D8-Toluene	2022/01/26	94	70 - 130	100	70 - 130	89	%		
7801529	D10-Anthracene	2022/01/26	87	50 - 130	101	50 - 130	99	%		
7801529	D14-Terphenyl (FS)	2022/01/26	90	50 - 130	111	50 - 130	113	%		
7801529	D8-Acenaphthylene	2022/01/26	80	50 - 130	95	50 - 130	82	%		
7801542	o-Terphenyl	2022/01/26	99	60 - 130	102	60 - 130	104	%		
7796180	Chromium (VI)	2022/01/25	104	80 - 120	104	80 - 120	<0.50	ug/L	NC	20
7796661	1,1,1,2-Tetrachloroethane	2022/01/26	102	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
7796661	1,1,1-Trichloroethane	2022/01/26	106	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
7796661	1,1,2,2-Tetrachloroethane	2022/01/26	104	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
7796661	1,1,2-Trichloroethane	2022/01/26	87	70 - 130	88	70 - 130	<0.50	ug/L	NC	30
7796661	1,1-Dichloroethane	2022/01/26	90	70 - 130	91	70 - 130	<0.20	ug/L	1.9	30
7796661	1,1-Dichloroethylene	2022/01/26	91	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
7796661	1,2-Dichlorobenzene	2022/01/26	91	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
7796661	1,2-Dichloroethane	2022/01/26	99	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
7796661	1,2-Dichloropropane	2022/01/26	91	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
7796661	1,3-Dichlorobenzene	2022/01/26	96	70 - 130	93	70 - 130	<0.50	ug/L	1.6	30
7796661	1,4-Dichlorobenzene	2022/01/26	120	70 - 130	113	70 - 130	<0.50	ug/L	1.6	30
7796661	Acetone (2-Propanone)	2022/01/26	79	60 - 140	82	60 - 140	<10	ug/L	NC	30
7796661	Benzene	2022/01/26	87	70 - 130	86	70 - 130	<0.17	ug/L	NC	30
7796661	Bromodichloromethane	2022/01/26	105	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
7796661	Bromoform	2022/01/26	119	70 - 130	114	70 - 130	<1.0	ug/L	NC	30
7796661	Bromomethane	2022/01/26	106	60 - 140	94	60 - 140	<0.50	ug/L	NC	30
7796661	Carbon Tetrachloride	2022/01/26	110	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
7796661	Chlorobenzene	2022/01/26	97	70 - 130	97	70 - 130	<0.20	ug/L	5.9	30
7796661	Chloroform	2022/01/26	101	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
7796661	cis-1,2-Dichloroethylene	2022/01/26	106	70 - 130	104	70 - 130	<0.50	ug/L	1.0	30
7796661	cis-1,3-Dichloropropene	2022/01/26	101	70 - 130	91	70 - 130	<0.30	ug/L	NC	30
7796661	Dibromochloromethane	2022/01/26	98	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
7796661	Dichlorodifluoromethane (FREON 12)	2022/01/26	71	60 - 140	68	60 - 140	<1.0	ug/L	NC	30

Page 12 of 17

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

			Matrix Spike		SPIKED BLANK		Method Blank		RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7796661	Ethylbenzene	2022/01/26	84	70 - 130	85	70 - 130	<0.20	ug/L	NC	30
7796661	Ethylene Dibromide	2022/01/26	95	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
7796661	F1 (C6-C10) - BTEX	2022/01/26					<25	ug/L	NC	30
7796661	F1 (C6-C10)	2022/01/26	85	60 - 140	90	60 - 140	<25	ug/L	NC	30
7796661	Hexane	2022/01/26	86	70 - 130	89	70 - 130	<1.0	ug/L	NC	30
7796661	Methyl Ethyl Ketone (2-Butanone)	2022/01/26	90	60 - 140	91	60 - 140	<10	ug/L	NC	30
7796661	Methyl Isobutyl Ketone	2022/01/26	91	70 - 130	91	70 - 130	<5.0	ug/L	NC	30
7796661	Methyl t-butyl ether (MTBE)	2022/01/26	90	70 - 130	91	70 - 130	<0.50	ug/L	NC	30
7796661	Methylene Chloride(Dichloromethane)	2022/01/26	98	70 - 130	98	70 - 130	<2.0	ug/L	NC	30
7796661	o-Xylene	2022/01/26	87	70 - 130	87	70 - 130	<0.20	ug/L	NC	30
7796661	p+m-Xylene	2022/01/26	88	70 - 130	88	70 - 130	<0.20	ug/L	NC	30
7796661	Styrene	2022/01/26	104	70 - 130	105	70 - 130	<0.50	ug/L	NC	30
7796661	Tetrachloroethylene	2022/01/26	100	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
7796661	Toluene	2022/01/26	97	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
7796661	Total Xylenes	2022/01/26					<0.20	ug/L	NC	30
7796661	trans-1,2-Dichloroethylene	2022/01/26	103	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
7796661	trans-1,3-Dichloropropene	2022/01/26	100	70 - 130	86	70 - 130	<0.40	ug/L	NC	30
7796661	Trichloroethylene	2022/01/26	116	70 - 130	113	70 - 130	<0.20	ug/L	2.0	30
7796661	Trichlorofluoromethane (FREON 11)	2022/01/26	104	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
7796661	Vinyl Chloride	2022/01/26	82	70 - 130	83	70 - 130	<0.20	ug/L	3.3	30
7796788	Dissolved Chloride (Cl-)	2022/01/25	111	80 - 120	101	80 - 120	<1.0	mg/L	1.3	20
7796846	WAD Cyanide (Free)	2022/01/24	109	80 - 120	105	80 - 120	<1	ug/L	NC	20
7797531	Dissolved Antimony (Sb)	2022/01/25	112	80 - 120	102	80 - 120	<0.50	ug/L	13	20
7797531	Dissolved Arsenic (As)	2022/01/25	108	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
7797531	Dissolved Barium (Ba)	2022/01/25	106	80 - 120	99	80 - 120	<2.0	ug/L	1.5	20
7797531	Dissolved Beryllium (Be)	2022/01/25	114	80 - 120	102	80 - 120	<0.40	ug/L	NC	20
7797531	Dissolved Boron (B)	2022/01/25	104	80 - 120	98	80 - 120	<10	ug/L	2.2	20
7797531	Dissolved Cadmium (Cd)	2022/01/25	106	80 - 120	100	80 - 120	<0.090	ug/L	NC	20
7797531	Dissolved Chromium (Cr)	2022/01/25	102	80 - 120	96	80 - 120	<5.0	ug/L	NC	20
7797531	Dissolved Cobalt (Co)	2022/01/25	103	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
7797531	Dissolved Copper (Cu)	2022/01/25	104	80 - 120	98	80 - 120	<0.90	ug/L	3.9	20

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

			Matrix	Matrix Spike SPIKED BLANK		Method Blank		RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7797531	Dissolved Lead (Pb)	2022/01/25	98	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
7797531	Dissolved Molybdenum (Mo)	2022/01/25	117	80 - 120	104	80 - 120	<0.50	ug/L	1.6	20
7797531	Dissolved Nickel (Ni)	2022/01/25	98	80 - 120	95	80 - 120	<1.0	ug/L	NC	20
7797531	Dissolved Selenium (Se)	2022/01/25	107	80 - 120	101	80 - 120	<2.0	ug/L	NC	20
7797531	Dissolved Silver (Ag)	2022/01/25	105	80 - 120	102	80 - 120	<0.090	ug/L	NC	20
7797531	Dissolved Sodium (Na)	2022/01/25	NC	80 - 120	94	80 - 120	<100	ug/L	3.1	20
7797531	Dissolved Thallium (TI)	2022/01/25	98	80 - 120	97	80 - 120	<0.050	ug/L	NC	20
7797531	Dissolved Uranium (U)	2022/01/25	99	80 - 120	95	80 - 120	<0.10	ug/L	2.0	20
7797531	Dissolved Vanadium (V)	2022/01/25	107	80 - 120	98	80 - 120	<0.50	ug/L	12	20
7797531	Dissolved Zinc (Zn)	2022/01/25	101	80 - 120	98	80 - 120	<5.0	ug/L	NC	20
7798095	Mercury (Hg)	2022/01/25	82	75 - 125	93	80 - 120	<0.10	ug/L	NC	20
7801529	1-Methylnaphthalene	2022/01/26	104	50 - 130	100	50 - 130	<0.050	ug/L	NC	30
7801529	2-Methylnaphthalene	2022/01/26	105	50 - 130	100	50 - 130	<0.050	ug/L	NC	30
7801529	Acenaphthene	2022/01/26	93	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
7801529	Acenaphthylene	2022/01/26	90	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
7801529	Anthracene	2022/01/26	92	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
7801529	Benzo(a)anthracene	2022/01/26	85	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
7801529	Benzo(a)pyrene	2022/01/26	84	50 - 130	85	50 - 130	<0.0090	ug/L	NC	30
7801529	Benzo(b/j)fluoranthene	2022/01/26	84	50 - 130	88	50 - 130	<0.050	ug/L	NC	30
7801529	Benzo(g,h,i)perylene	2022/01/26	87	50 - 130	87	50 - 130	<0.050	ug/L	NC	30
7801529	Benzo(k)fluoranthene	2022/01/26	81	50 - 130	80	50 - 130	<0.050	ug/L	NC	30
7801529	Chrysene	2022/01/26	90	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
7801529	Dibenzo(a,h)anthracene	2022/01/26	80	50 - 130	80	50 - 130	<0.050	ug/L	NC	30
7801529	Fluoranthene	2022/01/26	107	50 - 130	108	50 - 130	<0.050	ug/L	NC	30
7801529	Fluorene	2022/01/26	102	50 - 130	99	50 - 130	<0.050	ug/L	NC	30
7801529	Indeno(1,2,3-cd)pyrene	2022/01/26	91	50 - 130	92	50 - 130	<0.050	ug/L	NC	30
7801529	Naphthalene	2022/01/26	91	50 - 130	87	50 - 130	<0.050	ug/L	NC	30
7801529	Phenanthrene	2022/01/26	98	50 - 130	98	50 - 130	<0.030	ug/L	NC	30
7801529	Pyrene	2022/01/26	104	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
7801542	F2 (C10-C16 Hydrocarbons)	2022/01/27	90	60 - 130	90	60 - 130	<100	ug/L	NC	30
7801542	F3 (C16-C34 Hydrocarbons)	2022/01/27	95	60 - 130	97	60 - 130	<200	ug/L	NC	30

Bureau Veritas Job #: C217346 Report Date: 2022/01/28

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-012-100

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
7801542	F4 (C34-C50 Hydrocarbons)	2022/01/27	98	60 - 130	98	60 - 130	<200	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: 3056 NEYAGAWA BLVD.

Sampler Initials: RZ

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH1	RRD592-01	Dissolved Chloride (Cl-)	790	900	10	mg/L
DUP2	RRD596-01	Dissolved Chloride (CI-)	790	900	10	mg/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

21-Jan-22 15:16 Maxxam Analytics Presence of Visible Particulate/Sediment CAM FCD-01013/5 Ashton Gibson Page 1 of 1 When there is >1cm of visible particulate/sediment, the amount will be recorded in the field below C217346 **Bottle Types** 0 Inorganics DSG ENV-951 Organics Hydrocarbons Volatiles Other Pest/ Pest/ SVOC/ SVOC/ Metals Organic Organic Sample ID PCB PCB All PAH CN General PAH Dioxin F1 F1 F1 F1 F2-F4 F2-F4 VOC Vial 1 voc voc voc Herb Herb ABN ABN (Diss.) 1 of 2 2 of 2 1 of 2 2 of 2 F4G 1 of 2 2 of 2 /Furan Vial 1 Vial 2 Vial 3 Vial 4 1 of 2 2 of 2 Vial 2 1 of 2 2 of 2 1 of 2 2 of 2 Vial 3 Vial 4 2 8 9 10 comments: Except Metals, Cr VI, Hg Legend: Suspended Particulate Recorded By: (signature/print) DIPIKA SINGH TS Trace Settled Sediment (just covers bottom of container or less) Sediment greater than (>) Trace, but less than (<) 1 cm

VERITAS

Attention

Address

Tel:

INVOICE TO:

accounting@dsconsultants.ca;bindu.goel@dsconsultant Email:

Reg 558,

MISA PWQO

Other _______
Include Criteria on Certificate of Analysis (Y/N)?

BH4

DUP 1

DUP 2

Sample (Location) Identification

MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE BUREAU VERITAS DRINKING WATER CHAIN OF CUSTODY

Other Regulations

Sanitary Sewer Bylaw

Storm Sewer Bylaw

Reg 406 Table

Company Name: #32616 DS Consultants Limited

Accounts Payable

(905) 264-9393

Table 1 Res/Park Medium/Fine CCME

* RELINQUISHED BY: (Signature/Print)

Regulation 153 (2011)

Table 2 Ind/Comm Coarse

Table 3 Agri/Other For RSC

Sample Barcode Label

6221 Highway 7, Unit 16

Vaughan ON L4H 0K8

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario Canada L5N 2L8 Tel:(905) 817-5700 Toll-free:800-563-6266 Fax:(905) 817-5777 www.bvna.com

Time Sampled

on

Company Name:

Attention

Address:

Date Sampled

lan

REPORT TO:

Fax Site#: Sampled By:

Reg 153 PAHs

Metals / hg / Cr VI

RECEIVED BY: (Signature/Print)

						0. 0001	ODY RECORD			
_		TINFORM	ATION:	_				ratory Use Or		
	B8386	53					Bureau Veritas Job	#:	Bottle Order #:	
	22-01	2-100		TIL-					862749	
				N. I	19		COC#:		Project Manager	1)
	305	6 N	eya	ga u	a Bluck	1111111	C#862749-01-01		Ashton Gibson	
ED	PLEASE E	E SPECIF	IC)					d Time (TAT) Req		
						(will be applie Standard TAT Please note:	tandard) TAT: d if Rush TAT is not sp = 5-7 Working days fo	r most tests In tests such as BOD	o and Dioxins/Furans are	>5
١						Date Require	Rush TAT (if applied)	Time	Required:	
						# of Bottles		(call	lab for #)	
+					+			Commen	13	
	141		2.0	1	L.		141	ž,		
			57	9	4.	1 -1	77 -			4
1		7								
							Ashton Gib	1181811 11 811	6	_
Tir	ne	# jars u	ised and			Labora	tory Use Only			
3		not su	bmitted	Time	Sensitive	_	ure (°C) on Recei	Custody Seal Present Intact	Yes	No

White: Bureau Veritas Yellow: Client

* UNLESS OTHERWISE AGREED TO INVIRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR VIEWING AT WWW.BVLABS.COM/TERMS-AND-CONDITIONS.

*IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.

Time

SAMPLE CONTAINER, PRESERVATION, HOLD TIME AND PACKAGE INFORMATION CAN BE VIEWED AT WWW.BVLABS.COM/RESOURCES/CHAIN-OF-CUSTODY-FORMS.

Date: (YY/MM/DD)

ALYTICAL TAT DELAYS.

SAMPLES MUST BE KEPT COOL (< 10° C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS

Bureau Veritas Canada (2019) Inc.

Date: (YY/MM/DD)

Quotation #

Project Name

P.O. #:

Project:

CA40240-JUN23 R

22-012-101

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 6	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Fahmida Anwar	Telephone	705-652-2143
Telephone	647-879-3866	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	fanwar@dsconsultants.ca	SGS Reference	CA40240-JUN23
Project	22-012-101	Received	06/21/2023
Order Number		Approved	06/29/2023
Samples	Soil (13)	Report Number	CA40240-JUN23 R
		Date Reported	06/29/2023

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present:yes

Custody Seal Present:yes

Chain of Custody Number:032208/032209

SIGNATORIES

Brad Mo Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1/29

www.sgs.com

three compounds: YES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-15
Exceedance Summary	16
QC Summary	17-26
Legend	27
Annexes	28-29

SGS FINAL REPORT

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	BH23-9 SS1	BH23-9 SS2	BH23-9 SS3	BH23-10 SS1	BH23-10 SS2	BH23-10 SS3	BH23-11 SS2	BH23-12 SS
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/f	Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	19/06/2023	19/06/2023	19/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
TEX											
Benzene	μg/g	0.02	0.21			< 0.02			< 0.02		
Ethylbenzene	μg/g	0.05	1.1			< 0.05			< 0.05		
Toluene	μg/g	0.05	2.3			< 0.05			< 0.05		
Xylene (total)	μg/g	0.05	3.1			< 0.05			< 0.05		
m/p-xylene	μg/g	0.05				< 0.05			< 0.05		
o-xylene	μg/g	0.05				< 0.05			< 0.05		
ydrides											
Antimony	μg/g	0.8	7.5	< 0.8				< 0.8		< 0.8	< 0.8
Arsenic	μg/g	0.5	18	7.5				4.7		4.9	5.6
Selenium	μg/g	0.1	2.4	< 0.1				< 0.1		< 0.1	< 0.1
letals and Inorganics											
Moisture Content	%	no		4.0	9.2	8.6	11.3	6.5	8.5	7.7	10.8
Barium	μg/g	0.1	390	8.2				68		61	82
Beryllium	μg/g	0.02	4	0.08				0.70		0.73	0.67
Boron	μg/g	1	120	10				13		14	10
Cadmium	μg/g	0.05	1.2	0.21				0.11		0.10	0.10
Chromium	μg/g	0.5	160	2.4				18		20	18
Cobalt	μg/g	0.01	22	1.4				11		12	11
Copper	μg/g	0.1	140	4.2				16		18	21
Lead	μg/g	0.1	120	9.9				10		12	9.8
Molybdenum	μg/g	0.1	6.9	0.8				0.6		0.8	0.5

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

IATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	BH23-9 SS1	BH23-9 SS2	BH23-9 SS3	BH23-10 SS1	BH23-10 SS2	BH23-10 SS3	BH23-11 SS2	BH23-12 SS
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	d - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	19/06/2023	19/06/2023	19/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
letals and Inorganics (continued)											
Nickel	μg/g	0.5	100	3.4				24		27	25
Silver	μg/g	0.05	20	< 0.05				< 0.05		< 0.05	< 0.05
Thallium	μg/g	0.02	1	0.04				0.10		0.10	0.13
Uranium	μg/g	0.002	23	0.24				0.50		0.51	0.51
Vanadium	μg/g	3	86	< 3				25		26	24
Zinc	μg/g	0.7	340	63				49		54	52
Water Soluble Boron	μg/g	0.5	1.5	< 0.5				< 0.5		< 0.5	< 0.5
rganochlorine Pests (OCs)											
Aldrin	μg/g	0.05	0.05	< 0.05			< 0.05				
alpha-Chlordane	μg/g	0.02		< 0.02			< 0.02				
gamma-Chlordane	μg/g	0.02		< 0.02			< 0.02				
Chlordane (total)	μg/g	0.05	0.05	< 0.05			< 0.05				
o,p-DDD	μg/g	0.02		< 0.02			< 0.02				
pp-DDD	μg/g	0.02		< 0.02			< 0.02				
DDD (total)	μg/g	0.05	3.3	< 0.05			< 0.05				
o,p-DDE	μg/g	0.02		< 0.02			< 0.02				
pp-DDE	μg/g	0.02		< 0.02			< 0.02				
DDE (total)	μg/g	0.05	0.26	< 0.05			< 0.05				
op-DDT	μg/g	0.02		< 0.02			< 0.02				
pp-DDT	μg/g	0.02		< 0.02			< 0.02				
DDT (total)	μg/g	0.05	1.4	< 0.05			< 0.05				
Dieldrin	μg/g	0.05	0.05	< 0.05			< 0.05				

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	BH23-9 SS1	BH23-9 SS2	BH23-9 SS3	BH23-10 SS1	BH23-10 SS2	BH23-10 SS3	BH23-11 SS2	BH23-12 SS
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Par	rkland - UNDEFINED		Sample Matrix Sample Date	Soil 19/06/2023	Soil 19/06/2023	Soil 19/06/2023	Soil 20/06/2023	Soil 20/06/2023	Soil 20/06/2023	Soil 20/06/2023	Soil 20/06/2023
Parameter	Units	RL	L1	Result							
rganochlorine Pests (OCs) (continue				11000.1							
gamma-BHC	μg/g	0.01	0.056	< 0.01			< 0.01				
Endosulfan I	μg/g	0.02		< 0.02			< 0.02				
Endosulfan II	μg/g	0.02		< 0.02			< 0.02				
Endosulfan (total)	μg/g	0.04	0.04	< 0.04			< 0.04				
Endrin	μg/g	0.04	0.04	< 0.04			< 0.04				
Heptachlor	μg/g	0.01	0.15	< 0.01			< 0.01				
Heptachlor epoxide	μg/g	0.01	0.05	< 0.01			< 0.01				
Hexachlorobenzene	μg/g	0.01	0.52	< 0.01			< 0.01				
Hexachlorobutadiene	μg/g	0.01	0.012	< 0.01			< 0.01				
Hexachloroethane	μg/g	0.01	0.089	< 0.01			< 0.01				
Methoxychlor	μg/g	0.05	0.13	< 0.05			< 0.05				
ther (ORP)											
Mercury	ug/g	0.05	0.27	< 0.05				< 0.05		< 0.05	< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	0.3				0.2		0.2	2.3
SAR Calcium	mg/L	0.2		20.9				20.7		10.6	14.2
SAR Magnesium	mg/L	0.3		9.6				1.4		0.8	1.1
SAR Sodium	mg/L	0.1		7.7				3.7		3.0	33.5
Conductivity	mS/cm	0.002	0.7	0.24				0.13		0.13	0.23
рН	pH Units	0.05		8.38				7.82		7.79	7.82
Chromium VI	μg/g	0.2	8	< 0.2				< 0.2		< 0.2	< 0.2
Free Cyanide	μg/g	0.05	0.051	< 0.05				< 0.05		< 0.05	< 0.05

SGS

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

ATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	BH23-9 SS1	BH23-9 SS2	BH23-9 SS3	BH23-10 SS1	BH23-10 SS2	BH23-10 SS3	BH23-11 SS2	BH23-12 SS2
= REG153 / SOIL / COARSE - TABLE 2 - Residential/	Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	19/06/2023	19/06/2023	19/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
AHs											
Acenaphthene	μg/g	0.05	7.9		< 0.05			< 0.05			
Acenaphthylene	μg/g	0.05	0.15		< 0.05			< 0.05			
Anthracene	μg/g	0.05	0.67		< 0.05			< 0.05			
Benzo(a)anthracene	μg/g	0.05	0.5		< 0.05			< 0.05			
Benzo(a)pyrene	μg/g	0.05	0.3		< 0.05			< 0.05			
Benzo(b+j)fluoranthene	μg/g	0.05	0.78		< 0.05			< 0.05			
Benzo(ghi)perylene	μg/g	0.1	6.6		< 0.1			< 0.1			
Benzo(k)fluoranthene	μg/g	0.05	0.78		< 0.05			< 0.05			
Chrysene	μg/g	0.05	7		< 0.05			< 0.05			
Dibenzo(a,h)anthracene	μg/g	0.06	0.1		< 0.06			< 0.06			
Fluoranthene	μg/g	0.05	0.69		< 0.05			< 0.05			
Fluorene	μg/g	0.05	62		< 0.05			< 0.05			
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38		< 0.1			< 0.1			
1-Methylnaphthalene	μg/g	0.05			< 0.05			< 0.05			
2-Methylnaphthalene	μg/g	0.05			< 0.05			< 0.05			
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99		< 0.05			< 0.05			
Naphthalene	μg/g	0.05	0.6		< 0.05			< 0.05			
Phenanthrene	μg/g	0.05	6.2		< 0.05			< 0.05			
Pyrene	μg/g	0.05	78		< 0.05			< 0.05			

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL				Sample Number	9	10	11	12	13	14	15	16
				Sample Name	BH23-9 SS1	BH23-9 SS2	BH23-9 SS3	BH23-10 SS1	BH23-10 SS2	BH23-10 SS3	BH23-11 SS2	BH23-12 SS2
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	I - UNDEFINED			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
				Sample Date	19/06/2023	19/06/2023	19/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL	L1		Result	Result	Result	Result	Result	Result	Result	Result
esticides Surrogate												
Surr Decachlorobiphenyl	Surr Rec %				105			95				
PHCs												
F1 (C6-C10)	µg/g	10	55				< 10			< 10		
F1-BTEX (C6-C10)	μg/g	10	55				< 10			< 10		
F2 (C10-C16)	μg/g	10	98				< 10			< 10		
F3 (C16-C34)	μg/g	50	300				< 50			< 50		
F4 (C34-C50)	μg/g	50	2800				< 50			< 50		
Chromatogram returned to baseline at nC50	Yes / No	no					YES			YES		
VOC Surrogates												
Surr 2-Fluorobiphenyl	Surr Rec %	no				86			89			
Surr 4-Terphenyl-d14	Surr Rec %	no				88			90			
Surr 2-Methylnaphthalene-D10	Surr Rec %	no				84			81			
Surr Fluoranthene-D10	Surr Rec %	no				82			86			

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL			Sample Number Sample Name	9 BH23-9 SS1	10 BH23-9 SS2	11 BH23-9 SS3	12 BH23-10 SS1	13 BH23-10 SS2	14 BH23-10 SS3	15 BH23-11 SS2	16 BH23-12 SS
1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/I	Parkland - UNDEFINED		Sample Matrix Sample Date	Soil 19/06/2023	Soil 19/06/2023	Soil 19/06/2023	Soil 20/06/2023				
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
THMs (VOC)											
Bromodichloromethane	μg/g	0.05	1.5			< 0.05			< 0.05		
Bromoform	μg/g	0.05	0.27			< 0.05			< 0.05		
Dibromochloromethane	μg/g	0.05	2.3			< 0.05			< 0.05		
OC Surrogates											
Surr 1,2-Dichloroethane-d4	Surr Rec %	no				102			101		
Surr 4-Bromofluorobenzene	Surr Rec %	no				94			95		
Surr 2-Bromo-1-Chloropropane	Surr Rec %	no				93			95		
Surr TCMX	Surr Rec %	no		76			69				
OCs Control of the co											
Acetone	μg/g	0.5	16			< 0.5			< 0.5		
Bromomethane	μg/g	0.05	0.05			< 0.05			< 0.05		
Carbon tetrachloride	μg/g	0.05	0.05			< 0.05			< 0.05		
Chlorobenzene	μg/g	0.05	2.4			< 0.05			< 0.05		
Chloroform	μg/g	0.05	0.05			< 0.05			< 0.05		
1,2-Dichlorobenzene	μg/g	0.05	1.2			< 0.05			< 0.05		
1,3-Dichlorobenzene	μg/g	0.05	4.8			< 0.05			< 0.05		
1,4-Dichlorobenzene	μg/g	0.05	0.083			< 0.05			< 0.05		
Dichlorodifluoromethane	μg/g	0.05	16			< 0.05			< 0.05		
1,1-Dichloroethane	μg/g	0.05	0.47			< 0.05			< 0.05		
1,2-Dichloroethane	μg/g	0.05	0.05			< 0.05			< 0.05		
1,1-Dichloroethylene	μg/g	0.05	0.05			< 0.05			< 0.05		

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

ATRIX: SOIL			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	BH23-9 SS1	BH23-9 SS2	BH23-9 SS3	BH23-10 SS1	BH23-10 SS2	BH23-10 SS3	BH23-11 SS2	BH23-12 SS2
= REG153 / SOIL / COARSE - TABLE 2 - Residential/P	arkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	19/06/2023	19/06/2023	19/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	Result	Result
OCs (continued)											
trans-1,2-Dichloroethylene	μg/g	0.05	0.084			< 0.05			< 0.05		
cis-1,2-Dichloroethylene	μg/g	0.05	1.9			< 0.05			< 0.05		
1,2-Dichloropropane	μg/g	0.05	0.05			< 0.05			< 0.05		
cis-1,3-dichloropropene	μg/g	0.03				< 0.03			< 0.03		
trans-1,3-dichloropropene	μg/g	0.03				< 0.03			< 0.03		
1,3-dichloropropene (total)	μg/g	0.05	0.05			< 0.05			< 0.05		
Ethylenedibromide	μg/g	0.05	0.05			< 0.05			< 0.05		
n-Hexane	μg/g	0.05	2.8			< 0.05			< 0.05		
Methyl ethyl ketone	μg/g	0.5	16			< 0.5			< 0.5		
Methyl isobutyl ketone	μg/g	0.5	1.7			< 0.5			< 0.5		
Methyl-t-butyl Ether	μg/g	0.05	0.75			< 0.05			< 0.05		
Methylene Chloride	μg/g	0.05	0.1			< 0.05			< 0.05		
Styrene	μg/g	0.05	0.7			< 0.05			< 0.05		
Tetrachloroethylene	μg/g	0.05	0.28			< 0.05			< 0.05		
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058			< 0.05			< 0.05		
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05			< 0.05			< 0.05		
1,1,1-Trichloroethane	μg/g	0.05	0.38			< 0.05			< 0.05		
1,1,2-Trichloroethane	μg/g	0.05	0.05			< 0.05			< 0.05		
Trichloroethylene	μg/g	0.05	0.061			< 0.05			< 0.05		
Trichlorofluoromethane	μg/g	0.05	4			< 0.05			< 0.05		
Vinyl Chloride	μg/g	0.02	0.02			< 0.02			< 0.02		

SGS FINAL REPORT

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

ATRIX: SOIL			Sample Number	17	18	19	20	21
			Sample Name	BH23-13 SS1	BH23-13 SS2	BH23-14 SS1	DUP-3	DUP-4
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parklar	nd - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
ydrides								
Antimony	μg/g	0.8	7.5		< 0.8			
Arsenic	μg/g	0.5	18		5.3			
Selenium	μg/g	0.1	2.4		0.1			
etals and Inorganics								
Moisture Content	%	no		13.8	13.3	14.8	9.5	12.9
Barium	μg/g	0.1	390		87			
Beryllium	μg/g	0.02	4		0.74			
Boron	μg/g	1	120		10			
Cadmium	μg/g	0.05	1.2		0.11			
Chromium	μg/g	0.5	160		20			
Cobalt	μg/g	0.01	22		12			
Copper	μg/g	0.1	140		22			
Lead	μg/g	0.1	120		11			
Molybdenum	μg/g	0.1	6.9		0.4			
Nickel	μg/g	0.5	100		27			
Silver	μg/g	0.05	20		< 0.05			
Thallium	μg/g	0.02	1		0.13			
Uranium	μg/g	0.002	23		0.50			
Vanadium	μg/g	3	86		26			
Zinc	μg/g	0.7	340		51			
Water Soluble Boron	μg/g	0.5	1.5		< 0.5			

SGS FINAL REPORT

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

			Ossanda Nassakası	47	40	40	00	04
MATRIX: SOIL			Sample Number	17	18	19	20	21
			Sample Name	BH23-13 SS1	BH23-13 SS2	BH23-14 SS1	DUP-3	DUP-4
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - L	JNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
rganochlorine Pests (OCs)								
Aldrin	μg/g	0.05	0.05	< 0.05		< 0.05		< 0.05
alpha-Chlordane	μg/g	0.02		< 0.02		< 0.02		< 0.02
gamma-Chlordane	μg/g	0.02		< 0.02		< 0.02		< 0.02
Chlordane (total)	μg/g	0.05	0.05	< 0.05		< 0.05		< 0.05
o,p-DDD	μg/g	0.02		< 0.02		< 0.02		< 0.02
pp-DDD	μg/g	0.02		< 0.02		< 0.02		< 0.02
DDD (total)	μg/g	0.05	3.3	< 0.05		< 0.05		< 0.05
o,p-DDE	μg/g	0.02		< 0.02		< 0.02		< 0.02
pp-DDE	μg/g	0.02		< 0.02		< 0.02		< 0.02
DDE (total)	μg/g	0.05	0.26	< 0.05		< 0.05		< 0.05
op-DDT	μg/g	0.02		< 0.02		< 0.02		< 0.02
pp-DDT	μg/g	0.02		< 0.02		< 0.02		< 0.02
DDT (total)	μg/g	0.05	1.4	< 0.05		< 0.05		< 0.05
Dieldrin	μg/g	0.05	0.05	< 0.05		< 0.05		< 0.05
gamma-BHC	μg/g	0.01	0.056	< 0.01		< 0.01		< 0.01
Endosulfan I	μg/g	0.02		< 0.02		< 0.02		< 0.02
Endosulfan II	μg/g	0.02		< 0.02		< 0.02		< 0.02
Endosulfan (total)	μg/g	0.04	0.04	< 0.04		< 0.04		< 0.04
Endrin	μg/g	0.04	0.04	< 0.04		< 0.04		< 0.04
Heptachlor	μg/g	0.01	0.15	< 0.01		< 0.01		< 0.01
Heptachlor epoxide	μg/g	0.01	0.05	< 0.01		< 0.01		< 0.01
Hexachlorobenzene	μg/g	0.01	0.52	< 0.01		< 0.01		< 0.01

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL			Sample Numbe	17	18	19	20	21
			Sample Name	BH23-13 SS1	BH23-13 SS2	BH23-14 SS1	DUP-3	DUP-4
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parklar	nd - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
rganochlorine Pests (OCs) (continued)								
Hexachlorobutadiene	μg/g	0.01	0.012	< 0.01		< 0.01		< 0.01
Hexachloroethane	μg/g	0.01	0.089	< 0.01		< 0.01		< 0.01
Methoxychlor	μg/g	0.05	0.13	< 0.05		< 0.05		< 0.05
ther (ORP)								
Mercury	ug/g	0.05	0.27		< 0.05			
Sodium Adsorption Ratio	No unit	0.2	5		1.2			
SAR Calcium	mg/L	0.2			18.2			
SAR Magnesium	mg/L	0.3			1.5			
SAR Sodium	mg/L	0.1			19.2			
Conductivity	mS/cm	0.002	0.7		0.19			
рН	pH Units	0.05			7.52			
Chromium VI	μg/g	0.2	8		< 0.2			
Free Cyanide	μg/g	0.05	0.051		< 0.05			

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

ATRIX: SOIL			Sample Number	17	18	19	20	21
			Sample Name	BH23-13 SS1	BH23-13 SS2	BH23-14 SS1	DUP-3	DUP-4
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - U	INDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil
			Sample Date	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL	L1	Result	Result	Result	Result	Result
AHs								
Acenaphthene	μg/g	0.05	7.9				< 0.05	
Acenaphthylene	μg/g	0.05	0.15				< 0.05	
Anthracene	μg/g	0.05	0.67				< 0.05	
Benzo(a)anthracene	μg/g	0.05	0.5				< 0.05	
Benzo(a)pyrene	μg/g	0.05	0.3				< 0.05	
Benzo(b+j)fluoranthene	μg/g	0.05	0.78				< 0.05	
Benzo(ghi)perylene	μg/g	0.1	6.6				< 0.1	
Benzo(k)fluoranthene	μg/g	0.05	0.78				< 0.05	
Chrysene	μg/g	0.05	7				< 0.05	
Dibenzo(a,h)anthracene	μg/g	0.06	0.1				< 0.06	
Fluoranthene	μg/g	0.05	0.69				< 0.05	
Fluorene	μg/g	0.05	62				< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38				< 0.1	
1-Methylnaphthalene	μg/g	0.05					< 0.05	
2-Methylnaphthalene	μg/g	0.05					< 0.05	
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99				< 0.05	
Naphthalene	μg/g	0.05	0.6				< 0.05	
Phenanthrene	μg/g	0.05	6.2				< 0.05	
Pyrene	μg/g	0.05	78				< 0.05	

CA40240-JUN23 R

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL			Sa	ample Number	17	18	19	20	21
			;	Sample Name	BH23-13 SS1	BH23-13 SS2	BH23-14 SS1	DUP-3	DUP-4
L1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/P	Parkland - UNDEFINED		;	Sample Matrix	Soil	Soil	Soil	Soil	Soil
				Sample Date	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL	L1		Result	Result	Result	Result	Result
Pesticides Surrogate									
Surr Decachlorobiphenyl	Surr Rec %				98		90		108
SVOC Surrogates									
Surr 2-Fluorobiphenyl	Surr Rec %	no						83	
Surr 4-Terphenyl-d14	Surr Rec %	no						85	
Surr 2-Methylnaphthalene-D10	Surr Rec %	no						81	
Surr Fluoranthene-D10	Surr Rec %	no						79	

CA40240-JUN23 R

Client: DS Consultants

Project: 22-012-101

Project Manager: Fahmida Anwar

MATRIX: SOIL				Sample Number	17	18	19	20	21
				Sample Name	BH23-13 SS1	BH23-13 SS2	BH23-14 SS1	DUP-3	DUP-4
L1 = REG153 / SOIL / COARSE - TABLE 2 - Resi	idential/Parkland - UNDEFINED			Sample Matrix	Soil	Soil	Soil	Soil	Soil
				Sample Date	20/06/2023	20/06/2023	20/06/2023	19/06/2023	20/06/2023
Parameter	Units	RL	L1		Result	Result	Result	Result	Result
Surr TCMX	Surr Rec %	no			79		52		73

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20230629 16 / 29

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0634-JUN23	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5097-JUN23	μg/g	0.05	<0.05	ND	20	95	80	120	98	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	(%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5089-JUN23	ug/g	0.2	<0.2	ND	20	95	80	120	78	75	125

20230629 17 / 29

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0209-JUN23	ug/g	0.05	<0.05	ND	20	102	80	120	80	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0057-JUN23	mg/L	0.2	<0.2	0	20	99	80	120	104	70	130
SAR Magnesium	ESG0057-JUN23	mg/L	0.3	<0.3	1	20	99	80	120	109	70	130
SAR Sodium	ESG0057-JUN23	mg/L	0.1	<0.1	1	20	103	80	120	96	70	130

20230629 18 / 29

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0209-JUN23	ug/g	0.05	<0.05	9	20	108	70	130	107	70	130
Arsenic	EMS0209-JUN23	μg/g	0.5	<0.5	2	20	92	70	130	92	70	130
Barium	EMS0209-JUN23	ug/g	0.1	<0.1	1	20	96	70	130	110	70	130
Beryllium	EMS0209-JUN23	μg/g	0.02	<0.02	0	20	99	70	130	98	70	130
Boron	EMS0209-JUN23	μg/g	1	<1	4	20	102	70	130	90	70	130
Cadmium	EMS0209-JUN23	ug/g	0.05	<0.05	7	20	99	70	130	93	70	130
Cobalt	EMS0209-JUN23	μg/g	0.01	<0.01	2	20	99	70	130	99	70	130
Chromium	EMS0209-JUN23	μg/g	0.5	<0.5	1	20	100	70	130	97	70	130
Copper	EMS0209-JUN23	μg/g	0.1	<0.1	1	20	100	70	130	92	70	130
Molybdenum	EMS0209-JUN23	μg/g	0.1	<0.1	7	20	102	70	130	98	70	130
Nickel	EMS0209-JUN23	ug/g	0.5	<0.5	2	20	105	70	130	98	70	130
Lead	EMS0209-JUN23	ug/g	0.1	<0.1	3	20	102	70	130	97	70	130
Antimony	EMS0209-JUN23	μg/g	0.8	<0.8	ND	20	107	70	130	90	70	130
Selenium	EMS0209-JUN23	ug/g	0.1	<0.1	1	20	102	70	130	92	70	130
Thallium	EMS0209-JUN23	μg/g	0.02	<0.02	6	20	NV	70	130	96	70	130
Uranium	EMS0209-JUN23	μg/g	0.002	<0.002	2	20	96	70	130	96	70	130
Vanadium	EMS0209-JUN23	μg/g	3	<3	1	20	100	70	130	96	70	130
Zinc	EMS0209-JUN23	μg/g	0.7	<0.7	1	20	104	70	130	88	70	130

20230629 19 / 29

QC SUMMARY

Pesticides

Method: EPA 3541/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-018

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Aldrin	GCM0381-JUN23	μg/g	0.05	< 0.05	ND	40	83	50	140	81	50	140
alpha-Chlordane	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	81	50	140	90	50	140
Dieldrin	GCM0381-JUN23	μg/g	0.05	< 0.05	ND	40	87	50	140	85	50	140
Endosulfan I	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	82	50	140	86	50	140
Endosulfan II	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	88	50	140	92	50	140
Endrin	GCM0381-JUN23	μg/g	0.04	< 0.04	ND	40	91	50	140	92	50	140
gamma-BHC	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	83	50	140	81	50	140
gamma-Chlordane	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	81	50	140	90	50	140
Heptachlor epoxide	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	81	50	140	86	50	140
Heptachlor	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	83	50	140	83	50	140
Hexachlorobenzene	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	82	50	140	84	50	140
Hexachlorobutadiene	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	82	50	140	85	50	140
Hexachloroethane	GCM0381-JUN23	μg/g	0.01	< 0.01	ND	40	81	50	140	83	50	140
Methoxychlor	GCM0381-JUN23	μg/g	0.05	< 0.05	ND	40	88	50	140	131	50	140
o,p-DDD	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	93	50	140	108	50	140
o,p-DDE	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	82	50	140	91	50	140
op-DDT	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	89	50	140	73	50	140
pp-DDD	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	90	50	140	122	50	140
pp-DDE	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	83	50	140	94	50	140
pp-DDT	GCM0381-JUN23	μg/g	0.02	< 0.02	ND	40	89	50	140	123	50	140

20230629 20 / 29

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	I.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0338-JUN23	μg/g	10	<10	ND	30	115	80	120	111	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0364-JUN23	μg/g	10	<10	ND	30	114	80	120	113	60	140
F3 (C16-C34)	GCM0364-JUN23	μg/g	50	<50	ND	30	114	80	120	113	60	140
F4 (C34-C50)	GCM0364-JUN23	µg/g	50	<50	ND	30	114	80	120	113	60	140

20230629 21 / 29

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0105-JUN23	pH Units	0.05		0	20	103	80	120			

20230629 22 / 29

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	85	50	140	60	50	140
2-Methylnaphthalene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	84	50	140	61	50	140
Acenaphthene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	81	50	140	63	50	140
Acenaphthylene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	77	50	140	60	50	140
Anthracene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	80	50	140	61	50	140
Benzo(a)anthracene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	82	50	140	63	50	140
Benzo(a)pyrene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	80	50	140	60	50	140
Benzo(b+j)fluoranthene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	82	50	140	60	50	140
Benzo(ghi)perylene	GCM0409-JUN23	μg/g	0.1	< 0.1	ND	40	84	50	140	63	50	140
Benzo(k)fluoranthene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	81	50	140	61	50	140
Chrysene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	82	50	140	62	50	140
Dibenzo(a,h)anthracene	GCM0409-JUN23	μg/g	0.06	< 0.06	ND	40	79	50	140	61	50	140
Fluoranthene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	79	50	140	59	50	140
Fluorene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	81	50	140	65	50	140
Indeno(1,2,3-cd)pyrene	GCM0409-JUN23	μg/g	0.1	< 0.1	ND	40	80	50	140	60	50	140
Naphthalene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	84	50	140	63	50	140
Phenanthrene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	81	50	140	60	50	140
Pyrene	GCM0409-JUN23	μg/g	0.05	< 0.05	ND	40	83	50	140	61	50	140

20230629 23 / 29

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	92	50	140
1,1,1-Trichloroethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	105	60	130	94	50	140
1,1,2,2-Tetrachloroethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	98	60	130	85	50	140
1,1,2-Trichloroethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	89	50	140
1,1-Dichloroethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	103	60	130	98	50	140
1,1-Dichloroethylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	107	60	130	99	50	140
1,2-Dichlorobenzene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	103	60	130	85	50	140
1,2-Dichloroethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	99	60	130	92	50	140
1,2-Dichloropropane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	95	50	140
1,3-Dichlorobenzene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	104	60	130	87	50	140
1,4-Dichlorobenzene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	105	60	130	87	50	140
Acetone	GCM0337-JUN23	μg/g	0.5	< 0.5	ND	50	96	50	140	96	50	140
Benzene	GCM0337-JUN23	μg/g	0.02	< 0.02	ND	50	103	60	130	95	50	140
Bromodichloromethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	93	50	140
Bromoform	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	95	60	130	83	50	140
Bromomethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	100	50	140	94	50	140
Carbon tetrachloride	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	106	60	130	92	50	140
Chlorobenzene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	102	60	130	91	50	140
Chloroform	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	96	50	140
cis-1,2-Dichloroethylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	94	50	140

20230629 24 / 29

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	1.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0337-JUN23	μg/g	0.03	< 0.03	ND	50	104	60	130	96	50	140
Dibromochloromethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	98	60	130	90	50	140
Dichlorodifluoromethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	95	50	140	87	50	140
Ethylbenzene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	104	60	130	93	50	140
Ethylenedibromide	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	98	60	130	88	50	140
n-Hexane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	122	60	130	98	50	140
m/p-xylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	103	60	130	92	50	140
Methyl ethyl ketone	GCM0337-JUN23	μg/g	0.5	< 0.5	ND	50	95	50	140	86	50	140
Methyl isobutyl ketone	GCM0337-JUN23	μg/g	0.5	< 0.5	ND	50	98	50	140	90	50	140
Methyl-t-butyl Ether	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	96	50	140
Methylene Chloride	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	100	60	130	97	50	140
o-xylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	104	60	130	94	50	140
Styrene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	101	60	130	92	50	140
Tetrachloroethylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	106	60	130	90	50	140
Toluene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	103	60	130	94	50	140
trans-1,2-Dichloroethylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	104	60	130	97	50	140
trans-1,3-dichloropropene	GCM0337-JUN23	μg/g	0.03	< 0.03	ND	50	103	60	130	93	50	140
Trichloroethylene	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	105	60	130	95	50	140
Trichlorofluoromethane	GCM0337-JUN23	μg/g	0.05	< 0.05	ND	50	105	50	140	93	50	140
Vinyl Chloride	GCM0337-JUN23	μg/g	0.02	< 0.02	ND	50	99	50	140	90	50	140

20230629 25 / 29

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0042-JUN23	μg/g	0.5	<0.5	ND	20	102	80	120	93	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20230629

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions

-- End of Analytical Report --

20230629 27 / 29

Request for Laboratory Services and CHAIN OF CUSTODY

Request for Laboratory Services and CHAIN OF CUS London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

in that you have been provided direction on Ample collection handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in	Signatures may appear on this	completion of work.	rization for	idered autho	S is cons	les to SGS	of samp	ubmission	ples. (2) 5	ion of sam,	ransporta	andling and	olledion/h	tion on ample c	provided direc	ment that you have been	cknowledgement that	Revision # 1.6 Note: Subhrission of samples to SGS is acknowledgement that you have been	Revisio
Allen & Million	maldelhar)	77	71	200	Dato		5				1	1		Maria	Signature: "			Relinquished by (NAME): Macon P	Relir
Pink Copy - Client	(mm/dd/yy) Pi	(i)	NS /	,	Date:								No.		Signature:	M PS		Sampled By (NAME):	Sam
																		Observations/Comments/Special Instructions	Obse
									5	7	SIR	7 4	100	S	1		19Jun 23	DUP3	12
				(1									S			۴	BH23-14 SS1	1
		je l	H									5		S				BH23-13 SS2	10
			6	7			Pag.	100			((52))			S	1			BH23-13 SS1	9
		7			1						200	7		S	1			1 KH23-12 SS2	00
					1							1		S	-			BH23-11 SSZ	7
		120.				1		(PROVI		W.	S	W			BH25-10 SS3	6
					N				艾	7	130	1		S	1		用した	25S 01-52HB	O1
A CANA COMPANY				1	1			163	LT.		nice	75		S	1		20 Jun 23	6H23-10 SSI	4
M. A					1	1	1	1			nen			V	W		<-	BH23-9 SS3	ω
									T	7		199		S	-		7	128 6-22 BH23-d	2
				1							28	7		N	2		1Jun 23	BH23-9 SSI 19	-
	Water Character General Ex	Sewer Use: Specify pkg:		Pesticides Organochlorine or speci	BTEX only	VOCs all incl BTEX	F1-F4 only	PCBs Total F1-F4 + BTEX	SVOCs all incl PAHs, ABNs, CPs	PAHs only	Full Metals St ICP metals plus B(HWS-s ICP Metals on	Metals & Inor incl CrVI, CN,Hg pH,(B(H (CI, Na-water)	Field Filtered	MATRIX	# OF BOTTLES	TIME	DATE	SAMPLE IDENTIFICATION	
COMMENTS.	ended			fy othe						,rr,u,v,	ly si	WS),E				NO	YES	RECORD OF SITE CONDITION (RSC)	1
COMMENTS:	Motals			ır				A	in i	en.	,As,Ba,	C,SAR-			e note	eportable *Se	ODWS Not Reportable *See note	olume <	
	Specify Specify tests tests							roclor	No. yel					Storm Storm Municipality:		(3 Day min T] MMER] Other:	Reg 347/558 (3 Day min TAT) PWQO MMER CCME Other: MISA	Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine Appx.	
	SPLP TCLP	Other (please specify)	01	Pest	Voc	×	PHC	PCB		SVOC		M ∞		Sewer By-Law:		ons:	Other Regulations:	153/04	7
			D	NALYSIS REQUESTED	REQU	SIS F	ALY:	AN									ATIONS	REGULATIONS	183
N MUST BE SUBMITTED	*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	ER SAMPLES FOI DRINKING WATE	E) WATI	G (POTABI	RINKING	OTE: DI	ž				ite:	Specify Due Date		Hants Ca	1	Fanwaredscons	Email: Fank	Email:	Ema
		ply):1 Day2 Days3 Days4 Days WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	NOR TO	ATIVE PI	1 Day	REPRE	H SGS	Apply): TY WITH	SIBILI	SH FE	IRM RU	RUSH TAT (Additional Charges May App PLEASE CONFIRM RUSH FEASIBILITY)	PLEAS				Phone:	le:	Phor Fax:
gins next business day	Samples received after 6pm or on weekends; TAT begins next business day	received after 6pn	Samples						s)	(5-7day	lar TAT	Regular TAT (5-7days)					Address:	Voughan	!
bollden e moderni	desir (ovelide statistics	(TAT) REQUIRED	TAT) RE	TURNAROUND TIME (ROUN	TURNA						NO SERVICE	Control of the last		Ahaby	nida	Contactif ahmida	Address: Unit16 62211 Hwy 7 co	Add
The Control of the Co		P.O. #: Site Location/ID:	P.O. #: Site Lo		PHONE IN				10	212-	2-0	tion #:	Quotation Project #:	15	ation)	COTS!	(same as Report Information)	awts.	Con
				The state of the			SALE AND SALES		Section 1		100				INVOICE INFORMATION	OICE INFO	/ INV	PORT INFOR	
LAB LIMS # CAYOR 40 - JUNES	LAB LIMS #: CA 4C	3			,	000	00	\$ \$ \$	nt: Yes eceipt ("	Cooling Agent Present: Yes U	mperatur	Te		N N	Present: Yes	Custody Seal Present: Custody Seal Intact:		Received Date: 66 /21 / 2022 (mm/dd/yy) Received Time: 5: 60 (hr:min)	Rece
				7	H]	}				*	\$	t		Received By (signature):		Sough,	Rece
		E THE STATE OF	100				y	ise only	Lab L	ction -	tion S	Laboratory Information Section - Lab use	pratory	Labo					

Request for Laboratory Services and CHAIN OF CUSTODY

Industries & Environment - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment -London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Yellow & White Copy - SGS as form or be retained on file in	Date: (mm/dd/yy) Yellow & White Copy - SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in	completion of wo	zation for o	dered author	Date: (s to SGS	of sample	mission o	s. (2) Sub	of sample	portation	diection/handling and transportation of samples. (2) Subm	ion/handlin	our sample sollect	ent that you have been provided direction or sample. Cliedlon/handling and transportation of samples. (2) Subm	at you have bee	acknowledgement th	Revision # 1.6 Note: Subhission of samples to SGS is acknowledgement that you have been provided direction or samples.	Nov
Tills copy - cligit	(minerary))	0	10	2	1		THE PERSON NAMED IN					1	0	Man .	Signature:	200		Relinquished by (NAME):	R e
Dink Conv. Client					Date:										Signature:			Sampled By (NAME):	S
																		Observations/Comments/Special Instructions	0
			1									192				4		12	1
						ie.												1	1
STATE OF THE PARTY																		10	10
												1.1					A COLUMN	9	9
			7												4			8	00
No. of the last of			1						136		124					TI AUTOMOTO		7	7
1					Deci													6	6
																MARKET.		5	CT
					-0.00			31			Sign			Sall Sall				4 15 BOTH 10 15 15 15 15 15 15 15 15 15 15 15 15 15	4
			Į.			913												3	ω
			-					The last										2	N
				1	-							7.0		5	-		20 Jun 23	1 DUP-4	
	Specify pkg: Water Character	Sewer Use:		Pesticides Organochlorine or specifi	BTEX only	VOCs all incl BTEX	F1-F4 only	F1-F4 + BTEX	SVOCs all incl PAHs, ABNs, CPs PCBs Total	PAHs only	ICP Metals onl Cr,Co,Cu,Pb,Mo,Ni,Se,Ag,	incl CrVI, CN,Hg pH,(B(H (Cl. Na-water) Full Metals St ICP metals plus B(HWS-s	Field Filtered (Metals & Inor	MATRIX	# OF BOTTLES	TIME	DATE	SAMPLE IDENTIFICATION	
COMMEN 19:	Inded		ill	y othe				L			y st	_	gar	V/A		NO	☐ YES [RECORD OF SITE CONDITION (RSC)	
COMMENTS	Motals		Į,	r		À		,			As,Ba Zn		ics		see note	ODWS Not Reportable *See note	ODWS Not	Soil Volume	
			E. FY					kroclor [_]	erator 🖂		Be,B,Cd,		-soil)	Storm Municipality:	Munic	Reg 347/558 (3 Day min TAT) PWQO MMER CCME Other: MISA	Reg 347/55 PWQO CCME	Table 1 — Res/Park Soil Texture: Table 2 — Ind/Com — Coarse Table 3 — Agri/Other — Medium/Fine Appx.	
	specify) SPLP TCLP	(please	Other	Pest	00	VOC	PHC	B	C PCB	SVOC		N & I	7	Sewer By-Law:	Sewer	tions:	Other Regulations:	L-O.Reg 153/04 O.Reg 406/19	-
			Ö	ANALYSIS REQUESTED	EQU	SIS F	SATA	AN								The same	REGULATIONS	REGUI	3
ON MUST BE SUBMITTED	DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	DRINKING W	E) WATE	3 (POTABI	SINKING	TE: DE	*NOTE:				188	ue Date:	Specify Due Date	Sp			Email:	Email: Fanwor Odscors 1 Harts demail:	m
	lays ON	PIY): 1 Day 2 Days 3 Days 4 Days WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	NOR TO	2 Days [Day [1 Day	SGS		May A	harge:	M RUS	RUSH TAT (Additional Charges May Ap	LEASE (2 2		i de la	Phone:	Phone:	TI TO
ny holidays & weekends). begins next business day	TAT's are quoted in business days (exclude statutory holidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	quoted in but received after	TAT's are Samples							-7days)	TAT (5	LRegular TAT (5-7days)	F		C		Address:		
		TURNAROUND TIME (TAT) REQUIRED	TAT) RE	D TIME (ROUN	URNA	1								tivo.	CCOUN	D		A
		P.O. #: Site Location/ID:	P.O.#:			8			7	2-10	-012	72	Quotation #:_ Project #: ?	J O	nation)	(same as Report Information pany: DS CONSULT	(same as F	Company: DS COMSUltants	0 0
								STORY OF THE PERSON NAMED IN				ALC: NO			INVOICE INFORMATION	VOICE INF		REPORT INFORMATION	
	LAB LIMS #:			4	1	S.	00	0° €	ceipt (°C	Cooling Agent Present: Yes Temperature Upon Receipt (°C)	ng Agen erature t	Coolir			Custody Seal Present: Yes Custody Seal Intact: Yes	Custody Seal Preser Custody Seal Intact:	S	Received Date: 00 / 4/40 (mm/dd/yy) Received Time: 5:00 (hr:min)	20 20
				7	1			\				,	3		Received By (signature):	Received B		Received By: 1+0mcer	Re
The Section of Control	STATE OF THE SECOND							ie only	lab us	tion -	n Sec	ormatic	ory Info	Laboratory Information Section - Lab use only				> r	

Your Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Your C.O.C. #: 941406-01-01

Attention: Rick Fioravanti
DS Consultants Limited
6221 Highway 7, Unit 16
Vaughan, ON
CANADA L4H 0K8

Report Date: 2023/07/12

Report #: R7712061 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3J3318 Received: 2023/06/30, 12:44

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	3	N/A	2023/07/10	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	4	N/A	2023/07/07		EPA 8260C m
Chloride by Automated Colourimetry (1)	3	N/A	2023/07/07	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water (1)	3	N/A	2023/07/05	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide (1)	3	N/A	2023/07/07	CAM SOP-00457	OMOE E3015 m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	3	2023/07/05	2023/07/06	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	3	2023/07/05	2023/07/05	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	3	N/A	2023/07/11	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	3	2023/07/05	2023/07/06	CAM SOP-00318	EPA 8270E
Volatile Organic Compounds and F1 PHCs (1)	4	N/A	2023/07/06	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the

Your Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Your C.O.C. #: 941406-01-01

Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

Report Date: 2023/07/12

Report #: R7712061 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3J3318

Received: 2023/06/30, 12:44

reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Ashton Gibson Project Manager

Please direct all questions regarding this Certificate of Analysis to:

Ashton Gibson, Project Manager

Email: Ashton.Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rob Whelan, Laboratory Manager responsible for Newfoundland & Labrador Environmental laboratory operations.

DS Consultants Limited Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID			WGN146		
Sampling Date			2023/06/30		
COC Number			941406-01-01		
	UNITS	Criteria A	TRIP BLANK	RDL	QC Batch
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	0.50	8762770
Volatile Organics	•				
Acetone (2-Propanone)	ug/L	2700	<10	10	8768676
Benzene	ug/L	5.0	<0.17	0.17	8768676
Bromodichloromethane	ug/L	16.0	<0.50	0.50	8768676
Bromoform	ug/L	25.0	<1.0	1.0	8768676
Bromomethane	ug/L	0.89	<0.50	0.50	8768676
Carbon Tetrachloride	ug/L	0.79	<0.20	0.20	8768676
Chlorobenzene	ug/L	30	<0.20	0.20	8768676
Chloroform	ug/L	2.4	<0.20	0.20	8768676
Dibromochloromethane	ug/L	25.0	<0.50	0.50	8768676
1,2-Dichlorobenzene	ug/L	3.0	<0.50	0.50	8768676
1,3-Dichlorobenzene	ug/L	59	<0.50	0.50	8768676
1,4-Dichlorobenzene	ug/L	1.0	<0.50	0.50	8768676
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	1.0	8768676
1,1-Dichloroethane	ug/L	5	<0.20	0.20	8768676
1,2-Dichloroethane	ug/L	1.6	<0.50	0.50	8768676
1,1-Dichloroethylene	ug/L	1.6	<0.20	0.20	8768676
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	8768676
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	8768676
1,2-Dichloropropane	ug/L	5.0	<0.20	0.20	8768676
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	0.30	8768676
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	0.40	8768676
Ethylbenzene	ug/L	2.4	<0.20	0.20	8768676
Ethylene Dibromide	ug/L	0.2	<0.20	0.20	8768676
Hexane	ug/L	51	<1.0	1.0	8768676
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	2.0	8768676
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	10	8768676

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

DS Consultants Limited Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

VOLATILE ORGANICS BY GC/MS (WATER)

Bureau Veritas ID			WGN146		
Sampling Date			2023/06/30		
COC Number			941406-01-01		
	UNITS	Criteria A	TRIP BLANK	RDL	QC Batch
Methyl Isobutyl Ketone	ug/L	640	<5.0	5.0	8768676
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	8768676
Styrene	ug/L	5.4	<0.50	0.50	8768676
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	0.50	8768676
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	0.50	8768676
Tetrachloroethylene	ug/L	1.6	<0.20	0.20	8768676
Toluene	ug/L	24	<0.20	0.20	8768676
1,1,1-Trichloroethane	ug/L	200	<0.20	0.20	8768676
1,1,2-Trichloroethane	ug/L	4.7	<0.50	0.50	8768676
Trichloroethylene	ug/L	1.6	<0.20	0.20	8768676
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	0.50	8768676
Vinyl Chloride	ug/L	0.5	<0.20	0.20	8768676
p+m-Xylene	ug/L	-	<0.20	0.20	8768676
o-Xylene	ug/L	-	<0.20	0.20	8768676
Total Xylenes	ug/L	300	<0.20	0.20	8768676
F1 (C6-C10)	ug/L	750	<25	25	8768676
F1 (C6-C10) - BTEX	ug/L	750	<25	25	8768676
Surrogate Recovery (%)	-			•	
4-Bromofluorobenzene	%	-	96		8768676
D4-1,2-Dichloroethane	%	-	96		8768676
D8-Toluene	%	-	100		8768676

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Potable Ground Water- All Types of Property Uses - Coarse Textured Soil

Bureau Veritas Job #: C3J3318 DS Consultants Limited
Report Date: 2023/07/12 Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			WGN143			WGN143			WGN144		
Sampling Date			2023/06/30			2023/06/30			2023/06/30		
COC Number			941406-01-01			941406-01-01			941406-01-01		
	UNITS	Criteria A	MW22-9	RDL	QC Batch	MW22-9 Lab-Dup	RDL	QC Batch	MW22-17	RDL	QC Batch
Inorganics											
WAD Cyanide (Free)	ug/L	66	<1	1	8774095				<1	1	8774095
Dissolved Chloride (Cl-)	mg/L	790	810	10	8774367				620	5.0	8772828
Metals					•		•				•
Chromium (VI)	ug/L	25	<0.50	0.50	8768645	<0.50	0.50	8768645	<0.50	0.50	8768645
Mercury (Hg)	ug/L	0.29	<0.10	0.10	8769204				<0.10	0.10	8769204
Dissolved Antimony (Sb)	ug/L	6.0	1.0	0.50	8769184				<0.50	0.50	8769184
Dissolved Arsenic (As)	ug/L	25	2.3	1.0	8769184				<1.0	1.0	8769184
Dissolved Barium (Ba)	ug/L	1000	150	2.0	8769184				180	2.0	8769184
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	8769184				<0.40	0.40	8769184
Dissolved Boron (B)	ug/L	5000	350	10	8769184				140	10	8769184
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	8769184				<0.090	0.090	8769184
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	8769184				<5.0	5.0	8769184
Dissolved Cobalt (Co)	ug/L	3.8	<0.50	0.50	8769184				<0.50	0.50	8769184
Dissolved Copper (Cu)	ug/L	87	0.97	0.90	8769184				1.1	0.90	8769184
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	8769184				<0.50	0.50	8769184
Dissolved Molybdenum (Mo)	ug/L	70	12	0.50	8769184				1.9	0.50	8769184
Dissolved Nickel (Ni)	ug/L	100	1.3	1.0	8769184				1.7	1.0	8769184
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	8769184				<2.0	2.0	8769184
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	8769184				<0.090	0.090	8769184
Dissolved Sodium (Na)	ug/L	490000	440000	100	8769184				310000	100	8769184
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	8769184				<0.050	0.050	8769184
Dissolved Uranium (U)	ug/L	20	4.1	0.10	8769184				3.8	0.10	8769184
Dissolved Vanadium (V)	ug/L	6.2	0.54	0.50	8769184				0.58	0.50	8769184
Dissolved Zinc (Zn)	ug/L	1100	<5.0	5.0	8769184				9.0	5.0	8769184

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

O.REG 153 METALS & INORGANICS PKG (WTR)

Bureau Veritas ID			WGN145			WGN145		
Sampling Date			2023/06/30			2023/06/30		
COC Number			941406-01-01			941406-01-01		
	UNITS	Criteria A	DUP1	RDL	QC Batch	DUP1 Lab-Dup	RDL	QC Batch
Inorganics								
WAD Cyanide (Free)	ug/L	66	<1	1	8774095	<1	1	8774095
Dissolved Chloride (Cl-)	mg/L	790	650	10	8774367			
Metals								
Chromium (VI)	ug/L	25	<0.50	0.50	8768645			
Mercury (Hg)	ug/L	0.29	<0.10	0.10	8769204	<0.10	0.10	8769204
Dissolved Antimony (Sb)	ug/L	6.0	<0.50	0.50	8769184			
Dissolved Arsenic (As)	ug/L	25	<1.0	1.0	8769184			
Dissolved Barium (Ba)	ug/L	1000	190	2.0	8769184			
Dissolved Beryllium (Be)	ug/L	4.0	<0.40	0.40	8769184			
Dissolved Boron (B)	ug/L	5000	130	10	8769184			
Dissolved Cadmium (Cd)	ug/L	2.7	<0.090	0.090	8769184			
Dissolved Chromium (Cr)	ug/L	50	<5.0	5.0	8769184			
Dissolved Cobalt (Co)	ug/L	3.8	<0.50	0.50	8769184			
Dissolved Copper (Cu)	ug/L	87	1.4	0.90	8769184			
Dissolved Lead (Pb)	ug/L	10	<0.50	0.50	8769184			
Dissolved Molybdenum (Mo)	ug/L	70	1.8	0.50	8769184			
Dissolved Nickel (Ni)	ug/L	100	1.9	1.0	8769184			
Dissolved Selenium (Se)	ug/L	10	<2.0	2.0	8769184			
Dissolved Silver (Ag)	ug/L	1.5	<0.090	0.090	8769184			
Dissolved Sodium (Na)	ug/L	490000	300000	100	8769184			
Dissolved Thallium (TI)	ug/L	2.0	<0.050	0.050	8769184			
Dissolved Uranium (U)	ug/L	20	3.8	0.10	8769184			
Dissolved Vanadium (V)	ug/L	6.2	0.65	0.50	8769184			
Dissolved Zinc (Zn)	ug/L	1100	7.8	5.0	8769184			

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

O.REG 153 PAHS (WATER)

Bureau Veritas ID			WGN143	WGN144	WGN145		
Sampling Date			2023/06/30	2023/06/30	2023/06/30		
COC Number			941406-01-01	941406-01-01	941406-01-01		
	UNITS	Criteria A	MW22-9	MW22-17	DUP1	RDL	QC Batch
Calculated Parameters				•	•		
Methylnaphthalene, 2-(1-)	ug/L	3.2	<0.071	<0.071	<0.071	0.071	8763625
Polyaromatic Hydrocarbons	•	•				•	
Acenaphthene	ug/L	4.1	<0.050	<0.050	<0.050	0.050	8769342
Acenaphthylene	ug/L	1	<0.050	<0.050	<0.050	0.050	8769342
Anthracene	ug/L	2.4	<0.050	<0.050	<0.050	0.050	8769342
Benzo(a)anthracene	ug/L	1.0	<0.050	<0.050	<0.050	0.050	8769342
Benzo(a)pyrene	ug/L	0.01	<0.0090	<0.0090	<0.0090	0.0090	8769342
Benzo(b/j)fluoranthene	ug/L	0.1	<0.050	<0.050	<0.050	0.050	8769342
Benzo(g,h,i)perylene	ug/L	0.2	<0.050	<0.050	<0.050	0.050	8769342
Benzo(k)fluoranthene	ug/L	0.1	<0.050	<0.050	<0.050	0.050	8769342
Chrysene	ug/L	0.1	<0.050	<0.050	<0.050	0.050	8769342
Dibenzo(a,h)anthracene	ug/L	0.2	<0.050	<0.050	<0.050	0.050	8769342
Fluoranthene	ug/L	0.41	<0.050	<0.050	<0.050	0.050	8769342
Fluorene	ug/L	120	<0.050	<0.050	<0.050	0.050	8769342
Indeno(1,2,3-cd)pyrene	ug/L	0.2	<0.050	<0.050	<0.050	0.050	8769342
1-Methylnaphthalene	ug/L	3.2	<0.050	<0.050	<0.050	0.050	8769342
2-Methylnaphthalene	ug/L	3.2	<0.050	<0.050	<0.050	0.050	8769342
Naphthalene	ug/L	11	<0.050	<0.050	<0.050	0.050	8769342
Phenanthrene	ug/L	1	<0.030	<0.030	<0.030	0.030	8769342
Pyrene	ug/L	4.1	<0.050	<0.050	<0.050	0.050	8769342
Surrogate Recovery (%)							
D10-Anthracene	%	-	117	118	117		8769342
D14-Terphenyl (FS)	%	-	113	111	108		8769342
D8-Acenaphthylene	%	-	103	109	107		8769342

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			WGN143	WGN144	WGN145		
Sampling Date			2023/06/30	2023/06/30	2023/06/30		
COC Number			941406-01-01	941406-01-01	941406-01-01		
	UNITS	Criteria A	MW22-9	MW22-17	DUP1	RDL	QC Batch
Calculated Parameters	•			•	•	3	
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	<0.50	<0.50	0.50	8762770
Volatile Organics							
Acetone (2-Propanone)	ug/L	2700	<10	<10	<10	10	8768676
Benzene	ug/L	5.0	<0.17	<0.17	<0.17	0.17	8768676
Bromodichloromethane	ug/L	16.0	<0.50	<0.50	<0.50	0.50	8768676
Bromoform	ug/L	25.0	<1.0	<1.0	<1.0	1.0	8768676
Bromomethane	ug/L	0.89	<0.50	<0.50	<0.50	0.50	8768676
Carbon Tetrachloride	ug/L	0.79	<0.20	<0.20	<0.20	0.20	8768676
Chlorobenzene	ug/L	30	<0.20	<0.20	<0.20	0.20	8768676
Chloroform	ug/L	2.4	1.3	0.66	0.62	0.20	8768676
Dibromochloromethane	ug/L	25.0	<0.50	<0.50	<0.50	0.50	8768676
1,2-Dichlorobenzene	ug/L	3.0	<0.50	<0.50	<0.50	0.50	8768676
1,3-Dichlorobenzene	ug/L	59	<0.50	<0.50	<0.50	0.50	8768676
1,4-Dichlorobenzene	ug/L	1.0	<0.50	<0.50	<0.50	0.50	8768676
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	<1.0	<1.0	1.0	8768676
1,1-Dichloroethane	ug/L	5	<0.20	<0.20	<0.20	0.20	8768676
1,2-Dichloroethane	ug/L	1.6	<0.50	<0.50	<0.50	0.50	8768676
1,1-Dichloroethylene	ug/L	1.6	<0.20	<0.20	<0.20	0.20	8768676
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	<0.50	0.50	8768676
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	<0.50	<0.50	0.50	8768676
1,2-Dichloropropane	ug/L	5.0	<0.20	<0.20	<0.20	0.20	8768676
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	<0.30	<0.30	0.30	8768676
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	<0.40	<0.40	0.40	8768676
Ethylbenzene	ug/L	2.4	<0.20	<0.20	<0.20	0.20	8768676
Ethylene Dibromide	ug/L	0.2	<0.20	<0.20	<0.20	0.20	8768676
Hexane	ug/L	51	<1.0	<1.0	<1.0	1.0	8768676
Methylene Chloride(Dichloromethane)	ug/L	50	<2.0	<2.0	<2.0	2.0	8768676
Methyl Ethyl Ketone (2-Butanone)	ug/L	1800	<10	<10	<10	10	8768676
Methyl Isobutyl Ketone	ug/L	640	<5.0	<5.0	<5.0	5.0	8768676
No Francisco							

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Bureau Veritas ID			WGN143	WGN144	WGN145		
Sampling Date			2023/06/30	2023/06/30	2023/06/30		
COC Number			941406-01-01	941406-01-01	941406-01-01		
	UNITS	Criteria A	MW22-9	MW22-17	DUP1	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	<0.50	<0.50	0.50	8768676
Styrene	ug/L	5.4	<0.50	<0.50	<0.50	0.50	8768676
1,1,1,2-Tetrachloroethane	ug/L	1.1	<0.50	<0.50	<0.50	0.50	8768676
1,1,2,2-Tetrachloroethane	ug/L	1.0	<0.50	<0.50	<0.50	0.50	8768676
Tetrachloroethylene	ug/L	1.6	<0.20	<0.20	<0.20	0.20	8768676
Toluene	ug/L	24	<0.20	<0.20	<0.20	0.20	8768676
1,1,1-Trichloroethane	ug/L	200	<0.20	<0.20	<0.20	0.20	8768676
1,1,2-Trichloroethane	ug/L	4.7	<0.50	<0.50	<0.50	0.50	8768676
Trichloroethylene	ug/L	1.6	<0.20	<0.20	<0.20	0.20	8768676
Trichlorofluoromethane (FREON 11)	ug/L	150	<0.50	<0.50	<0.50	0.50	8768676
Vinyl Chloride	ug/L	0.5	<0.20	<0.20	<0.20	0.20	8768676
p+m-Xylene	ug/L	-	<0.20	<0.20	<0.20	0.20	8768676
o-Xylene	ug/L	-	<0.20	<0.20	<0.20	0.20	8768676
Total Xylenes	ug/L	300	<0.20	<0.20	<0.20	0.20	8768676
F1 (C6-C10)	ug/L	750	<25	<25	<25	25	8768676
F1 (C6-C10) - BTEX	ug/L	750	<25	<25	<25	25	8768676
F2-F4 Hydrocarbons		•					
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	<100	<100	100	8769343
F3 (C16-C34 Hydrocarbons)	ug/L	500	<200	<200	<200	200	8769343
F4 (C34-C50 Hydrocarbons)	ug/L	500	<200	<200	<200	200	8769343
Reached Baseline at C50	ug/L	-	Yes	Yes	Yes		8769343
Surrogate Recovery (%)							
o-Terphenyl	%	-	105	101	103		8769343
4-Bromofluorobenzene	%	-	96	97	96		8768676
D4-1,2-Dichloroethane	%	-	95	95	95		8768676
D8-Toluene	%	-	100	100	100		8768676

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria A: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

2023/07/11

2023/07/06

2023/07/06

TEST SUMMARY

Bureau Veritas ID: WGN143 Sample ID: MW22-9 Matrix:

Water

ICP/MS

GC/MS

GC/MSFD

Collected: 2023/06/30

Shipped:

Received: 2023/06/30

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst CALC 2023/07/10 Methylnaphthalene Sum 8763625 N/A **Automated Statchk** 1,3-Dichloropropene Sum CALC 8762770 N/A 2023/07/07 Automated Statchk KONE Chloride by Automated Colourimetry 8774367 N/A 2023/07/07 Massarat Jan Chromium (VI) in Water IC 8768645 N/A 2023/07/05 Theodora Luck Free (WAD) Cyanide SKAL/CN 8774095 N/A 2023/07/07 Prgya Panchal Petroleum Hydrocarbons F2-F4 in Water GC/FID 8769343 2023/07/05 2023/07/06 Emir Danisman Mercury CV/AA 8769204 2023/07/05 2023/07/05 Japneet Gill

8769184

8769342

8768676

Bureau Veritas ID: WGN143 Dup Sample ID: MW22-9

Matrix: Water

PAH Compounds in Water by GC/MS (SIM)

Volatile Organic Compounds and F1 PHCs

Dissolved Metals by ICPMS

Collected: 2023/06/30 Shipped:

Prempal Bhatti

Mitesh Raj

Dina Wang

N/A

N/A

2023/07/05

Received: 2023/06/30

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst 2023/07/05 Chromium (VI) in Water IC 8768645 N/A Theodora Luck

Bureau Veritas ID: WGN144

Matrix:

Water

Collected: 2023/06/30 Shipped:

Sample ID: MW22-17 Matrix: Water

Received: 2023/06/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8763625	N/A	2023/07/10	Automated Statchk
1,3-Dichloropropene Sum	CALC	8762770	N/A	2023/07/07	Automated Statchk
Chloride by Automated Colourimetry	KONE	8772828	N/A	2023/07/07	Alina Dobreanu
Chromium (VI) in Water	IC	8768645	N/A	2023/07/05	Theodora Luck
Free (WAD) Cyanide	SKAL/CN	8774095	N/A	2023/07/07	Prgya Panchal
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8769343	2023/07/05	2023/07/06	Emir Danisman
Mercury	CV/AA	8769204	2023/07/05	2023/07/05	Japneet Gill
Dissolved Metals by ICPMS	ICP/MS	8769184	N/A	2023/07/11	Prempal Bhatti
PAH Compounds in Water by GC/MS (SIM)	GC/MS	8769342	2023/07/05	2023/07/06	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8768676	N/A	2023/07/06	Dina Wang

Bureau Veritas ID: **WGN145** Collected: 2023/06/30

Sample ID: DUP1 Shipped:

> Received: 2023/06/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8763625	N/A	2023/07/10	Automated Statchk
1,3-Dichloropropene Sum	CALC	8762770	N/A	2023/07/07	Automated Statchk
Chloride by Automated Colourimetry	KONE	8774367	N/A	2023/07/07	Massarat Jan
Chromium (VI) in Water	IC	8768645	N/A	2023/07/05	Theodora Luck
Free (WAD) Cyanide	SKAL/CN	8774095	N/A	2023/07/07	Prgya Panchal
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8769343	2023/07/05	2023/07/06	Emir Danisman

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

TEST SUMMARY

Bureau Veritas ID: WGN145

Matrix: Water

Collected: Sample ID: DUP1 Shipped:

Received: 2023/06/30

2023/06/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury	CV/AA	8769204	2023/07/05	2023/07/05	Japneet Gill
Dissolved Metals by ICPMS	ICP/MS	8769184	N/A	2023/07/11	Prempal Bhatti
PAH Compounds in Water by GC/MS (SIM)	GC/MS	8769342	2023/07/05	2023/07/06	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8768676	N/A	2023/07/06	Dina Wang

Bureau Veritas ID: WGN145 Dup Sample ID: Matrix: Water

2023/06/30 Collected: DUP1

Shipped:

Received: 2023/06/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	SKAL/CN	8774095	N/A	2023/07/07	Prgya Panchal
Mercury	CV/AA	8769204	2023/07/05	2023/07/05	Japneet Gill

Bureau Veritas ID: WGN146

Collected: 2023/06/30 Shipped:

Sample ID: TRIP BLANK Matrix: Water

2023/06/30 Received:

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst 1,3-Dichloropropene Sum Automated Statchk CALC 8762770 N/A 2023/07/07 Volatile Organic Compounds and F1 PHCs GC/MSFD 8768676 N/A 2023/07/06 Dina Wang

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	4.7°C	
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8768676	4-Bromofluorobenzene	2023/07/06	97	70 - 130	98	70 - 130	95	%		
8768676	D4-1,2-Dichloroethane	2023/07/06	96	70 - 130	95	70 - 130	94	%		
8768676	D8-Toluene	2023/07/06	104	70 - 130	105	70 - 130	101	%		
8769342	D10-Anthracene	2023/07/05	118	50 - 130	112	50 - 130	121	%		
8769342	D14-Terphenyl (FS)	2023/07/05	120	50 - 130	114	50 - 130	120	%		
8769342	D8-Acenaphthylene	2023/07/05	110	50 - 130	107	50 - 130	103	%		
8769343	o-Terphenyl	2023/07/06	104	60 - 130	104	60 - 130	101	%		
8768645	Chromium (VI)	2023/07/05	104	80 - 120	104	80 - 120	<0.50	ug/L	NC	20
8768676	1,1,1,2-Tetrachloroethane	2023/07/06	97	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
8768676	1,1,1-Trichloroethane	2023/07/06	93	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
8768676	1,1,2,2-Tetrachloroethane	2023/07/06	99	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
8768676	1,1,2-Trichloroethane	2023/07/06	100	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
8768676	1,1-Dichloroethane	2023/07/06	95	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
8768676	1,1-Dichloroethylene	2023/07/06	95	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
8768676	1,2-Dichlorobenzene	2023/07/06	100	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
8768676	1,2-Dichloroethane	2023/07/06	90	70 - 130	85	70 - 130	<0.50	ug/L	NC	30
8768676	1,2-Dichloropropane	2023/07/06	98	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
8768676	1,3-Dichlorobenzene	2023/07/06	99	70 - 130	97	70 - 130	<0.50	ug/L	NC	30
8768676	1,4-Dichlorobenzene	2023/07/06	117	70 - 130	115	70 - 130	<0.50	ug/L	NC	30
8768676	Acetone (2-Propanone)	2023/07/06	99	60 - 140	92	60 - 140	<10	ug/L	NC	30
8768676	Benzene	2023/07/06	96	70 - 130	92	70 - 130	<0.17	ug/L	NC	30
8768676	Bromodichloromethane	2023/07/06	93	70 - 130	88	70 - 130	<0.50	ug/L	NC	30
8768676	Bromoform	2023/07/06	90	70 - 130	86	70 - 130	<1.0	ug/L	NC	30
8768676	Bromomethane	2023/07/06	94	60 - 140	93	60 - 140	<0.50	ug/L	NC	30
8768676	Carbon Tetrachloride	2023/07/06	91	70 - 130	89	70 - 130	<0.20	ug/L	NC	30
8768676	Chlorobenzene	2023/07/06	100	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
8768676	Chloroform	2023/07/06	95	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
8768676	cis-1,2-Dichloroethylene	2023/07/06	99	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
8768676	cis-1,3-Dichloropropene	2023/07/06	93	70 - 130	87	70 - 130	<0.30	ug/L	NC	30
8768676	Dibromochloromethane	2023/07/06	93	70 - 130	88	70 - 130	<0.50	ug/L	NC	30
8768676	Dichlorodifluoromethane (FREON 12)	2023/07/06	96	60 - 140	90	60 - 140	<1.0	ug/L	NC	30
8768676	Ethylbenzene	2023/07/06	97	70 - 130	95	70 - 130	<0.20	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8768676	Ethylene Dibromide	2023/07/06	96	70 - 130	92	70 - 130	<0.20	ug/L	NC	30
8768676	F1 (C6-C10) - BTEX	2023/07/06					<25	ug/L	NC	30
8768676	F1 (C6-C10)	2023/07/06	91	60 - 140	92	60 - 140	<25	ug/L	NC	30
8768676	Hexane	2023/07/06	99	70 - 130	97	70 - 130	<1.0	ug/L	NC	30
8768676	Methyl Ethyl Ketone (2-Butanone)	2023/07/06	91	60 - 140	85	60 - 140	<10	ug/L	NC	30
8768676	Methyl Isobutyl Ketone	2023/07/06	87	70 - 130	83	70 - 130	<5.0	ug/L	NC	30
8768676	Methyl t-butyl ether (MTBE)	2023/07/06	90	70 - 130	87	70 - 130	<0.50	ug/L	NC	30
8768676	Methylene Chloride(Dichloromethane)	2023/07/06	101	70 - 130	97	70 - 130	<2.0	ug/L	NC	30
8768676	o-Xylene	2023/07/06	85	70 - 130	83	70 - 130	<0.20	ug/L	NC	30
8768676	p+m-Xylene	2023/07/06	96	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
8768676	Styrene	2023/07/06	95	70 - 130	93	70 - 130	<0.50	ug/L	NC	30
8768676	Tetrachloroethylene	2023/07/06	90	70 - 130	88	70 - 130	<0.20	ug/L	NC	30
8768676	Toluene	2023/07/06	100	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
8768676	Total Xylenes	2023/07/06					<0.20	ug/L	NC	30
8768676	trans-1,2-Dichloroethylene	2023/07/06	99	70 - 130	96	70 - 130	<0.50	ug/L	NC	30
8768676	trans-1,3-Dichloropropene	2023/07/06	98	70 - 130	94	70 - 130	<0.40	ug/L	NC	30
8768676	Trichloroethylene	2023/07/06	99	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
8768676	Trichlorofluoromethane (FREON 11)	2023/07/06	92	70 - 130	90	70 - 130	<0.50	ug/L	NC	30
8768676	Vinyl Chloride	2023/07/06	96	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
8769184	Dissolved Antimony (Sb)	2023/07/12	109	80 - 120	103	80 - 120	<0.50	ug/L	NC	20
8769184	Dissolved Arsenic (As)	2023/07/12	99	80 - 120	97	80 - 120	<1.0	ug/L	6.8	20
8769184	Dissolved Barium (Ba)	2023/07/12	101	80 - 120	98	80 - 120	<2.0	ug/L	2.6	20
8769184	Dissolved Beryllium (Be)	2023/07/12	100	80 - 120	98	80 - 120	<0.40	ug/L	NC	20
8769184	Dissolved Boron (B)	2023/07/12	96	80 - 120	93	80 - 120	<10	ug/L	NC	20
8769184	Dissolved Cadmium (Cd)	2023/07/12	102	80 - 120	96	80 - 120	<0.090	ug/L	NC	20
8769184	Dissolved Chromium (Cr)	2023/07/12	96	80 - 120	94	80 - 120	<5.0	ug/L	NC	20
8769184	Dissolved Cobalt (Co)	2023/07/12	95	80 - 120	94	80 - 120	<0.50	ug/L	NC	20
8769184	Dissolved Copper (Cu)	2023/07/12	98	80 - 120	95	80 - 120	<0.90	ug/L	NC	20
8769184	Dissolved Lead (Pb)	2023/07/12	100	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
8769184	Dissolved Molybdenum (Mo)	2023/07/12	106	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
8769184	Dissolved Nickel (Ni)	2023/07/12	95	80 - 120	93	80 - 120	<1.0	ug/L	NC	20
8769184	Dissolved Selenium (Se)	2023/07/12	99	80 - 120	96	80 - 120	<2.0	ug/L	NC	20

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8769184	Dissolved Silver (Ag)	2023/07/12	100	80 - 120	98	80 - 120	<0.090	ug/L	NC	20
8769184	Dissolved Sodium (Na)	2023/07/12	97	80 - 120	95	80 - 120	<100	ug/L	2.9	20
8769184	Dissolved Thallium (TI)	2023/07/12	102	80 - 120	98	80 - 120	<0.050	ug/L	NC	20
8769184	Dissolved Uranium (U)	2023/07/12	102	80 - 120	97	80 - 120	<0.10	ug/L	18	20
8769184	Dissolved Vanadium (V)	2023/07/12	98	80 - 120	96	80 - 120	<0.50	ug/L	NC	20
8769184	Dissolved Zinc (Zn)	2023/07/12	95	80 - 120	94	80 - 120	<5.0	ug/L	NC	20
8769204	Mercury (Hg)	2023/07/05	102	75 - 125	105	80 - 120	<0.10	ug/L	NC	20
8769342	1-Methylnaphthalene	2023/07/05	113	50 - 130	110	50 - 130	<0.050	ug/L	NC	30
8769342	2-Methylnaphthalene	2023/07/05	113	50 - 130	110	50 - 130	<0.050	ug/L	NC	30
8769342	Acenaphthene	2023/07/05	112	50 - 130	107	50 - 130	<0.050	ug/L	NC	30
8769342	Acenaphthylene	2023/07/05	113	50 - 130	108	50 - 130	<0.050	ug/L	NC	30
8769342	Anthracene	2023/07/05	116	50 - 130	111	50 - 130	<0.050	ug/L	NC	30
8769342	Benzo(a)anthracene	2023/07/05	120	50 - 130	112	50 - 130	<0.050	ug/L	NC	30
8769342	Benzo(a)pyrene	2023/07/05	115	50 - 130	107	50 - 130	<0.0090	ug/L	NC	30
8769342	Benzo(b/j)fluoranthene	2023/07/05	112	50 - 130	104	50 - 130	<0.050	ug/L	NC	30
8769342	Benzo(g,h,i)perylene	2023/07/05	111	50 - 130	103	50 - 130	<0.050	ug/L	NC	30
8769342	Benzo(k)fluoranthene	2023/07/05	116	50 - 130	109	50 - 130	<0.050	ug/L	NC	30
8769342	Chrysene	2023/07/05	115	50 - 130	108	50 - 130	<0.050	ug/L	NC	30
8769342	Dibenzo(a,h)anthracene	2023/07/05	127	50 - 130	114	50 - 130	<0.050	ug/L	NC	30
8769342	Fluoranthene	2023/07/05	112	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
8769342	Fluorene	2023/07/05	111	50 - 130	107	50 - 130	<0.050	ug/L	NC	30
8769342	Indeno(1,2,3-cd)pyrene	2023/07/05	113	50 - 130	105	50 - 130	<0.050	ug/L	NC	30
8769342	Naphthalene	2023/07/05	115	50 - 130	119	50 - 130	<0.050	ug/L	NC	30
8769342	Phenanthrene	2023/07/05	114	50 - 130	108	50 - 130	<0.030	ug/L	NC	30
8769342	Pyrene	2023/07/05	113	50 - 130	107	50 - 130	<0.050	ug/L	NC	30
8769343	F2 (C10-C16 Hydrocarbons)	2023/07/06	101	60 - 130	107	60 - 130	<100	ug/L	NC	30
8769343	F3 (C16-C34 Hydrocarbons)	2023/07/06	100	60 - 130	109	60 - 130	<200	ug/L	NC	30
8769343	F4 (C34-C50 Hydrocarbons)	2023/07/06	102	60 - 130	109	60 - 130	<200	ug/L	NC	30
8772828	Dissolved Chloride (CI-)	2023/07/07	NC	80 - 120	92	80 - 120	<1.0	mg/L	0.61	20
8774095	WAD Cyanide (Free)	2023/07/07	94	80 - 120	92	80 - 120	<1	ug/L	NC	20

QUALITY ASSURANCE REPORT(CONT'D)

DS Consultants Limited Client Project #: 22-012-101

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8774367	Dissolved Chloride (CI-)	2023/07/07	90	80 - 120	97	80 - 120	<1.0	mg/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Site Location: 30 56 NEYAGAWA BLVD, OAKVILLE, ON

Sampler Initials: MAD

Exceedance Summary Table – Reg153/04 T2-GW-C Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW22-9	WGN143-01	Dissolved Chloride (Cl-)	790	810	10	mg/L
The exceedance summary table	is for information num	osos only and should not be o	ansidarad a compreh	anciva licting or	statement of	conformanco to

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Maxxam Analytics Presence of Visible Particulate/Sediment C3J3318 CAM FCD-01013/5 Page 1 of 1 When there is >1cm of visible particulate/sediment, the amount will be recorded in the field below Affix Job Label Here **Bottle Types** Inorganics Organics Hydrocarbons Volatiles Other Pest/ Pest/ SVOC/ SVOC/ PCB PAH PAH F2-F4 F2-F4 voc voc voc Metals Organic Organic Dioxin voc Sample ID All CrVI CN Herb Herb ABN ABN General F4G (Diss.) 1 of 2 2 of 2 1 of 2 2 of 2 1 of 2 2 of 2 /Furan Vial 1 Vial 2 Vial 3 Vial 4 1 of 2 2 of 2 Vial 1 Vial 2 Vial 3 Vial 4 2 of 2 1 of 2 2 of 2 Mw 22-9 1 MW 22-17 13 2 Dul-1 3 4 5 6 8 10 Except Cheomium, Metals, Mercury. Comments: Legend: 2023 /06/30. P Suspended Particulate Recorded By: (signature/print) Trace Settled Sediment (just covers bottom of container or less) Sediment greater than (>) Trace, but less than (<) 1 cm

BURE					_		arno	RT TO:		4			PRO	JECT INFORMA	TION:		T	Laboratory Use	Only
	INVOICE TO COMMITTEE TO COMMITTE TO COMMITTEE TO COMMITTEE TO COMMITTEE TO COMMITTEE TO COMMITTE TO COMMITTEE TO COMMITTEE TO COMMITTEE TO COMMITTEE TO COMMITTE						20,000	-A11 A100A	VC	14	-		00	25641	non.	feath at the	-	Bureau Veritas Job #:	Bottle Order
mpany N	#32616 DS Consult Accounts Payable	ants Limited			npany Na	ame:	DZ CON	Sulta	MT	(nxi	0	Quotation # P.O. #:	- 02	20041	- 10	to the			
dress:	6221 Highway 7, Uni	t 16		The state of the s	ention: dress:		Kt	CKTI	2101	10-11		Project:		-012-101			1	pakville, ON	941406
u 030.	Vaughan ON L4H 0K	8				R	FIOYAL	Janti (2000	physyrt	aurs.	Project Nan	ne: 30	56 N	e 40	gowa		coc#:	Project Mana
	(905) 264-9393	Fax:		Tel				Fax .	6.1	E and		Site #:			1	1	- 111111		Ashton Gibs
ail:	accounting@dscons				-	THE RESERVOIR	anway	(01) SEP	NSUIT	taut		Sampled B		SE BE SPECIFIC	INE	Λ	-	C#941406-01-01 Turnaround Time (TAT)	Required
MOE	REGULATED DRINKING W SUBMITTED ON THE I	ATER OR WAT BUREAU VERI	TER INTENDED	FOR HUMA WATER CH	IAIN OF	SUMPTION CUSTODY	MUST BE				Alte	ALTOIS NEC	OLO ILD (F LLA	IOL DE OF EON TO				Please provide advance notice	
Par	ulation 153 (2011)	A STATE OF THE STA	Other Regulation	AND THE PERSON NAMED IN			nstructions	cle)	9		PkG		- 1				THE RESERVE OF THE PARTY OF THE	Standard) TAT:	
able 1	Res/Park Medium/Fine	ССМЕ	Sanitary Sewe			Opecial I	iod double	5 S	7.	1	anics						PARTITION AND ADDRESS OF	ed if Rush TAT is not specified): T = 5-7 Working days for most tests	
Table 2	Ind/Comm Coarse	Reg 558.	Storm Sewer I					oleas	HS &		Inorg							Standard TAT for certain tests such as it your Project Manager for details.	BOD and Dioxins/Furans
Table 3	Agri/Other For RSC	MISA	Municipality	No.	. /			Field Eiltered (please circle).	153 VOCs by HS & F1-F4	s	95 SE		- -					ic Rush TAT (if applies to entire sul	omission)
abio .		PWQ0	Reg 406 Tab	ole	-			Eliter	9 00	Reg 153 PAHs	3 Met						Date Require		Time Required.
	Include Criteria on		Analysis (Y/N)?	105	-			D Z	15 15	150	153						Rush Confirm	mation Number:	(call lab for #)
S	ample Barcode Label	Sample (Location		Date Samp	oled	Time Sampled	Matrix		O.Re	O.Re	O.Reg (Wir)			11.1		4	# of Bottles	Com	ments
m	W22-9	I	2	023/08	130	PM	GW	X	X	X	X						9		The state of
	W22-17			1		(X	X	X	X						9		
								$\langle \rangle$	1	1							a		
	Dup!							X	X	X	/	+					19		
-	Trip Blank					N	V		X			•					2	-24	1 Page
		5				-												200	
										7								080	
																	\Box	30-Jun-23 12	2:44
			- 4		-		-			-				+	-		H	Ashton Gibson	111
												-	1 A				1	C3J3318	0
										lana.			N 196					TATU 030	
																		JDK ENVISO	
	* RELINQUISHED BY: (Signal	ure/Print)	Date: (YY	/MM/DD)	Time		RECEIVED	BY: (Signature/	Print)		Date: (YY/	MM/DD)	Time	# jars u	sed and		Labora	atory Use Only	
-	ladinely Calva	Zili	2013/	06/25)	PM LA	J COP	AN Mol	/	10	202/01	6/30	12:4	Y not sut	mitted	Time Sensitive	Tempera	ture (°C) on Recei Custody Preser	Seal Yes

Bureau Veritas Canada (2019) Inc

Appendix D

Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model (CSM) has been prepared for the Site located at 3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario. This Phase Two CSM has been prepared based on the following environmental site assessment reports:

- "Phase One Environmental Site Assessment, "3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario" dated April 18, 2024, prepared for NEATT Sixteen Mile Creek Inc., prepared by DS Consultants Ltd. (DS).
- "Phase Two Environmental Site Assessment, "3056 Neyagawa Boulevard & 1039 Dundas Street West, Oakville, Ontario" dated April 29, 2024, prepared for NEATT Sixteen Mile Creek Inc., prepared by DS Consultants Ltd.

The Phase Two CSM is comprised of the following figures and text:

Figure 1 – Site Location Plan

Figure 2 – Phase One Property Site Plan

Figure 3 – Phase One Study Area

Figure 4 – PCAs within Phase One Study Area

Figure 5 – Borehole/Monitoring Well Location Plan with APECs

Figure 5A – Geological Cross Section A-A'

Figure 6 – Groundwater Elevation Contours and Flow Direction

Figure 7A – Soil Characterization – Metals & Hydride Forming Metals

Figure 7B – Soil Characterization – ORPs

Figure 7C – Soil Characterization – PHCs

Figure 7D – Soil Characterization – VOCs

Figure 7E – Soil Characterization – PAHs

Figure 7F – Soil Characterization – OCPs

Figure 8A – Groundwater Characterization – Metals & Hydride Forming Metals

Figure 8B – Groundwater Characterization – ORPs

Figure 8C – Groundwater Characterization – PHCs

Figure 8D – Groundwater Characterization – VOCs

Figure 8E – Groundwater Characterization – PAHs

Figure 9 – Contaminant Transport Diagram

The RSC Property is an irregularly shaped 8.12-hectare (20.0 acre) parcel of land situated within a mixed residential, community and commercial neighbourhood in the Town of

Oakville, Ontario. The RSC Property is located approximately 110 m northwest of the intersection of Neyagawa Boulevard and Dundas Street West.

The Site is currently developed with eight structures. 3056 Neyagawa Boulevard was occupied by residential tenants, including a 320 m² two-storey rectangular-shaped residential dwelling (Site Building A) with one level of basement and attached two-car garage located within the northeastern portion of the Site. A detached 280 m² residential double car garage (Site Building B) located along the eastern portion of the Site. One canvas shed (Shed 1) approximately 10 m² located along the northern portion of the Site. Multiple (more than 10) shipping containers were present adjacent to the gravel driveway within the northeastern, western and central portions of the Site. The southwestern portion of the Site was comprised of agricultural land.

1039 Dundas Street West was occupied by St. Peter & Paul Serbian Orthodox Church and comprised of a 120 m² one-storey rectangular-shaped common area (Site Building C) with an attached 30 m² storage shed (Shed 3). South of Shed 3 is a 650 m² irregularly shaped building (Site Building D) which is used as an event hall and is outfitted with a commercial kitchen. A chapel is present on the central portion of the Site (Site Building E), occupying an approximate footprint of 100 m². An enclosed 40 m² gazebo is present within the northern portion of the Site. An asphalt paved fenced area with an abandoned trailer and several cars is present within the southwestern portion of the Site. A Telus telecommunication tower is present on-Site adjacent to the northern Property boundary.

A gravel paved driveway traverses through the Site in a north-south orientation connecting Site Buildings C, D and E to Dundas Street West. The remaining balance of the Site consisted of landscaped grass, trees and shrubbery. A small, paved playground is present on the south-central portion of the Site adjacent to the gravel driveway.

The following issues of potential environmental concern (PCAs) were identified on the RSC Property:

- It is inferred that de-icing agents have been utilized upon the driveways present within the RSC Property for the purpose of pedestrian and vehicular safety.
- Miscellaneous debris, refuse and boats appear to have been stored at the Site for extended periods of time within the western extent of the 3056 Neyagawa Boulevard in the vicinity of Shed 1.
- Based on historic imagery and the Site Reconnaissance, storage of miscellaneous debris and refuse appears to be stored within the eastern portion of the Site.
- ◆ A shed appears to have been formerly located in the southern portion of the Site (Former Shed 2) from at least 2004 to 2007. The structure was subsequently

- demolished and fill material of unknown origin may have been utilized for grading/infilling at this location.
- Based on historic satellite imagery, areas within the western portion of the Site immediately north of the current agricultural field appears to have been utilized for the storage of miscellaneous debris and refuse.
- Based on historic satellite imagery, an area within the southwestern portion of the Site immediately south of the current agricultural field appears to have been utilized for the storage of miscellaneous debris and refuse.
- Based on photographs provided by AEL (2021) it is inferred that light vehicle servicing has likely taken place within the residential garage.
- AEL (2021) reported a gravel material stockpile containing soil of unknown origin located to the north/northeast of the residential garage.
- According to the Phase One Interview provided by AEL (2021) the previous property owner indicated that fill material of unknown origin may have been placed on the western portion of the property.
- DS geotechnical investigation (2023) encountered fill material extending to depths ranging from 0.8 to 1.5 metres below ground surface (mbgs) across majority of the Site.
- Based on historic aerial imagery a residential dwelling (Former Site Building F) was present on the southwestern portion of the Property, along Dundas Street West, between 1934 to 1965. The structure was subsequently demolished and fill material of unknown origin may have been utilized for grading/infilling at this location.
- In the 1934 aerial imagery an orchard can be observed on the southwest portion of the RSC Property.
- Based on historic aerial imagery a residential dwelling (Former Site Building G) was present on the southern portion of the Property between 1985 to 2004. The structure was subsequently demolished and fill material of unknown origin may have been utilized for grading/infilling at this location.

The neighboring properties within 250 m of the Site have been used for residential and commercial purposes since 1985. By 2013 a community center was developed on the north adjacent property, and was registered for waste of alkaline solutions - other metals and non-metals, paint/pigment/coating residues, oils & lubricants, inorganic and organic laboratory chemicals, waste of light fuels and organic acids in 2015 and 2021.

Following completion of the Phase One ESA, a Phase Two ESA was recommended in order to investigate the Areas of Potential Environmental Concern (APECs) identified.

The Phase Two ESA involved the advancement of eight (8) test pits (TP1 to TP8), which were completed on January 10, 2022. The test pits were advanced to a maximum depth of 3.5 metres below ground surface (mbgs) under the supervision of DS personnel. Additionally, twenty-one (21) boreholes (BH23-1 to BH23-21) were advanced on the Phase Two Property, in conjunction with a preliminary geotechnical and hydrogeological investigation, between June 5, 2023 and June 25, 2023. The boreholes were advanced to depths ranging from 1.4 to 18.8 mbgs. Ten (10) boreholes were instrumented with monitoring wells (BH23-1 to BH23-9 and BH23-17) and screened at depths ranging from 3.1 to 18.4 mbgs. In addition, existing monitoring wells (BH1 to BH5) previously installed as part of a historic geotechnical investigation, were utilized to monitor groundwater levels.

Soil samples were submitted for chemical analysis as follows:

- Twenty-two (22) soil samples were submitted for analysis of Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, pH, and SAR. Three (3) soil samples were also submitted for analysis of pH only;
- Eleven (11) soil samples were submitted for analysis of Petroleum Hydrocarbons (PHCs) and Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- Eleven (11) soil samples were submitted for analysis of Volatile Organic Compounds (VOCs);
- Eighteen (18) soil samples were submitted for analysis of Polyaromatic Hydrocarbons (PAHs);
- Eleven (11) soil samples were submitted for analysis of Organochlorine Pesticides (OCPs).

Groundwater samples were obtained from the five (5) monitoring wells (BH1, BH2, BH4, BH23-9 and BH23-17) and submitted for analysis of metals, As, Sb, Se, CN-, Cr (VI), Hg, Na, CI, PHCs, VOCs and PAHs.

The soil and groundwater analytical results were compared to the "Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse textured soils" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 RPI SCS) for coarse-textured soils.

All of the soil samples analysed were found to meet the Table 2 SCS.

The result of the groundwater chemical analysis indicated that there was an elevated concentration of chloride present in groundwater collected from monitoring wells BH1 and BH23-9. Both boreholes are located adjacent to driveways/parking areas on the Property and have been subject to the application of de-icing agents during winter. Per Section 49.1 (1) of O.Reg. 153/04 (as amended), "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act": "...that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both". Based on this provision, the site condition standards for chloride in groundwater is deemed not to be exceeded. As such all groundwater samples analyzed were found to meet the Table 2 SCS.

I. Description and Assessment of:

A. Areas where potentially contaminating activity has occurred

A total of fifteen (15) PCAs were identified to be contributing to APECs on-Site. A summary of the PCAs considered to be contributing to APECs on the Phase Two Property is provided in the table below.

Table 1-1: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
1	#30: Importation of Fill Material of Unknown Origin	AEL (2021) reported a gravel material stockpile containing soil of unknown origin located to the north/northeast of the residential garage.	PCA is on-Site
2	#30: Importation of Fill Material of Unknown Origin	According to the Phase One Interview provided by AEL the current property owner indicated that fill material of unknown origin may have been placed on the western portion of 3056 Neyagawa Boulevard.	PCA is on-Site
5	#30: Importation of Fill Material of Unknown Origin	DS geotechnical investigation (2023) encountered fill material extending to depths ranging from 0.8 to 1.5 mbgs across the entire Site.	PCA is on-Site
6	#58: Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	3070 – 3090 Neyagawa Blvd, the north adjacent property, had one (1) record in the Ontario Regulation 347 Waste Generators database in 2015 and 2021 for alkaline solutions – other metals and non-metals	PCA is immediately upgradient of the Site.

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
8	#40: Pesticides (including	paint/pigment/coating residues, oils & lubricants, inorganic and organic laboratory chemicals, light fuels and organic acids. In the 1934 aerial imagery an	PCA is on-Site
J	Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	orchard can be observed on the southwest portion of the Phase One Property.	T GA IS OFFSITE
11	#30: Importation of Fill Material of Unknown Origin	In the 1965 aerial imagery the residential dwelling (Former Site Building F) on the southwestern portion of the Property, along Dundas Street West, appears to have been demolished.	PCA is on-Site
12	#30: Importation of Fill Material of Unknown Origin	The residential dwelling (Former Site Building G) on the southern portion of the Property has been demolished.	PCA is on-Site
13	#N/S: Storage of miscellaneous debris, refuse and boats	Miscellaneous debris, refuse and boats appears to have been stored at the Site for extended periods of time within the western extent of the Property in the vicinity of Shed 1.	PCA is on-Site
14	#30: Importation of Fill Material of Unknown Origin	A shed appears to have been formerly located in the southern portion of the Site (Former Shed 2) from at least 2004 to 2007. The structure was subsequently demolished and fill material of unknown origin may have been utilized for grading/infilling at this location.	PCA is on-Site
15	#N/S: Storage of miscellaneous debris and refuse	Based on historic imagery and the Site Reconnaissance, storage of miscellaneous debris and refuse appears to have taken place within the eastern portion of the Site.	PCA is on-Site
16	#N/S: Storage of miscellaneous debris and refuse	Based on historic satellite imagery, areas within the western portion of 3056 Neyagawa Boulevard, immediately north of the current agricultural field appears to have been utilized for the storage of miscellaneous debris and refuse.	PCA is on-Site

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
17	#N/S: Storage of miscellaneous debris and refuse	Based on historic satellite imagery, an area within the southern portion of the Site immediately south of the current agricultural field appears to have been utilized for the storage of miscellaneous debris and refuse.	PCA is on-Site
18	#N/S: Application of De-Icing Agents	It is inferred that de-icing agents have been utilized upon the driveways present within the eastern portion of the Property for the purpose of pedestrian and vehicular safety.	PCA is on-Site
19	#N/S: Application of De-Icing Agents	It is inferred that de-icing agents have been utilized upon the driveways present within the western portion of the Property for the purpose of pedestrian and vehicular safety.	PCA is on-Site
20	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Based on photographs provided by AEL it is inferred that light vehicle servicing has likely taken place within the residential garage.	PCA is on-Site

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

B. Areas of potential environmental concern

Fifteen (15) APECs were identified to be present on the RSC Property through the completion of the Phase One ESA. A summary of the APECs identified, and the associated COPCs is provided in the table below.

Table 1-2: Summary of APECs identified on the RSC Property

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)		Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1A	Northeastern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-1	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1B	Central portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-2	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1C	Entire Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-5	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1D	Vicinity of former Site Building F, located in the	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-11	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
	southwestern portion of the Site				
APEC-1E	Vicinity of former Site Building G, located in the southern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-12	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-1F	Vicinity of former Shed 2, located in the southern portion of the Site	#30: Importation of Fill Material of Unknown Origin	On-Site PCA-14	Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-2	Northern portion of the Site	#58: Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	Off-Site PCA-6	PHCs, VOCs, BTEX, Metals, As, Sb, Se, CN-, Cr (VI), Hg, PAHs	Groundwater
APEC-3	Southwestern portion of the Site in the vicinity of former orchard	#40: Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On-Site PCA-8	OCPs	Soil
APEC-4A	Northern portion of the Property in the vicinity of Shed 1.	#N/S: Storage of miscellaneous debris, refuse and boats	On-Site PCA-13	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4B	Eastern portion of the Site	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-15	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4C	Central portion of the Site immediately north of agricultural field	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-16	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-4D	Southern portion of the Site immediately south of agricultural field	#N/S: Storage of miscellaneous debris and refuse	On-Site PCA-17	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, Cr (VI), Hg, low or high pH, PAHs	Soil
APEC-5A	Eastern portion of	#N/S: Inferred application of de-	On-Site	EC, SAR	Soil
, ii LO 3/1	the Site	icing agents	PCA-18	Sodium, Chloride	Groundwater
APEC-5B	Western portion of the Site	#N/S: Inferred application of de- icing agents	On-Site PCA-19	EC, SAR Sodium, Chloride	Soil Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-6	Within the Vicinity of Site Building B	#27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site PCA-20	PHCs, VOCs, BTEX, Metals, As, Sb, Se, Cr (VI), Hg, PAHs	Soil and Groundwater

Notes:

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

BTEX = Benzene, Toluene, Ethylbenzene, Xylene

OCPs = Organochlorine Pesticides

PAHs = Polycyclic Aromatic Hydrocarbons

PHCs = Petroleum Hydrocarbons VOCs = Volatile Organic Compounds

C. Any subsurface structures and utilities on, in or under the Phase Two Property that may affect contaminant distribution and transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Plans were not available to confirm the depths of these utilities or whether they are present, however they are estimated to be installed at depths ranging from 2 to 3 metres below ground surface.

The depth to groundwater at the RSC Property is inferred to be approximately 3.6 to 5.5 mbgs, therefore the utility corridors do have the potential to act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the RSC Property.

- II. Description of, and as appropriate, figures illustrating, the physical setting of the Phase Two Property and any areas under it including:
 - A. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard investigated</u>

A surficial layer of topsoil approximately 150 to 250 mm in thickness was encountered in all test-pits (TP1 to TP8) and boreholes BH23-5, BH23-6 and BH23-7 advanced. An asphalt layer, approximately 150 mm in thickness, was encountered at the ground surface in borehole BH23-8 and a 50 mm thick layer of granular fill consisting of sand and gravel was present at the ground surface in borehole BH23-2. Fill materials consisting of clayey silt to silty clay with trace rootlets/organics and/or weathered shale, and cobble fragments were present in all boreholes extending to depths ranging from 0.8 to 1.5 mbgs. Beneath the fill strata, the native soil generally consisted of silty clay till extending to depths of between 1.6 to 3.1 m in all the boreholes. Shale bedrock was encountered at approximate depths ranging from 2.3 to 3.3 mbgs which extended to a maximum termination depth of 18.8 mbgs, and was confirmed by coring.

The borehole locations are depicted on Figure 5. A visual representation of the stratigraphy investigated is presented on the cross-sections provided in Figure 5A.

B. <u>Hydrogeological Characteristics</u>, including aquifers, aquitards and, in each hydrostratigraphic unit where one or more contaminants is present at concentrations above the applicable site condition standards, lateral and vertical gradients

Two (2) of the monitoring wells installed by DS on the Phase Two Property (MW23-9 and MW23-17) were utilized to assess the groundwater quality in relation to APEC-2 and APEC-5B. In addition, groundwater monitoring wells (BH1, BH2 and BH4) installed as part of the SHAD Geotechnical Investigation (2022) were also utilized for groundwater sampling purposes in relation to assessing APEC-2, APEC-5A, APEC-5B, and APEC-6. Two additional wells installed by SHAD (2022, namely BH3 and BH5) were utilized solely for groundwater monitoring purposes.

Monitoring wells were screened to intersect the first water bearing formation encountered, generally to allow for the assessment of LNAPL, and to provide information regarding the quality of the groundwater.

The remaining monitoring wells were installed on the Phase Two Property as a part of hydrogeological and geotechnical investigations conducted concurrently with the

environmental investigation. These monitoring wells were not used to assess the groundwater conditions on-Site.

Generally, the groundwater elevation on July 19, 2023 was found to range between 2.66 to 4.12 mbgs, with groundwater elevations ranging between 150.83 and 156.38 masl in the aquifer investigated. Based on the groundwater elevations recorded, the groundwater flow direction was southwest towards the Sixteen Mile Creek. The groundwater elevation contours, and flow direction are presented on Figure 5.

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on July 19, 2023.

Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Till-Highly Weathered Shale Interface	Minimum: 0.013 m/m Average: 0.014 m/m Maximum: 0.015 m/m

C. <u>Depth to bedrock</u>

Shale bedrock was encountered at approximate depths ranging from 2.3 to 3.3 mbgs which extended to a maximum termination depth of 18.8 mbgs in all advanced boreholes except BH23-12, BH23-13, BH23-14, BH23-15, BH23-16, BH23-18, BH23-19, TP1 to TP8. Shale bedrock was confirmed by coring.

D. Approximate depth to water table

The depth to groundwater was measured in seven (7) monitoring wells installed during the course of this investigation (the remaining wells were utilized solely as part of a hydrogeological investigation conducted concurrently). On July 19, 2023 the groundwater levels were found to range between 2.66 to 4.12 mbgs.

E. Any respect in which section 41 or 43.1 of the regulation applies to the property

Section 35

Section 35 is not applicable to the Phase Two Property, permission to use the non-potable groundwater standards was not obtained from Halton Region.

Section 41

A total of twenty-one (21) pH samples were collected and submitted for analysis on the RSC Property.

Eighteen (18) pH samples were collected from depths of between 0 to 1.5m representing surficial soils. The pH values of surficial soils measured between 6.87 and 8.38 units, which are within the acceptable limits for non-sensitive sites.

Three (3) pH samples were collected from depths of between 1.5 to 1.6 m, representing subsurface soils. The pH values of the subsurface soils measured between 7.59 and 7.8 units, which is within the acceptable limits for non-sensitive sites. Figure 7B has been updated in order to show the pH results.

There are no areas of natural significance on the Site, or within 30 m of the Site. As such the Site is not considered to be environmentally sensitive as defined by Section 41.

Section 43.1

Not applicable – the Site is not a shallow soil property, nor does it include a water body, nor is it within 30 metres of a water body.

F. Areas on, in or under the Phase Two Property where excess soil is finally placed

No excess soil was placed on the Site.

G. Approximate locations, if known, of any proposed buildings and other structures

The proposed redevelopment will feature a residential subdivision. The proposed building locations have not been finalized.

- III. Where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of
 - A. <u>Each area where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable SCS</u>

The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met, as such no areas of contamination are present on the RSC Property.

B. The contaminants associated with each of the areas

The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met.

C. Medium that contaminants were identified in

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

- D. <u>Description and assessment of what is known about each of the areas</u>

 No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater, as such no contaminated areas are present on the RSC Property.
 - E. <u>Distribution in which the areas of each contaminant is present in the area at a concentration greater than the applicable SCS, for each medium in which the contaminant is present, together with figures showing the distribution</u>

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

F. Anything known about the reason for the discharge of the contaminants present on, in or under the Phase Two Property at a concentration greater than the applicable SCS

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater. No discharge of contamination has occurred.

G. Anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable SCS away from any area of potential environmental concern, including the identification of any preferential pathways

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater. No contaminant migration has occurred.

H. <u>Climatic or meteorological conditions that may have influenced</u> <u>distribution and migration of the contaminants, such as temporal fluctuations in groundwater levels</u>

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater. Therefore the potential effect of meteorological and climatic conditions on the migration of contaminants on the Phase Two Property is considered to be minimal.

I. <u>Information concerning soil vapour intrusion of the contaminants into buildings</u>

No volatile parameters were identified at concentrations greater than the applicable SCS, therefore vapour intrusion is not considered to be an exposure pathway at this time.

- IV. Where contaminants on, in or under the Phase Two Property are present at concentrations greater than the applicable SCS, one or more cross-sections showing
 - A. The lateral and vertical distribution of a contaminant in each area where the contaminants are present at concentrations greater than the applicable SCS in soil, groundwater and sediment
 - B. Approximate depth to water table
 - C. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard investigated</u>
 - D. Any subsurface structures and utilities that may affect contaminants distribution and transport

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater. However, for illustration purposes a cross section has been provided in Figure 5A.

- V. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable SCS for the contaminant, a diagram identifying, with narrative explanatory notes
 - A. The release mechanisms
 - B. Contaminant transport pathway
 - C. The human and ecological receptors located on, in or under the phase two property
 - D. Receptor exposure points
 - E. Routes of exposure

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater. Refer to Figure 9.