

205 Nebo Road, Unit 3 Hamilton, Ontario Canada L8W 2E1

LANDTEK LIMITED

Consulting Engineers

Phone: 905-383-3733 Fax: 905-383-8433 engineering@landteklimited.com www.landteklimited.com

Hydrogeological Investigation Report Proposed Residential Development 3275/3301 Trafalgar Road Oakville, Ontario L6H 7C2

Prepared for:

New Horizon Development Group 3170 Harvester Road, Unit 200 Burlington, Ontario L7N 3W8

> Landtek File: 21260 September 6, 2024

FOUNDATION INVESTIGATIONS E ENVIRONMENTAL SITE ASSESSMENTS AND CLEANUP GROUNDWATER STUDIES SLOPE STABILITY STUDIES ASPHALT TECHNOLOGY ASPHALT MIX DESIGNS PAVEMENT PERFORMANCE ANALYSIS CONSTRUCTION MATERIALS TESTING & INSPECTION ANALYSIS OF SOIL CORROSION POTENTIAL PAVEMENT REHABILITATION & TENDER SPECIFICATIONS CONCRETE QUALITY ASSURANCE TESTING ROOF INSPECTIONS INFRASTRUCTURE NEEDS STUDIES FAILURE ANALYSIS AND EXPERT WITNESS SERVICES AGGREGATE EVALUATION

Table of Contents

1.0 INTRODUCTION	1
1.1 Background	1
1.2 Work Scope and Report Organization	1
2.0 METHODOLOGY	3
2.1 Desktop Study	3
2.2 Site Inspection to Assess Hydrogeologic Features	3
2.3 Field Investigation	3
2.3.1 Drilling and Well Installation	3
2.3.2 Monitoring Well Development, Monitoring and Sampling	
2.3.3 Hydraulic Conductivity Testing	
3.0 FINDINGS	6
3.1 Topography, Drainage	6
3.2 Regional Physiography, Hydrology and Geological Setting	6
3.3 Climate	6
3.4 Local Hydrogeology	
3.5 MECP Water Well Records and Groundwater Resources	7
3.6 Results of Site Inspection	
3.7 Results of Subsurface Investigation	8
3.7.1 Grain Size Analyses	9
3.8 Groundwater Monitoring	10
3.9 Hydraulic Gradients and Flow	15
3.10 Estimated Hydraulic Conductivity	
3.10.1 Hydraulic Conductivity Tests Analysis	15
3.11 Groundwater Quality	
4.0 WATER TAKING EVALUATION & IMPACT ASSESSMENT	17
4.1 Groundwater Dewatering Requirements	18
4.1.1 Dewatering Calculations	
4.2 Dewatering Considerations	20
4.2.1 Estimating Dewatering Volume	20
4.2.2 Short Term Dewatering Volumes	21
4.2.3 Long Term Groundwater Control (Post Construction)	22
4.2.4 Permit to Take Water	22
4.2.6 Dewatering Procedure	22
4.2.7 Water Management and Discharge Plan	23
4.3 Assessment of Potential Impacts and Water Management	
4.3.1 Impact to Existing Groundwater Users	23
4.3.2 Impact to Surface Water and Natural Functions of the Ecosystem	
4.3.3 Contaminants Impacts	24
4.3.4 Geotechnical Impacts	24
5.0 MONITORING PLAN	25
5.1 Construction Monitoring	
5.2 Management of Dewatering Abstraction	25
5.2.1 Monitoring, Trigger Levels and Management Responses	25
5.2.2 Contingency Responses	25
5.3 Settlement Monitoring	26
6.0 MITIGATION PLAN	28
7.0 SITE DEVELOPMENT and WATER BALANCE	29
7.1 Site Development Concepts	29
7.2 Principal Hydrogeologic Features and Functions	
7.3 Phase 1 Development Water Balance	
7.3.1 Maintenance of Groundwater Recharge	

7.3	3.2 Low Impact Development (LID) Measures	31
7.4	Maintenance of Groundwater Transmission Pathways	31
	SUMMARY AND CONCLUSIONS	
9.0	CLOSURE	35
10.0	REFERENCES	
11.0	LIMITATIONS	37

Appendices:

- Appendix A Figures
- Appendix B Monitoring Well Logs
- Appendix C Summary of MECP Well Records
- Appendix D Grainsize Analysis

Appendix E – Hydraulic Conductivity Testing Analysis Results

Appendix F – Laboratory Certificate of Analysis

Appendix G – Dewatering Assumptions and Calculations – Underground Levels

Appendix H – Water Balance (Phase 1 Development)

1.0 INTRODUCTION

1.1 Background

Landtek Limited (Landtek) has been retained by New Horizon Development Corp. to complete a Hydrogeologic Investigation for the proposed residential development at 3275/3201 Trafalgar Road in Oakville, Ontario (the Site or development).

The site is located in Oakville, Ontario, and is centered at approximate grid reference 602854, 4816752 (UTM 17T coordinates). The Geodetic elevation of the ground surface at the site is approximately 177.5 m to 184.5 m.

The site is located on the east side of Trafalgar Road between Burnhamthorpe Road East and Dundas Street East in an area with a zoning classification as Existing Development (ED). It is bound to the west by Trafalgar Road followed by an agricultural land, to the north by an uncultivated land, to the east by uncultivated lands, and to the south by a construction site. The Site is approximately 7.845 ha (19.39 ac) and its location is provided on Figure 1, in Appendix A.

Based on the site plan provided by GRAZIANI + CORAZZA ARCHTECTS, the site is to be developed into mixed use commercial and multi-tenant residential dwellings to be implemented as Phase 1 and Phase developments. The site plan is provided on Figure 2, in Appendix A.

The purpose of the Hydrogeological Investigation is to evaluate the groundwater conditions at the site, delineate possible development/post-development effects, and suggest mitigation measures to minimize the effects to the shallow groundwater system during and post-development. Specifically, the report provides the following:

- A description of the hydrogeologic setting of the property and a summary of the existing soil and groundwater conditions at the site.
- Identification of hydrogeologic features such as zones of significant groundwater recharge and discharge.
- Assessment of the requirement for groundwater dewatering and control during construction, if any.

1.2 Work Scope and Report Organization

The scope of work for this investigation includes the following:

- <u>Review of available background information.</u> A review of published works was done of available geologic and hydrogeologic information for the site including topographic and geologic maps and water well records. Meteorological data was reviewed to assess the local climate.
- <u>Site Assessment.</u> A detailed visual inspection of the site and surrounding area was completed to identify and document local topography, surface water drainage features, and the potential presence of significant hydrogeologic features such as closed depressions (areas of ground water recharge), seeps, springs, or the presence of phreatophytic vegetation.

- <u>A subsurface investigation.</u> A total of eleven (11) additional monitoring wells to the existing five (5) completed by MTE were drilled and installed at the Site. The subsurface investigation of the property was done to characterize the overburden stratigraphy at the property as well as assess the site-specific groundwater conditions.
- <u>Hydraulic Conductivity Tests.</u> In-situ rising head tests were completed in the three of the five installed monitoring wells to assess the hydraulic conductivity of overburden/bedrock against which the monitoring wells were screened.
- <u>Groundwater Monitoring.</u> Groundwater level monitoring was conducted in all monitoring wells in order to assess the depth of groundwater level across the site.

The report is organized as follows:

Section 1 contains a brief introduction to the project and the scope of work undertaken by Landtek.

Section 2 outlines the methodologies followed during completion of the desktop study and the field investigation.

Section 3 summarizes the findings of the investigation. It includes:

- a description of the physical setting
- the results of the field investigation

Section 4 provides Water Taking Evaluation and Impact Assessment.

Section 5 provides a Monitoring Plan.

Section 6 provides a Mitigation Plan.

Section 7 provides Site Development and Water Balance.

Section 8 provides Summary and Conclusions.

Section 9 provides Closure.

Section 10 provides References.

Section 11 provides Limitations.

2.0 METHODOLOGY

2.1 Desktop Study

A review of published works was done of available geologic and hydrogeologic information for the site including topographic and geologic maps.

The Ministry of Environment, Conservation and Park (MECP) water well database for the local area was also accessed and the individual well record obtained for wells located within 500 m radius of the Site.

2.2 Site Inspection to Assess Hydrogeologic Features

A detailed site inspection was conducted on August 18, 2021, to assess the presence of features which may be significant from a hydrogeologic viewpoint. In particular, the site was inspected to assess the following:

- The presence of closed drainage features, depressions, or sandy areas which may allow for ponding and significant or enhanced infiltration of water.
- Assessment of the presence of phreatophytic vegetation which may indicate seasonally high groundwater levels and/or groundwater discharge and seepage.
- Identification of any zones of visible seepage or groundwater discharge.

2.3 Field Investigation

2.3.1 Drilling and Well Installation

MTE Consultants

The field investigation for a geotechnical Investigation report completed for the Site in 2020 by MTE Consultants (MTE) was reviewed. The investigation and findings are provided below.

"The fieldwork was carried out between September 22 and 29, 2020 and involved the drilling of seventeen geotechnical boreholes (Boreholes MW101-20 and BH120-20 to BH135-20) to depths ranging from 3.7 to 11.3 m.

The boreholes were advanced with a CME75 track mounted drill rig equipped with continuous flight solid and hollow stem augers, supplied and operated by Tri-Phase Group. The bedrock was cored using an HQ diameter core barrel.

One 50 mm diameter monitoring well was installed in Borehole MW101-20. The installation comprised a 3 m filtered screen and bentonite seal above the screen. Stabilized water level measurements were taken by MTE on October 7, 2020.

Three 50 mm diameter monitoring wells were also installed by Direct Push/SSA drilling method.

The locations of the monitoring wells are shown on Figure 4, in Appendix A, and the log of monitoring well MW101-20 is provided in Appendix B.

Landtek Limited

The subsurface hydrogeological drilling investigation at the Site was conducted on August 9, 10, 11, and 12, 2021. It included twenty (20) boreholes with five (5) completed as monitoring wells to a maximum depth of approximately 10.0 mbgs.

Additional five (5) boreholes were completed at the Site on March 20 to 24, 2023 with three (3) completed as monitoring wells to a maximum depth of approximately 18.7 mbgs.

The boreholes were advanced using a continuous flight power auger track-mounted drill rig equipped with conventional soil sampling and testing tools. The drilling was conducted by Pontil Drilling. of Hamilton Ontario under the supervision of a member of Landtek staff who logged the borings and examined the samples as they were obtained. The results of the drilling are recorded in detail on the accompanying borehole logs, provided in Appendix B.

The monitoring wells were constructed with 50 mm inner diameter, Schedule 40 machine slotted PVC screens equipped with a bottom cap, and machine threaded riser pipe. The screen length and slot size are 3.0 mm, and 0.10-inch, respectively.

The annular space between the PVC riser pipes and each borehole wall was backfilled to at least 0.3 m above the top of the screen with selected silica sand. A bentonite seal was placed immediately above the sand pack to a height just below grade. Each monitoring well was finished with a monumental protective steel casing, which was cemented in-place.

A summary of monitoring well installation details of the wells previously completed by MTE (2020) and Landtek (2021, 2022 and 2023) is presented on below in Table 1, and the monitoring wells' locations are shown on Figure 4, in Appendix A.

Monitoring Well ID	Easting* (NAD83)	Northing* (NAD83)	Ground Surface Elevation (masl)**	Stick Up (m)	Well Depth (mbgs)	Screened Interval (m)	Screened Material
MW101-20+	602985.4	4816821.8	178.87	1.00	5.10	3.00-5.00	Shale Bedrock
MW111-20+	602878.7	4816771.6	179.25	1.05	8.30		Shale Bedrock
MW117D+	602801.1	4816640.6	180.26	0.98			
MW118-20+	602858.5	4816611.7	179.67	0.95	8.60		Shale Bedrock
MW119-20+	602816.9	4816544.8	180.65	1.03	8.50		Shale Bedrock
MW102S#	602765.0	4816750.7	180.74	1.16	3.18		Clayey Silt
MW102D#	602765.0	4816750.7	180.74	0.71	4.50	3.00-4.50	Clayey Silt/Shale Bedrock
MW103#	602819.8	4816830.5	184.19	0.70	10.00	7.00-10.00	Shale Bedrock
MW106#	602913.6	4816941.6	182.53	0.94	9.40	6.40-9.40	Shale Bedrock
MW120S#	602868.9	4816701.0	178.49	0.68	2.43		Silty clay/ clayey silt
MW120D#	602868.9	4816701.0	178.49	0.63	6.50	4.50-7.50	Shale Bedrock
MW121S#	602925.3	4816709.6	178.28	0.79	2.43		Silty clay/ Shale bedrock
MW121D#	602925.3	4816709.6	178.28	1.00	6.50	5.00-6.50	Shale Bedrock
MW1D-23#	602960.6	4816868.6	179.64	0.96	18.72	15.72-18.72	Shale Bedrock
MW4-23#	602855.7	4616609.7	179.45	1.02	18.60	15.60-18.60	Shale Bedrock
MW122D-23#	602992.4	4816842.8	178.30	1.06	18.60	15.60-18.60	Shale Bedrock

Table 1. Construction Details - update

Notes:

[+] Well completed by MTE.

[#] Wells completed by Landtek.

masl = meters above sea level.

m = meters

[*] Values are approximate by GPS +/- 4 m

[**] A.T. McLaren Limited (Legal and Engineering Surveys), Drawing No. 36729-T, August 10, 2021 [+] Direct Push

2.3.2 Monitoring Well Development, Monitoring and Sampling

Well Development: Each of the installed monitoring wells (MW102D, MW102S, MW103, MW106, MW120D, MW120S, MW121S and MW121D) was developed to remove any sediment that may have been introduced during installation and to improve the hydraulic properties of the formation against which the wells were screened. Development employed electric well pump/waterra tubing with foot valves and each well was developed until a visible decrease in turbidity was observed.

Groundwater Monitoring

Groundwater level monitoring was completed between August 2021 and June 2023 to determine the seasonal variation and highest ground water level.

Groundwater Sampling

Provincial Water Quality Objectives (PWQO) Analysis

On April 5, 2023, groundwater samples were collected from monitoring well MW4-23 at Phase 1, including at MW111-20 and MW106, located at the central and northeast areas of the overall site, respectively after purging.

On August 8, 2024, groundwater samples were collected from monitoring well MW101-20 located at a background area at the southeast area of the overall site, to determined background water quality for the site after purging.

All collected samples were stored in a cooler with freezer packs after collection and during transport to AGAT Laboratories in Mississauga, Ontario. The collected samples were analyzed for the Provincial Water Quality Objective (PWQO) Analysis. ALS is accredited by the *Canadian Associations for Laboratory Accreditation Inc.* (CALA).

2.3.3 Hydraulic Conductivity Testing

Hydraulic conductivity tests were completed in the following three monitoring wells at the Site (MW106, MW120, and MW121) to provide estimates of the hydraulic conductivity for the zones against which the screens for the wells were set. Rising head tests were conducted by Landtek on November 25, 2021, and April 17,2023. The tests involved the extraction of a known volume to displace the water level. A datalogger programed at 2 and 3 second intervals were used to record the water level response during the tests.

Data Analysis: The rising head test data were analyzed using AqteSolve Professional Version 4.5 software package developed by Glenn M. Duffield of HydroSOLVE Inc. applying the Hvorslev analysis solutions, depending on hydrogeology.

3.0 FINDINGS

3.1 Topography, Drainage

The Site topography is uneven with the topography ranging from 178 masl at the south-central area, to 185 masl north-central area. The Site is located in the East Morrison Watershed in the Halton Region Source Protection Area. It is not in a Highly Vulnerable Aquifer Area, an Intake Protection Zone, a Significant Recharge Area, or a Wellhead Protection Area. (Ontario Source Protection Information Atlas, November 2021).

3.2 Regional Physiography, Hydrology and Geological Setting

The site is located within the physiographic region known as the South Slope physiographic region identified by Chapman and Putnam (1984). The Trafalgar Moraine is a topographic ridge that was formed during the retreat of the Lake Ontario ice lobe 12,000 - 13,000 years ago. It extends from west area of Mississauga to the northern portion of Oakville and is found to the north of the site marking the boundary between the South Slope and the Peel Plain physiographic region located north.

The Site lies on a till plain comprised of reddish coloured clay-Silt Halton Till which is derived from the underlying bedrock formation, the Queenston Formation. The Halton Till is a poor aquifer due to its fine-grained nature and low permeability and is capable of providing only limited quantities of groundwater to water wells.

Queenston Formation surface, on a regional basis dip from the northwest to southeast, generally following the regionally topographic slope, mapped with a surface elevation of approximately 157 down to 152 masl in the vicinity of Site (Ontario Department of Mines, 1964). It is poorly fractured and also a poor aquifer due to poor pore space interconnections in the shale Formation. It is capable of providing only limited quantities of groundwater to water wells.

3.3 Climate

The site is located in the Mixedwood Plains ecozone of Ontario (Natural Resources Canada, 2012). The general climate data presented on the following page in Table 2 was obtained from Environment Canada publications and from the Environment Canada online database. Average climate data was taken from the Hamilton RBG for the period of 1981 to 2010.

	Daily Average	Average Rainfall	Average Snowfall	Average
	Temperature (°C)	(mm)	(cm)	Precipitation (mm)
January	-4.7	27.4	32.4	56.8
February	-3.9	26.4	31.1	57.2
March	0.5	43.3	18.3	63.7
April	7.1	70.1	2.8	73.3
May	13.3	85.5	0.0	85.5
June	18.9	72.7	0.0	72.7
July	22.0	82.7	0.0	82.7
August	20.9	89.7	0.0	89.7
September	16.3	80.9	0.0	80.9
October	10.0	71.6	0.0	71.6
November	4.1	83.2	7.5	91.3

Table 2. 1981 to 2010 Climate Normals for Hamilton RBG (as averages)

	Daily Average Temperature (°C)	Average Rainfall (mm)	Average Snowfall (cm)	Average Precipitation (mm)
December	-1.4	46.8	26.0	71.9
Year	8.6	780.0	118.1	897.1

Table 2 Continued.

3.4 Local Hydrogeology

Local hydrogeology conditions were assessed on the basis of local water well records and available ground investigation reports for the area.

The hydrostratigraphy (i.e., the vertical sequence and horizontal extent of aquifers and aquitards) in the overburden and bedrock generally follows the geologic layering. Till formations in the overburden act as aquitards while the sandier units generally behave as aquifers. Shale generally acts as an aquitard with an upper weathered bedrock aquifer layer.

3.5 MECP Water Well Records and Groundwater Resources

The Ministry of Environment, Conservation and Park (MECP) Water Well Information System is a publicly available database which contains information such as groundwater well location, well construction details, static water level, geologic units encountered with depth, general water quality observations, water use, date of construction, and screened interval.

The MECP records for wells located within approximately 500 meters of the site were reviewed to assess the general nature and use of the groundwater resource in the area and to characterize local hydrogeologic conditions.

Desk Top Study

A search of the MECP water well records within approximately 500 m of the site, conducted on October 20, 2021, returned a total of 15 wells comprising of seven (7) water wells, five (5) observation wells, two (2) abandoned wells, and one (1) well without information. The records were reviewed to assess the general nature of the groundwater resource in the area and to characterize local hydrogeologic conditions. The locations of the wells are shown on Figure 5 in Appendix A. A summary of the data obtained from the review is presented below and a summary of the well records is provided in Appendix C.

A summary of the data obtained from the well survey is presented below.

Well Construction

•	Wells terminated in bedrock	12
•	Well terminated in overburden	1
	Wells without information	
•	Total	15

Well Use

•	Observation Wells	5
•	Abandoned Wells	2
	No Information	
	Total	

<u>Well Depth</u>

٠	Less than 15 m	7
•	15 to 30 m	5
•	Greater than 30 m	1
•	No Data	2
•	Total	15

Based on the well records, it was determined that there are 7 water wells within 500 m radius of the Site.

3.6 Results of Site Inspection

A watercourse with significant riparian buffer within 3301 Trafalgar Road runs through the central portion of 3301 Trafalgar Road from north to south. The water pools in a fire pond at the southern limit of 3301 Trafalgar Road that is surrounded by tall grasses and cattails.

The northeast portion of 3301 Trafalgar Road is natural, grass covered, and is higher in elevation than the adjacent site areas.

At the time of Landtek's site visit, the northeastern portion of 3275 Trafalgar Road was agricultural in nature with tall grasses and wet soils progressing to the East.

The site consists of one community church parcel on the Southwestern boundary and one Residential dwelling at the Southernmost boundary.

3.7 Results of Subsurface Investigation

The borehole information is generally consistent with the geological data for the area, with the predominant soils comprising of clay and silt till underlain by red shale.

Detailed monitoring wells logs are presented in Appendix B, and the lithologies encountered during drilling are discussed further in the following sections.

Existing Pavement Structure

Boreholes BH114 and BH115 (geotechnical boreholes) were located within the existing pavement structure at the site. The pavement structure comprises of an approximately 300 mm asphaltic concrete cover with 300 mm of pavement granular materials. The pavement granular materials generally comprise of a sand and gravel product.

Organic Soils

Organic soil was encountered all boreholes, except boreholes BH114 and BH115, at the ground surface and comprised of an approximately 150 mm to 600 mm thick layer of topsoil.

It should be noted that topsoil thicknesses may vary across the site and the thicknesses encountered at the borehole locations may not be representative of the site-wide, organic soil cover.

<u>Fill</u>

Fill material was encountered in all boreholes underlying the surface materials and extends to depths of approximately 1.5 m (borehole BH114) to 4.1 m (borehole BH103) below existing ground level. The fill generally comprises of silt, clay, and sand, and includes trace fractions of gravel and cobbles and is generally brown in colour.

Silty Clay and Clayey Silt

Silty clay and clayey silt deposits were encountered in boreholes BH110, BH111 and BH119 below the fill material, ranging in depth between approximately 1.5 m (borehole BH3) to 4.4 m below existing ground level. The silty clay and clayey silt deposits encountered are primarily brown in colour and include trace fractions of sand, gravel and shale fragments.

Silty Clay and Clayey Silt Till

Clayey silt till deposits were encountered in all boreholes except boreholes BH121 and BH123 below the fill material and silty clay/clayey silt deposits. The till deposits range in depth between approximately 0.9 m (borehole BH118) to 6.6 m (borehole BH103) below the ground surface. The till deposits encountered are primarily brown in colour and include variable fractions of sand and gravel and trace cobbles.

Bedrock

Red shale of the Queenston Formation was encountered in all boreholes at depths of between approximately 1.8 m (borehole BH123) and 6.6 m (boreholes BH103) below existing ground level, and extends to the terminus of the boreholes at a maximum drill depth of approximately 10.0 m.

3.7.1 Grain Size Analyses

Results of grain size analyses are provided in Appendix D.

In total, seven (7) soil samples were collected for grain size analysis, representing major soil types. Soil samples were collected from the following five boreholes, BH1-23, BH2-23, BH3-23, BH4-23, and BH122D-23 at depths ranging from 0.8 to 5.0 mbgs. These results are summarized below.

BH1-23 @ 0.8-1.2 m bgs Classified as <u>Silty Clay</u> with 3.9% gravel, 20.2% sand, 49.3% silt and 26.6% clay.
BH2-23 @ 3.0-3.5 m bgs Classified as <u>Clayey Silt</u> with 12.7% gravel, 41.0% sand, 37.4% silt and 8.9% clay.
BH3-23 @ 2.3-2.7 m bgs Classified as <u>Silty Clay</u> with 4.9% gravel, 22.6% sand, 46.0% silt and 26.5% clay.
BH3-23 @ 4.6-5.0 m bgs Classified as <u>Silty Clay</u> with 4.1% gravel, 29.6% sand, 56.2% silt and 22.5% clay.
BH4-23 @ 2.3-2.7 m bgs

Classified as <u>Silty Clay</u> with 6.7% gravel, 22.6% sand, 46.9% silt and 23.8% clay. BH4-23 @ 4.6-5.0 m bgs

Classified as <u>Silty Clay</u> with 7.3% gravel, 29.5% sand, 45.2% silt and 18.0% clay.

BH122D-23 @ 1.5-2.0 m bgs

Classified as <u>Silty Clay</u> with 10.7% gravel, 26.3% sand, 48.9% silt and 14.1% clay.

Based on the above, it was determined that the soil types are Silty Clay and Clayey Silt.

3.8 Groundwater Monitoring

Depths to groundwater level in the monitoring wells installed at the Site were obtained manually by Landtek staff between August 2021 and June 2023. The readings are presented below in Table3.

		Total	Water	Stick-up	Water	Water	Water	Ground
MW ID	Date	Depth	Strike	(m)	Level	Level	Level	Elevation
		(mbgs)	(mbgs)*		(mbtoc)	(mbgs)	(masl)	(masl)**
MW101-20	26-Aug-21	5.10	NA	1.00	Dry	NA	NA	178.97
	10-Sep-21				4.07	3.07	175.90	
	13-Oct-21				2.98	1.98	176.99	
	15-Nov-21				2.55	1.55	177.42	
	12-Jan-22				2.51	1.51	177.46	
	16-Feb-22				2.52	1.52	177.45	
	25-Mar-22				2.1	1.10	177.87	
	28-Apr-22				2.18	1.18	177.79	
	10-May-22				2.29	1.29	177.68	
	22-Jun-22				3.25	2.25	176.72	
	20-Jul-22				4	3.00	175.97	
	15-Aug-22				4.61	3.61	175.36	
	12-Sep-22				4.96	3.96	175.01	
	07-Oct-22	_			5.21	4.21	174.76	
	08-Nov-22	_			5.37	4.37	174.60	
	12-Dec-22	_			5.47	4.47	174.50	-
	23-Jan-23	_			2.98	1.98	176.99	-
	16-Feb-23	-			2.49	1.49	177.48	-
	17-Mar-23				2.17	1.17	177.80	
	13-Apr-23				2.23	1.23	177.74	
	10-May-23				2.28	1.28	177.69	
MW111-20	26-Jun-23	8.30	NA	1.05	2.89	1.89 2.34	177.08	179.25
10100111-20	26-Aug-21	8.30	INA	1.05	3.39		176.91	179.25
	10-Sep-21 13-Oct-21	-			3.72 2.95	2.67 1.90	176.58 177.35	
	15-Nov-21	-			2.95	1.90	177.35	
	12-Jan-22				2.0	1.35	177.83	
	16-Feb-22	-			2.47	1.42	177.67	
	25-Mar-22				2.05	1.10	178.15	
	28-Apr-22	-			2.13	1.23	178.02	4
	10-May-22	-			2.26	1.20	178.04	-
	22-Jun-22	-			3	1.95	177.30	-
	20-Jul-22				3.71	2.66	176.59	
	15-Aug-22				4.22	3.17	176.08	
	12-Sep-22				4.51	3.46	175.79	1
	07-Oct-22				4.77	3.72	175.53	
	08-Nov-22				4.91	3.86	175.39	1
	12-Dec-22				5.04	3.99	175.26	
	23-Jan-23				3.36	2.31	176.94	
	16-Feb-23				2.78	1.73	177.52	
	17-Mar-23				2.46	1.41	177.84	
	13-Apr-23				2.37	1.32	177.93	
	10-May-23				2.38	1.33	177.92	
	26-Jun-23				3.78	2.73	176.52	

Table 3. Groundwater Level Monitoring Data

Table 3. Groundwater Level Monitoring Data

MW ID Date Depth (mbgs) Strike (mbgs)* (m) Level (mbtoc) Level (mbgs) Level (masl) Elevation (masl)** MW117-20 26-Aug-21 17.28 NA 0.98 11.12 10.14 170.12 180.26 10-Sep-21 13-Oct-21 17.28 NA 0.98 11.725 10.81 169.46 100.44 170.12 180.26 13-Oct-21 15-Nov-21 15-Nov-21 9.07 8.09 172.17 9.37 8.39 171.87 10-Feb-22 25-Mar-22 25-Mar-22 9.52 8.54 171.72 9.52 8.52 171.74 10-May-22 20-Jul-22 9.54 8.66 171.60 9.5 8.52 171.74 10-May-22 12-Sep-22 10.76 9.78 170.48 10.35 9.37 170.48 10-Sep-22 12-Sep-22 10.76 9.78 170.48 10.35 9.37 170.48 07-Oct-22 08-Nov-22 12-Sep-22 10.68 9.70 170.48 <th>Table 5. Gr</th> <th>oundwater</th> <th></th> <th>onitoring Da</th> <th>ata</th> <th></th> <th></th> <th></th> <th></th>	Table 5. Gr	oundwater		onitoring Da	ata				
vector (mbgs) (mbgs)<				Water	Stick-up	Water	Water	Water	Ground
MW117-20 26-Aug.21 13-G0-21 13-C0-21 15-N0v-21 12-Jan-22 26-M0-22 26-M0-22 26-M0-22 22-Jun-22 20-Jun	MW ID	Date	Depth	Strike	(m)	Level		Level	Elevation
10-56p-21 13-On-21 15-Nov-21 12-Jan-22 25-M8-22 25-M8-22 28-Apr:22 29-Apr:23 10-May:23 29-Apr:24 29-Apr			(mbgs)	(mbgs)*		(mbtoc)	(mbgs)	(masl)	(masl)**
13-Oc:21 12-Jan-22 16-Feb:22 25-Mar:22 26-22 26-22 20-2	MW117-20	26-Aug-21	17.28	NA	0.98	11.12	10.14	170.12	180.26
13-Oc:21 12-Jan-22 16-Feb:22 25-Mar:22 26-22 26-22 20-2		10-Sep-21				11.785	10.81	169.46	
12-Jan-22 (6-Feb-22) 25-Mar-22 22-Jun-22 20-Jul-22 10-May-22 22-Jun-22 20-Jul-22 115-Aug-22 12-Dec-22 23-Jan-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-22 22-Jun-22 22-Jun-22 22-Jun-22 22-Jun-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-22 22-Jun-22 2							9.76	170.50	
12-Jan-22 (6-Feb-22) 25-Mar-22 22-Jun-22 20-Jul-22 10-May-22 22-Jun-22 20-Jul-22 115-Aug-22 12-Dec-22 23-Jan-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-22 22-Jun-22 22-Jun-22 22-Jun-22 22-Jun-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-22 22-Jun-22 2		15-Nov-21				9.07	8.09	172.17	
16-Feb-22 22-Mar-22 12-Bap/22 12-Sep/22 20-Jul-22 8.14 172.12 9.64 8.66 171.60 10-May-22 20-Jul-22 12-Sep-22 12-Sep-22 07-Oct-22 08-40-22 9.64 8.66 171.60 15-Aug-22 12-Sep-22 07-Oct-22 08-Nov-22 10.15 9.17 171.08 12-Sep-22 07-Oct-22 08-Nov-22 10.66 9.70 170.48 12-Dec-22 23-Jan-23 8.82 7.84 172.26 13-Apr-23 10-May-23 10.76 9.77 8.79 171.47 16-Feb-23 13-Apr-23 8.60 NA 0.95 5.40.51 175.62 13-Apr-23 10-May-23 8.60 NA 0.95 5.40.51 175.62 13-Apr-23 13-Oct-21 8.60 NA 0.95 5.40.51 175.62 12-Sep-22 22-Mar-22 22-Mar-22 3.92 2.97 176.10 173.66 12-Sep-22 10-May-22 22-Mar-22 22-Mar-22 175.86 176.16 175.86 17-Mar-23 13-Apr-23 10-May-23 22-Mar-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May-22 22-Mar-22 10-May		12-Jan-22				9.37	8.39	171.87	
25-Mar-22 28-Apr-22 22-Jun-22 20-Jul-22 20-							8.14	172.12	
28-Apr-22 10-May-22 20-Jul-22 20-Jul-22 20-Jul-22 20-Jul-22 20-Jul-22 20-Jul-22 20-Jul-22 20-Jul-22 12-Sep-22 12-Sep-22 20-Jul-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 12-Sep-22 10-May-23 12-Sep-21 13-Oct-21 13-Oct-21 13-Oct-21 13-Oct-21 13-Oct-21 13-Sep-22 10-May-22 22-Jun-22 10-May-22 22-Jun-22 10-May-22 10-May-22 22-Jun-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-21 13-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 10-Sep-22 11-Sep-22 10-Sep-22 11-						9.52	8.54	171.72	
10-May-22 22-Jun-22 22-Jun-22 20-Jul-22 15-Aug-22 10-15 12-Sep-22 0.7-Oct-22 08-Nov-22 12-Dec-22 12-Dec-22 10-68 23-Jan-23 9.77 13-Apr-23 13-Apr-23 10-Sep-21 12-Jan-22 13-Oct						9.64		171.60	
12-Juh-22 20-Jub-22 15-Aug-22 12-Sep-22 07-Oct-22 08-Nov-22 12-Dec-22 23-Jan-23 16-Feb-23 13-Apr-23 10-May-23 26-Aug-21 18-Nov-21 12-Sep-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 19-Oct-22 10-May-23 22-Jun-23 NA 0.95 10.15 10.88 8.90 9.77 8.78 8.90 9.77 8.78 8.90 7.72 9.77 8.79 7.72 8.90 7.72 17.563 17.563 17.564 17.561 17.551 17.562 17.55 17.572 17.55 17.572 17.55 17.572 17.55 17.55 17.572 17.55 17		10-May-22						171.74	
20-Jul-22 15-Aug-22 12-Sep-22 07-Oct-22 08-Nov-22 12-Dec-22 32-Jan-23 16-Feb-23 17-Mar-23 12-Mar-23 9.88 8.80 171.36 1.1.89 10.91 169.35 10.76 9.78 170.48 10.35 9.37 170.48 10.35 9.37 170.48 10.35 9.37 170.48 10.35 9.37 171.47						10.15	9.17	171.09	
15-Aug-22 07-Oct-22 08-Nov-22 12-Dec-22 23-Jan-23 13-Apr-23 13-Apr-23 13-Apr-23 10-May-22 22-Jun-22 11.89 10.76 9.77 8.79 10-Kay-24 13-Apr-23 13-Apr-23 13-Apr-23 13-Apr-23 13-Apr-23 13-Apr-23 13-Apr-23 13-Apr-23 13-Apr-23 16-Feb-22 22-Jun-22 8.60 NA NA 0.95 4.52 4.52 3.78 4.53 4.53 4.52 4.53 4.53 4.53 4.53 4.52 4.53 4.53 4.53 4.52 4.53 4.53 4.52 4.53 4.52 4.53 4.53 4.52 4.53 4.53 4.53 4.53 4.55 4.52 4.53 4.53 4.55 4.52 4.53 4.53 4.55 4.52 4.52 4.53 4.53 4.55 4.52 4.53 4.55 4.52 4.53 4.55 4.52 4.53 4.55 4.52 4.53 4.55 4.52 4.52 4.52 4.52 4.52 4.53 4.55 4.52 4.52 4.53 4.55 4.52 4.53 4.55 4.53 4.55 4.52 4.53 4.55 4.52 4.53 4.55 4.52 4.52 4.52 4.53 4.55 4.53 4.55 4.53 4.55 4.53 4.55 4.55		20-Jul-22					8.90	171.36	
12-Sep-22 07-Oct-22 10.76 9.78 170.48 00-NOV-22 12-Dec-22 10.68 9.70 170.56 12-Jan-23 13-Apr-23 10.68 9.77 8.98 8.00 172.24 10-May-23 13-Apr-23 10-May-23 8.98 9.77 172.24 17.05 10-May-23 10-May-23 8.60 NA 0.95 5 4.05 175.70 13-Oct-21 13-Oct-21 8.60 NA 0.95 5 4.05 175.70 13-Oct-21 13-Oct-21 13-Oct-21 13-Oct-21 175.70 176.70 12-Jan-22 25-Mar-22 3.78 176.84 3.92 2.97 176.70 10-May-22 22-Jun-22 4.12 3.17 176.50 4.11 3.16 176.50 12-Jan-22 15-Aug-21 4.58 3.63 176.04 4.53 3.63 176.04 12-Sep-23 0.70-Oct-22 5.82 4.87 174.80 5.5.03 4.06 176.51 </td <td></td> <td>15-Aug-22</td> <td></td> <td></td> <td></td> <td>11.89</td> <td></td> <td>169.35</td> <td></td>		15-Aug-22				11.89		169.35	
07-Oct-22 08-Nov-22 12-Dec-22 23-Jan-23 17-Mar-23 13-Apr-23 10-May-23 26-Jun-23 8.82 7.84 172.42 10.68 10-May-23 26-Jun-23 8.60 9.77 8.79 171.47 13-Apr-23 10-May-23 26-Jun-23 8.60 NA 0.95 8.00 172.26 MW118-20 26-Aug-21 13-Oct-21 8.60 NA 0.95 4.05 175.62 179.67 13-Oct-21 8.60 NA 0.95 4.05 175.95 179.67 12-Jan-22 16-Feb-22 8.60 NA 0.95 4.52 3.57 176.10 22-Jun-22 2-Jun-22 3.92 2.97 176.70 4.92 3.97 176.70 12-Jan-22 16-Feb-22 3.78 2.83 176.64 1.63 176.62 12-Jan-22 15-Aug-22 3.92 2.97 176.70 176.70 12-Jan-22 15-34 3.56 176.62 3.76 2.83 176.64 12-Jan-22 15-52 176.70 174.74 176.70 176.70 176.70									
08-Nov-22 12-Dec-22 23-Jan-23 16-Feb-23 13-Apr-23 13-Apr-23 26-Jun-23 8.82 7.84 172.42 10.68 9.70 170.57 10-feb-23 13-Apr-23 26-Jun-23 17.Mar-23 10-May-23 26-Jun-23 8.98 8.00 172.26 MW118-20 26-Aug-21 13-Oct-21 13-Oct-21 13-Oct-21 12-Jan-22 16-Feb-22 22-Jun-22 22-Jun-22 22-Jun-22 22-Jun-22 10-May-23 16-Feb-22 12-Jun-22 10-May-22 22-Jun-22 22-Jun-22 22-Jun-22 10-May-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 10-May-23 10-May-23 26-Jun-23 10-Sep-21 13-Aug-22 10-Sep-21 13-Aug-22 10-Sep-21 13-Aug-22 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-22 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-22 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23 10-Sep-21 13-May-23						10.35	9.37	170.89	
12-Dec-22 23.Jan-23 10.68 9.70 170.56 16-Feb-23 17.Mar-23 9.77 8.79 171.47 13-Apr-23 10-May-23 8.39 7.741 172.26 13-Apr-23 10-May-23 8.00 173.26 8.39 7.741 172.26 10-Sep-21 8.60 NA 0.95 5 4.05 175.02 179.67 10-Sep-21 13-Oct-21 8.60 NA 0.95 5 4.05 175.02 179.67 13-Oct-21 16-Feb-22 2.5-Mar-22 3.78 2.83 176.84 22-Jun-22 20-Jul-22 3.92 2.95 176.72 14-12 3.17 176.50 3.92 2.95 176.72 12-Dec-22 20-Jul-22 5.82 4.87 174.80 12-Dec-22 20-Jul-22 5.82 4.87 175.89 10-May-23 8.50 NA 1.03 6.75 5.72 176.70 12-Dec-22 3.94 175.89 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.84</td> <td></td> <td></td>							7.84		
Ibs-Feb-23 17-Mar-23 10-May-23 26-Jun-23 8.60 NA 0.95 8.98 8.00 172.26 8.39 7.41 172.26 172.34 MW118-20 26-Aug-21 13-Oct-21 13-Oct-21 15-Nov-21 8.60 NA 0.95 5 4.05 175.62 175.62 179.67 10-Sep-21 13-Oct-21 15-Nov-21 8.60 NA 0.95 5 4.06 175.62 179.67 4.52 3.97 175.70 4.52 3.72 175.95 4.52 3.78 2.83 176.89 28-Apr-22 20-Jul-22 22-Jun-22 22-Jun-22 3.92 2.97 176.70 10-May-22 20-Jul-22 3.78 2.83 176.76 12-Dec-22 20-Jul-22 4.12 3.17 176.50 12-Dec-22 20-Jul-22 5.3 4.35 175.69 17-Mar-23 17-Mar-23 5.82 4.87 174.61 12-Dec-22 26-Jun-23 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 17-Mar-23 6.99						10.68		170.56	
Ibs-Feb-23 17-Mar-23 10-May-23 26-Jun-23 8.60 NA 0.95 8.98 8.00 172.26 8.39 7.41 172.26 172.34 MW118-20 26-Aug-21 13-Oct-21 13-Oct-21 15-Nov-21 8.60 NA 0.95 5 4.05 175.62 175.62 179.67 10-Sep-21 13-Oct-21 15-Nov-21 8.60 NA 0.95 5 4.06 175.62 179.67 4.52 3.97 175.70 4.52 3.72 175.95 4.52 3.78 2.83 176.89 28-Apr-22 20-Jul-22 22-Jun-22 22-Jun-22 3.92 2.97 176.70 10-May-22 20-Jul-22 3.78 2.83 176.76 12-Dec-22 20-Jul-22 4.12 3.17 176.50 12-Dec-22 20-Jul-22 5.3 4.35 175.69 17-Mar-23 17-Mar-23 5.82 4.87 174.61 12-Dec-22 26-Jun-23 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 17-Mar-23 6.99									
17-Mar-23 13-Apr-23 26-Jun-23 8.39 7.41 172.85 8.70 7.72 172.54 8.70 7.72 172.54 8.70 7.72 172.54 8.70 7.72 172.54 8.70 7.72 172.54 8.70 7.72 172.54 8.70 7.72 172.54 7.88 6.90 175.80 10-Sep-21 8.60 NA 0.95 112-Jan-22 15-Nov-21 4.67 3.72 175.50 4.67 3.72 176.70 4.67 3.72 176.70 12-Jan-22 25-Mar-22 3.77 176.70 3.92 2.97 176.70 10-May-22 22-Jun-22 4.12 3.17 176.50 4.42 3.92 2.97 176.70 12-Dec-22 20-Jul-22 4.12 3.17 176.50 176.50 12-Dec-22 20-Jul-22 5.82 4.87 174.80 15.80 176.16 13-Apr-23			1						
I3-Apr:23 (0/May-23) 26-Jun-23 8.60 NA 0.95 8.70 7.72 172.54 MW118-20 26-Aug-21 (13-Oct-21) 8.60 NA 0.95 5 4.05 175.62 10-Sep-21 (13-Oct-21) 8.60 NA 0.95 5 4.05 175.62 4.52 3.97 175.70 4.52 3.72 175.95 16-Feb-22 2.5-Mar-22 3.78 2.83 176.84 22-Jun-22 22-Jun-22 3.92 2.97 176.70 10-May-22 22-Jun-22 4.12 3.176.64 20-Jul-22 3.99 2.95 176.72 12-Jun-22 0.9-Vor-22 4.12 3.176.53 07-Oct-22 08-Nov-22 5.3 4.35 175.52 08-Nov-22 12-Dec-22 5.3 4.35 175.32 10-May-23 8.50 NA 1.03 6.75 5.72 174.83 10-May-23 8.50 NA 1.03 6.75 5.72 174.83			1						
IO-May-23 26-Jun-23 8.60 NA 0.95 5 4.05 177.36 MW118-20 10-Sep-21 13-Oct-21 13-Oct-21 13-Oct-21 12-Jan-22 25-Mar-22 26-Mar-22 22-Jun-22 20-Jul-22 15-Nov-21 12-Sep-22 07-Oct-22 08-Nov-22 12-Sep-22 07-Oct-22 08-Nov-22 12-Sep-23 17-Mar-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-23 10-May-22 22-Jun-22 22-Jun-22 22-Jun-23 NA 0.95 5 4.05 175.62 4.12 179.67 MW119-20 26-Aug-21 13-Sep-21 13-Sep-23 10-May-23 10-May-23 26-Jun-23 8.50 NA 1.03 6.75 5.72 5.93 176.04 4.455 3.60 176.04 4.455 MW119-20 26-Aug-21 13-Sep-									
26-Jun-23 7.88 6.90 173.36 MW118-20 26-Aug-21 8.60 NA 0.95 5 4.05 175.62 13-Set-21 13-Oct-21 13-Nov-21 175.70 4.67 3.72 176.95 12-Jan-22 16-Feb-22 25-Mar-22 3.78 2.83 176.04 28-Apr-22 25-Mar-22 3.78 2.83 176.64 3.92 2.97 176.70 3.9 2.95 176.70 10-May-22 22-Jun-22 4.12 3.17 176.60 20-Jul-22 15-Aug-22 4.12 3.17 176.61 15-Aug-22 08-Nov-22 5.3 4.35 175.32 07-Oct-22 08-Nov-22 5.82 4.87 174.80 13-Apr-23 10-May-23 5.03 4.06 175.17 10-May-23 8.50 NA 1.03 6.75 5.72 174.80 13-Oct-21 13-Oct-21 8.50 NA 1.03 6.75 5.72 174.8									
MW118-20 26-Aug-21 8.60 NA 0.95 5 4.05 175.62 175.62 13-Oct-21 13-Oct-21 4.67 3.72 175.70 175.95 4.52 3.57 176.10 12-Jan-22 25-Mar-22 25-Mar-22 3.78 2.83 176.39 175.62 175.95 175.95 22-Jun-22 22-Jun-22 20-Jul-22 3.78 2.83 176.84 3.92 2.97 176.70 15-Sup-22 20-Jul-22 20-Jul-22 4.12 3.17 176.50 4.11 3.92 2.95 176.72 15-Sup-22 20-Jul-22 4.12 3.17 176.50 4.11 3.92 176.84 12-Sep-22 07-Oct-22 23-Jan-23 5.62 4.87 174.80 5.82 4.87 174.80 12-Dec-22 23-Jan-23 16-Feb-23 5.86 4.93 175.59 5.03 4.06 175.59 17-Mar-23 16-Feb-23 10-May-23 4.46 3.51 176.16 4.46 3.51 176.16 10-Sep-21 13-Oct-21 13-Oct-21						7.88	6.90	173.36	
10-Sep-21 13-Oct-21 4.92 3.97 175.70 13-Oct-21 4.62 3.72 175.96 12-Jan-22 4.52 3.57 176.10 12-Jan-22 4.37 3.42 176.39 26-Mar-22 3.78 2.83 176.39 28-Apr-22 3.78 2.83 176.40 28-Apr-22 3.78 2.83 176.84 20-Jul-22 2-Jun-22 3.78 2.83 176.84 10-May-22 2-Jun-22 4.12 3.17 176.60 20-Jul-22 4.11 3.16 176.51 4.93 3.98 175.69 17-Mar-23 4.86 3.63 176.44 5.24 4.29 175.38 10-May-23 26-Aug-21 5.82 4.87 174.46 174.46 13-Oct-21 8.50 NA 1.03 6.75 5.72 174.93 10-May-23 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21	MW118-20	26-Aug-21	8.60	NA	0.95				179.67
13-Oct-21 15-Nov-21 12-Jan-22 26-Mar-22 4.67 3.72 175.95 4.52 3.57 176.10 4.23 3.28 176.39 4.37 3.42 176.25 3.78 2.83 176.84 3.92 2.97 176.70 10-May-22 2.2-Jun-22 4.12 3.17 176.50 22-Jun-22 4.12 3.17 176.50 20-Jul-22 4.13 3.98 175.69 07-Oct-22 08-Nov-22 4.93 3.98 175.69 07-Oct-22 08-Nov-22 5.88 4.93 174.74 23-Jan-23 16-Feb-23 17.480 175.59 17-Mar-23 4.46 3.51 176.16 13-Apr-23 4.46 3.51 176.16 13-Apr-23 4.47 3.52 176.15 10-May-23 4.47 3.52 176.16 13-Oct-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 180.65						4.92			
12-Jan-22 4.23 3.28 176.39 16-Feb-22 25-Mar-22 3.78 2.83 176.84 28-Apr-22 3.92 2.97 176.70 10-May-22 22-Jun-22 3.9 2.95 176.72 22-Jun-22 20-Jul-22 4.12 3.17 176.50 15-Aug-22 4.12 3.17 176.60 12-Sep-22 07-Oct-22 5.82 4.87 174.80 12-Dec-22 5.82 4.87 174.80 12-Dec-22 5.82 4.87 174.80 13-Apr-23 5.03 4.08 175.59 17-Mar-23 4.55 3.60 176.16 13-Apr-23 4.47 3.52 176.16 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21						4.67	3.72		
16-Feb-22 25-Mar-22 28-Apr-22 3.78 2.83 28-Apr-22 3.92 2.97 10-May-22 3.92 2.97 22-Jun-22 4.12 3.17 20-Jul-22 4.12 3.17 15-Aug-22 4.12 3.17 15-Aug-22 4.11 3.16 07-Oct-22 5.3 4.35 08-Nov-22 5.3 4.35 12-Sep-22 07-Oct-22 5.82 08-Nov-22 5.82 4.87 12-Dec-22 5.82 4.87 23-Jan-23 5.24 4.29 17-Mar-23 5.24 4.29 17-Mar-23 5.24 4.29 17-Mar-23 5.24 4.29 10-May-23 7.16 4.55 26-Jun-23 4.47 3.52 10-May-23 7.14 6.11 10-Sep-21 8.50 NA 1.03 10-Sep-21 8.50 NA 1.03 26-Aug-21		15-Nov-21				4.52	3.57	176.10	
16-Feb-22 25-Mar-22 28-Apr-22 3.78 2.83 28-Apr-22 3.92 2.97 10-May-22 3.92 2.97 22-Jun-22 4.12 3.17 20-Jul-22 4.12 3.17 15-Aug-22 4.12 3.17 15-Aug-22 4.11 3.16 07-Oct-22 5.3 4.35 08-Nov-22 5.3 4.35 12-Sep-22 07-Oct-22 5.82 08-Nov-22 5.82 4.87 12-Dec-22 5.82 4.87 23-Jan-23 5.24 4.29 17-Mar-23 5.24 4.29 17-Mar-23 5.24 4.29 17-Mar-23 5.24 4.29 10-May-23 7.16 4.55 26-Jun-23 4.47 3.52 10-May-23 7.14 6.11 10-Sep-21 8.50 NA 1.03 10-Sep-21 8.50 NA 1.03 26-Aug-21		12-Jan-22				4.23	3.28	176.39	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
10-May-22 3.9 2.95 176.72 22-Jun-22 4.12 3.17 176.50 20-Jul-22 4.12 3.17 176.50 12-Sep-22 4.11 3.16 176.51 4.58 3.63 176.04 4.25ep-22 4.93 3.98 175.69 07-Oct-22 5.82 4.87 174.80 12-Dec-22 5.82 4.87 174.80 12-Dec-22 5.88 4.93 174.74 23-Jan-23 16-Feb-23 175.38 5.03 4.08 175.59 17-Mar-23 5.24 4.29 175.38 5.03 4.06 176.07 26-Jun-23 4.46 3.51 176.16 4.58 3.63 176.04 10-May-23 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-22 8.50 NA		25-Mar-22				3.78	2.83	176.84	
22-Jun-22 4.12 3.17 176.50 20-Jul-22 15-Aug-22 4.11 3.16 176.51 12-Sep-22 4.93 3.98 175.69 07-Oct-22 5.3 4.35 176.32 08-Nov-22 5.82 4.87 174.80 12-Dec-22 5.82 4.87 174.80 23-Jan-23 16-Feb-23 177.147.55 176.16 13-Apr-23 10-Feb-23 177.16.16 4.46 3.51 176.04 10-May-23 26-Jun-23 4.46 3.51 176.16 13-Apr-23 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 13-Oct-21 13-Oct-21 13-Oct-21 7.08 6.05 174.60 15-Nov-21 12-Jan-22 6.93 5.90 174.75 6.99 5.96 174.69 25-Mar-22 22-Jun-22 6.83 5.80 174.69 6.49 5.		28-Apr-22				3.92	2.97	176.70	
20-Jul-22 4.11 3.16 176.51 15-Aug-22 4.58 3.63 176.04 12-Sep-22 07-Oct-22 5.3 4.35 175.32 08-Nov-22 5.82 4.87 174.80 12-Dec-22 5.82 4.87 174.80 23-Jan-23 16-Feb-23 5.03 4.08 175.59 17-Mar-23 5.03 4.08 175.59 17-Mar-23 4.46 3.51 176.16 13-Apr-23 4.46 3.63 176.04 10-May-23 26-Jun-23 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 12-Jan-22 16-Feb-22 25-Mar-22 6.93 5.90 174.75 6.99 5.96 174.60 28-Apr-22 10-May-22 22-Jun-22 6.83		10-May-22				3.9	2.95	176.72	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22-Jun-22				4.12	3.17	176.50	
12-Sep-22 07-Oct-22 08-Nov-22 12-Dec-22 23-Jan-23 16-Feb-23 17-Mar-23 16-Feb-23 17-Mar-23 4.93 5.3 3.98 4.93 175.69 5.32 12-Dec-22 23-Jan-23 16-Feb-23 17-Mar-23 16-Jun-23 5.82 5.24 4.29 4.29 175.38 5.03 13-Apr-23 10-Sep-21 10-Sep-21 12-Jan-22 26-Jun-23 8.50 NA 1.03 6.75 5.72 174.93 174.61 MW119-20 26-Aug-21 10-Sep-21 12-Jan-22 26-Jun-22 20-Jun-22 20-Jun-22 22-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 8.50 NA 1.03 6.75 5.72 174.93 174.75 6.93 5.90 180.65 MW119-20 26-Aug-21 12-Jan-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 8.50 NA 1.03 6.75 5.72 174.93 174.60 6.93 5.90 180.65 MW119-20 26-Aug-21 12-Jan-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 20-Jun-22 8.50 NA 1.03 6.75 5.90 174.75 6.83 5.80 174.85 7.02 5.99 174.66 7.07 6.04 174.85 7.02 5.99 174.66 7.07 6.04 174.66 7.07 7.07 6.04 174.66 7.07 7.15 6.12 174.53		20-Jul-22				4.11	3.16	176.51	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15-Aug-22				4.58	3.63	176.04	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12-Sep-22				4.93	3.98	175.69	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		07-Oct-22				5.3	4.35	175.32	
23-Jan-23 5.24 4.29 175.38 16-Feb-23 5.03 4.08 175.99 17-Mar-23 4.46 3.51 176.16 13-Apr-23 4.46 3.51 176.04 10-May-23 4.47 3.52 176.15 26-Jun-23 4.47 3.52 176.15 MW119-20 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 8.50 NA 1.03 6.75 5.90 174.60 13-Oct-21 15-Nov-21 6.93 5.90 174.60 6.93 5.90 174.69 25-Mar-22 25-Mar-22 6.83 5.80 174.69 6.83 5.80 174.85 10-May-22 22-Jun-22 6.83 5.80 174.85 6.83 5.80 174.85 20-Jul-22 0.Jul-22 7.02 5.99 174.66<		08-Nov-22				5.82	4.87	174.80	
16-Feb-23 5.03 4.08 175.59 17-Mar-23 4.46 3.51 176.16 13-Apr-23 4.46 3.51 176.04 10-May-23 26-Jun-23 4.47 3.52 176.15 MW119-20 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 13-Oct-21 8.50 NA 1.03 6.75 5.72 174.93 10-Sep-21 13-Oct-21 7.14 6.11 174.54 13-Oct-21 15-Nov-21 7.08 6.05 174.60 15-Nov-21 12-Jan-22 6.93 5.90 174.75 12-Jan-22 16-Feb-22 6.83 5.80 174.69 25-Mar-22 6.83 5.80 174.85 10-May-22 22-Jun-22 6.83 5.80 174.85 10-May-22 7.02 5.99 174.66 7.02 5.99 174.66 7.07 6.04 174.61 15-Aug-22 7.02		12-Dec-22				5.88	4.93	174.74	
17-Mar-23 4.46 3.51 176.16 13-Apr-23 4.58 3.63 176.04 10-May-23 26-Jun-23 4.47 3.52 176.15 MW119-20 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 13-Oct-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 13-Oct-21 13-Oct-21 6.93 5.90 174.60 6.93 5.90 174.75 12-Jan-22 6.93 5.90 174.69 6.49 5.46 175.19 25-Mar-22 25-Mar-22 6.83 5.80 174.85 6.83 5.80 174.85 10-May-22 22-Jun-22 6.83 5.80 174.85 174.85 6.83 5.80 174.85 20-Jul-22 15-Aug-22 15-Aug-22 174.66 7.07 6.04 174.61		23-Jan-23				5.24	4.29	175.38	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						5.03		175.59	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
26-Jun-23 4.47 3.52 176.15 MW119-20 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 13-Oct-21 13-Oct-21 7.08 6.05 174.60 15-Nov-21 12-Jan-22 6.93 5.90 174.75 6.93 5.90 174.75 16-Feb-22 25-Mar-22 6.49 5.46 175.19 6.83 5.80 174.85 10-May-22 22-Jun-22 6.83 5.80 174.85 7.02 5.99 174.66 20-Jul-22 15-Aug-22 7.07 6.04 174.61 7.15 6.12 174.53									
MW119-20 26-Aug-21 8.50 NA 1.03 6.75 5.72 174.93 180.65 10-Sep-21 13-Oct-21 13-Oct-21 7.14 6.11 174.54 13-0ct-21 15-Nov-21 15-Nov-21 6.93 5.90 174.75 6.93 5.90 174.75 16-Feb-22 25-Mar-22 6.49 5.46 175.19 6.83 5.80 174.85 10-May-22 22-Jun-22 6.83 5.80 174.85 6.83 5.80 174.85 20-Jul-22 20-Jul-22 7.02 5.99 174.66 7.07 6.04 174.61 15-Aug-22 15-Aug-22 7.07 6.04 174.61 174.53		10-May-23				4.55			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW119-20		8.50	NA	1.03				180.65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
25-Mar-22 6.49 5.46 175.19 28-Apr-22 6.83 5.80 174.85 10-May-22 6.83 5.80 174.85 22-Jun-22 7.02 5.99 174.66 20-Jul-22 7.07 6.04 174.61 15-Aug-22 7.15 6.12 174.53									
28-Apr-22 6.83 5.80 174.85 10-May-22 6.83 5.80 174.85 22-Jun-22 7.02 5.99 174.66 20-Jul-22 7.07 6.04 174.61 15-Aug-22 7.15 6.12 174.53									
10-May-226.835.80174.8522-Jun-227.025.99174.6620-Jul-227.076.04174.6115-Aug-227.156.12174.53									
22-Jun-227.025.99174.6620-Jul-227.076.04174.6115-Aug-227.156.12174.53									
20-Jul-22 7.07 6.04 174.61 15-Aug-22 7.15 6.12 174.53									
15-Aug-22 7.15 6.12 174.53									
12-Sep-22 7.21 6.18 174.47									
		12-Sep-22				7.21	6.18	174.47	

Table 3. Groundwater Level Monitoring Data Continued

Table 3. Groundwater Level Monitoring Data Continued								
		Total	Water	Stick-up	Water	Water	Water	Ground
MW ID	Date	Depth	Strike	(m) .	Level	Level	Level	Elevation
		(mbgs)	(mbgs)*	. ,	(mbtoc)	(mbgs)	(masl)	(masl)**
MW119-20	07-Oct-22	8.50	NA	1.03	7.39	6.36	174.29	180.65
	08-Nov-22				7.49	6.46	174.19	
	12-Dec-22	1			7.42	6.39	174.26	
	23-Jan-23	1			7.03	6.00	174.65	
	16-Feb-23				6.81	5.78	174.87	
	17-Mar-23				5.87	4.84	175.81	
	13-Apr-23				7.01	5.98	174.67	
	10-May-23				7.58	6.55	174.07	
	26-Jun-23	-			8.02	6.99	174.10	
MW102S	26-Aug-21	3.18	None	1.16	-	NA	NA	180.74
101023	10-Sep-21	5.10	None	1.10		NA	NA	100.74
	13-Oct-21	-			-	NA	NA	
	15-Nov-21	-			-	NA	NA	
		1				NA	NA	
	12-Jan-22	-			-			
	16-Feb-22	-			-	NA NA	NA NA	
	25-Mar-22	-			-			
	28-Apr-22	-			Dry 4.12	NA 2.06	NA	
	10-May-22	-			4.12	2.96	177.78	
	22-Jun-22	-			3.57	2.41	178.33	
	20-Jul-22	-			3.53	2.37	178.37	
	15-Aug-22	-			3.59	2.43	178.31	
	12-Sep-22	-			3.84	2.68	178.06	
	07-Oct-22	-			3.91	2.75	177.99	
	08-Nov-22	-			4.07	2.91	177.83	
	12-Dec-22	-			4.23	3.07	177.67	
	23-Jan-23	-			2.79	1.63	179.11	
	16-Feb-23	-			2.44	1.28	179.46	
	17-Mar-23	-			2.22	1.06	179.68	
	13-Apr-23	-			2.48	1.32	179.42	
	10-May-23	-			2.57	1.41	179.33	
	26-Jun-23				2.98	1.82	178.92	
MW102D	26-Aug-21	4.50	2.1	0.71	3.02	2.31	178.43	180.74
	10-Sep-21				3.18	2.47	178.27	
	13-Oct-21				2.85	2.14	178.60	
	15-Nov-21				2.6	1.89	178.85	
	12-Jan-22	-			2.5	1.79	178.95	
	16-Feb-22				2.58	1.87	178.87	
	25-Mar-22				1.73	1.02	179.72	
	28-Apr-22				2.48	1.77	178.97	
	10-May-22				2.44	1.73	179.01	
	22-Jun-22	4			2.86	2.15	178.59	
	20-Jul-22				3.15	2.44	178.30	
	15-Aug-22	4			3.4	2.69	178.05	
	12-Sep-22	4			3.68	2.97	177.77	
	07-Oct-22				3.93	3.22	177.52	
	08-Nov-22				4.21	3.50	177.24	
	12-Dec-22				4.36	3.65	177.09	
	23-Jan-23	4			2.91	2.20	178.54	
	16-Feb-23	4			2.64	1.93	178.81	
	17-Mar-23	4			2.34	1.63	179.11	
	13-Apr-23	4			2.30	1.59	179.15	
	10-May-23				2.45	1.74	179.00	
	26-Jun-23				2.64	1.93	178.81	
MW103	26-Aug-21	10.00	6.7	0.70	7.02	6.32	177.87	184.19
	10-Sep-21				7.37	6.67	177.52	
	13-Oct-21				7.01	6.31	177.88	
	15-Nov-21				6.5	5.80	178.39	

Table 3. Groundwater Level Monitoring Data Continued

<u>Table 3. G</u>	iroundwater	<u>Levei Mo</u>	onitoring D	<u>ata Contii</u>	nued			
		Total	Water	Stick-up	Water	Water	Water	Ground
MW ID	Date	Depth	Strike	(m)	Level	Level	Level	Elevation
		(mbgs)	(mbgs)*	. ,	(mbtoc)	(mbgs)	(masl)	(masl)**
MW103	12-Jan-22	10.00	6.7	0.70	5.82	5.12	179.07	184.19
	16-Feb-22				6.06	5.36	178.83	
	25-Mar-22				Frozen	NA	NA	
	28-Apr-22				5.46	4.76	179.43	
	10-May-22				5.41	4.71	179.48	
	22-Jun-22				6.19	5.49	178.70	
	20-Jul-22				6.23	5.53	178.66	
	15-Aug-22				6.31	5.61	178.58	
	12-Sep-22				7.7	7.00	177.19	
	07-Oct-22				7.89	7.19	177.00	
	08-Nov-22				7.97	7.27	176.92	
	12-Dec-22				7.98	7.28	176.91	
	23-Jan-23				7.82	7.12	177.07	
	16-Feb-23				7.39	6.69	177.50	
	17-Mar-23				7.08	6.38	177.81	
	13-Apr-23				5.86	5.16	179.03	
	10-May-23				5.91	5.21	178.98	
	26-Jun-23				6.07	5.37	178.82	
MW106	26-Aug-21	9.50	7.0	0.94	5.7	4.76	177.77	182.53
10100	10-Sep-21	3.50	7.0	0.34	5.94	5.00	177.53	102.00
	13-Oct-21				5.75	4.81	177.72	
	15-Nov-21				4.98	4.04	178.49	
	12-Jan-22				4.98	3.35	179.18	
	16-Feb-22				4.65	3.71	178.82	
	25-Mar-22				3.5	2.56	179.97	
	28-Apr-22				4.02	3.08	179.45	
	10-May-22				3.88	2.94	179.59	
	22-Jun-22				4.20	3.26	179.27	
	20-Jul-22				4.36	3.42	179.11	
	15-Aug-22				4.48	3.54	178.99	
	12-Sep-22				6.35	5.41	177.12	
	07-Oct-22				6.48	5.54	176.99	
	07-001-22 08-Nov-22				6.62	5.68	176.85	
	12-Dec-22				6.67	5.73	176.80	
	23-Jan-23				5.99	5.05	170.80	
	16-Feb-23				5.59	4.65	177.88	
	17-Mar-23				5.34	4.00	178.13	
	13-Apr-23				4.02	3.08	178.13	
	10-May-23				4.02	3.14	176.31	
	26-Jun-23				4.08	3.34	179.19	
MW120S	26-Aug-21	2.43	None	0.68	4.20	NA	NA	178.49
101001200	10-Sep-21	2.45	None	0.00		NA	NA	170.43
	13-Oct-21				-	NA	NA	
	15-Nov-21				-	NA	NA	
	12-Jan-22				-	NA	NA	
	16-Feb-22				-	NA	NA	
	25-Mar-22				-	NA	NA	
	28-Apr-22				1.02	0.34	178.15	
	10-May-22				1.16	0.34	178.01	
	22-Jun-22				1.10	0.48	178.01	
	22-Jul-22				1.99	1.31	177.18	
	15-Aug-22				2.39	1.71	176.78	
	12-Sep-22				2.39	2.16	176.33	
	07-Oct-22				2.84	2.10	176.21	
	07-001-22 08-Nov-22				3.11	2.20	176.21	
	12-Dec-22				Dry	2.43 NA	NA	
	23-Jan-23				1.1	0.42	178.07	
	20-Jan-20				1.1	0.42	170.07	

MW ID Date Depth (mbgs) Strike (mbgs)* (m) Level (mbtoc) Level (mbgs) Leve	Water Level (masl) (78.06 (78.24 (78.00) (78.03	Ground Elevation (masl)**
Image: Mark Mark Mark Mark Mark Mark Mark Mark	masl) 178.06 178.24 178.00	
16-Feb-23 1.11 0.43 1 17-Mar-23 0.93 0.25 1 13-Apr-23 1.17 0.49 1 10-May-23 1.14 0.46 1 26-Jun-23 1.68 1.00 1 MW120D 26-Aug-21 7.40 None 0.63 Dry NA	178.06 178.24 178.00	(masl)**
17-Mar-23 0.93 0.25 1 13-Apr-23 1.17 0.49 1 10-May-23 1.14 0.46 1 26-Jun-23 1.68 1.00 1 MW120D 26-Aug-21 7.40 None 0.63 Dry NA	178.24 178.00	
13-Apr-23 1.17 0.49 1 10-May-23 1 1.14 0.46 1 26-Jun-23 1.68 1.00 1 MW120D 26-Aug-21 7.40 None 0.63 Dry NA	78.00	
10-May-23 1.14 0.46 1 26-Jun-23 1.68 1.00 1 MW120D 26-Aug-21 7.40 None 0.63 Dry NA		
26-Jun-23 1.68 1.00 1 MW120D 26-Aug-21 7.40 None 0.63 Dry NA	78.03	1
MW120D 26-Aug-21 7.40 None 0.63 Dry NA		
	168.49	
10-Sep-21 2.22 1.59 1	NA	178.49
	176.90	
	77.09	
	177.30	
	77.09	
16-Feb-22 1.6 0.97 1	77.52	
	77.79	
<u>28-Apr-22</u> <u>1.4</u> <u>0.77</u> <u>1</u>	77.72	
	77.57	
	77.06	
	176.72	
	176.15	
	175.74	
	75.25	
	74.87	
	74.88	
	76.96	
	177.30	
	77.66	
	77.56	
	77.60	
	177.22	
MW121S 26-Aug-21 2.43 None 0.79 - NA	NA	178.28
10-Sep-21 - NA	NA	
13-Oct-21 - NA	NA	
15-Nov-21 - NA	NA	
12-Jan-22 - NA	NA	4
16-Feb-22 - NA	NA NA	
25-Mar-22 - NA 28-Apr-22 Dry NA	NA	
	176.65	
	176.37 177.02	
	176.62	
	176.11	
	175.97	
08-Nov-22 Dry NA	NA	
12-Dec-22 Dry NA	NA	
	177.90	
	177.89	
	178.08	
	177.81	
	177.93	
	177.48	1
	176.15	178.28
	175.80	
	176.86	1
	177.26	1
15-Nov-21 2.02 1.02 1		1
	77.29	1
12-Jan-22 1.99 0.99 1	77.29 77.26	
12-Jan-22 1.99 0.99 1 16-Feb-22 2.02 1.02 1		

MW ID	Date	Total Depth (mbgs)	Water Strike (mbgs)*	Stick-up (m)	Water Level (mbtoc)	Water Level (mbgs)	Water Level (masl)	Ground Elevation (masl)**
MW121D	10-May-22	6.50	5.0	1.00	1.8	0.80	177.48	178.28
	22-Jun-22				1.73	0.73	177.55	
	20-Jul-22				3.52	2.52	175.76	
	15-Aug-22				4.05	3.05	175.23	
	12-Sep-22				4.41	3.41	174.87	
	07-Oct-22				4.68	3.68	174.60	

Table 3. Groundwater Level Monitoring Data Continued

Notes:

[*] water strike/groundwater seepage

mbtoc = meters below top of casing

mbgs = meters below ground surface

masl = meters above sea-level

[**] A.T. McLaren Limited (Legal and Engineering Surveys), Drawing No. 36729-T, August 10, 2021

3.9 Hydraulic Gradients and Flow

Vertical Hydraulic Gradient

Groundwater generally flows from the shallow to deeper aquifers as leakage across the aquitards. However, this may vary locally, and the direction of vertical flow depends on the relative heads in the different layers. Leakage rates vary locally depending on the magnitude of the vertical gradients and on the thickness and hydraulic conductivity of the confining units.

Horizontal Hydraulic Gradient

Groundwater flow typically follows the general path of the surface water courses and flow to low lying and major surface water features from areas of higher gradients to areas of relative lower gradients. In this study area, the inferred groundwater flow direction is towards the wetland/ watercourse with significant riparian buffer runs across the central portion of 3301 Trafalgar Road, from north to south.

3.10 Estimated Hydraulic Conductivity

3.10.1 Hydraulic Conductivity Tests Analysis

The analyses were completed using the Hvorslev method (Fetter, 1994). The graphical results of the hydraulic conductivity analysis are presented in Appendix E, and the results are summarized on the below in Table 4.

Monitoring Well	Hydraulic Conductivity (m/s)	Screened Material
MW106	7.298 x 10 ⁻⁶	Shale Bedrock
MW120	2.112 x 10 ⁻⁸	Shale Bedrock
MW121	3.944 x 10 ⁻⁷	Shale Bedrock
MW1D-23	4.682 x 10 ⁻⁹	Shale Bedrock
MW4-23	6.227 x 10 ⁻⁸	Shale Bedrock
MW102D	4.183 x 10 ⁻⁸	Silty Clay Till/Shale Bedrock
MW122D-23	1.036 x 10 ⁻⁸	Shale Bedrock

Table 4. Hydraulic Conductivity Results

The results indicate that the hydraulic conductivity of the screened shale bedrock at the site has a geometric mean of 7.538 x 10^{-8} m/s. This value indicates that the fractured bedrock beneath the Site is heterogeneous.

3.11 Groundwater Quality

Copies of the laboratory Certificates of Analyses are provided in Appendix F. The results of the analyzed unfiltered groundwater samples collected from monitoring well MW120D were compared to the Town of Oakville Storm Sewer Discharge Limits. All analyzed parameters were within guideline Limits.

The results of the analyzed unfiltered groundwater samples collected from monitoring wells MW106, MW4-23 and MW111-20 were compared to the Ontario Provincial Water Quality Standards (PWQS) Discharge parameters. All analyzed parameters were within guideline Limits with the exception of the parameters presented below in Table 5.

Monitoring Well	Parameters	Guideline Value+	Result	MW101-20
_		(mg/L)	(mg/L)	(Background) (mg/L)
MW106	Phenols	0.001	0.017*	<0.001
	Total Cobalt	0.0009	0.0077	0.0193
	Total Copper	0.005	0.028	0.015
	Total Iron	0.3	20.2*	33.6
	Total Nickel	0.025	0.026	0.042
	Total Uranium	0.005	0.027	0.0146
	Total Vanadium	0.006	0.035	0.059
	Total Zinc	0.030	0.059	0.084
MW4-23	Phenols	0.001	0.013	<0.001
	Total Boron	0.2	1.17	1.67
	Total Cobalt	0.0009	0.0126	0.0193
	Total Copper	0.005	0.015	0.015
	Total Iron	0.3	23.3*	33.6
	Total Nickel	0.025	0.034	0.042
	Total Uranium	0.005	0.015	0.0146
	Total Vanadium	0.006	0.036	0.059
	Total Zinc	0.030	0.078	0.084
	Total Zirconium	0.004	0.010	0.020
MW111-20	Ammonia-Un-	0.02	0.166**	0.04
	ionized (Calculated)			
	Phenols	0.001	0.002*	<0.001
	Total Boron	0.2	6.52*	1.67
	Total Iron	0.3	2.83**	33.6

[*] Ontario Provincial Water Quality Objectives (PWQO)

MW101-20: Background Well – sampled to determine background water quality

[+] Like many Phenols primarily enter the groundwater from environmental contamination sources.

[*] In the environment, ammonia is part of the nitrogen cycle and is produced in soil from bacterial processes.

[**] Iron oxide as ferric oxide occurs due to oxidation of ferrous iron. This is very common in soil and rocks.

As shown on the above Table, the result of the groundwater samples at the background monitoring well MW101-20 located at the southeast area of the site, indicate that exceedances of most of the inorganic metals are marginal and comparable to background values, with the exception of Phenols, ammonia, and Iron.

4.0 WATER TAKING EVALUATION & IMPACT ASSESSMENT

Based on the Concept Site Plan by **CRAZIANI + CORAZZA ARCHITECTS**, it is understood that the proposed development will comprise of four (4) levels of underground parking. The underground parking levels plan is shown on Figure 3, with the following proposed five Underground Parking Areas.

- 1. Phase 1
- 2. Phase 2 West
- 3. Phase 2 East A
- 4. Phase 2 East B
- 5. Phase 2 East C

These Areas are generally irregular in shape, as a result, the approximate dimensions of each area was determined for ease of excavation dewatering assessment. These are as follows.

Phase 1

Equivalent rectangle: 99.5 m x 60.0 m

Phase 2 West

Equivalent rectangle: 101.0 m x 60.5 m

Phase 2 East A

Equivalent rectangle: 110.0 m x 48.0 m

Phase 2 East B

Equivalent rectangle: 78.0 m x 55.0 m

Phase 2 East C

Equivalent rectangle: 64.0 m x 18.0 m

A maximum of four levels of underground parking is assumed for this assessment. As a result, the maximum depth of the underground levels is estimated to be 13.1 mbgs (P1 = 4.1 m, P2 = 3.0, P3 = 3.0, and P4 = 3.0). Assuming a depth of 1.5 m for the elevator shaft, a total excavation depth of 14.6 mbgs is required for the construction. A dewatering depth of approximately 0.5 m below the excavation bottom (15.1 mbgs) is assumed in order to keep the bottom of the excavation dry during construction.

Static Water Level

Depths to groundwater at the five underground parking areas were determined based on the monitoring wells located at or in close proximity to building/underground levels locations (see Figures 3 and 4 in Appendix A) as follows.

Phase 1

Monitoring well MW111-7D used to represent the geology of underground parking at Phase 1. Depths to groundwater in this monitoring were obtained manually by Landtek staff from August 2021 to July 2023. The readings are presented in Table 3 of this report. Based on the groundwater levels, the highest water level was determined to be 6.90 mbgs on July 26, 2023.

Phase 2 West

Monitoring well MW111-7D used to represent the geology of underground parking at Phase 2 West. Depths to groundwater in this monitoring were obtained manually by Landtek staff from August 2021 to July 2023. The readings are presented in Table 3 of this report. Based on the groundwater levels, the highest water level was determined to be 6.90 mbgs July 26, 2023.

Phase 2 East A

Monitoring wells MW111-20, MW1D-23, and MW122D-23 were used to represent the geology of underground parking at Phase 2 East A. Depths to groundwater in these monitoring wells were obtained manually by Landtek staff from August 2021 to July 2023 at MW111-20; and on. April 13, May 10, and June 26, 2023, at MW1D-23 and MW122D-23. The readings are presented in Table 3 of this report. Based on the groundwater levels, the highest water level was determined to be 1.10 mbgs on March 25, 2022, 4.12 mbgs on July 26, 2023, and 4.02 mbgs on July 26, 2023, respectively. The highest water level at underground parking area E was determined to be the average of the above three readings, resulting in approximately 3.10 mbgs.

Phase 2 East B

Monitoring well MW103 used to represent the geology of underground parking at Phase 2 East B. Depths to groundwater in this monitoring well were obtained manually by Landtek staff from August 2021 to July 2023. The readings are presented in Table 3 of this report. Based on the groundwater levels, the highest water level was determined to be 4.71 mbgs May 22, 2022.

Phase 2 East C

Monitoring well MW106 used to represent the geology of underground parking at Phase 2 East C. Depths to groundwater in this monitoring wells were obtained manually by Landtek staff from August 2021 to July 2023. The readings are presented in Table 3 of this report. Based on the groundwater levels, the highest water level was determined to be 2.56 mbgs March 25, 2022.

4.1 Groundwater Dewatering Requirements

Groundwater seepage will occur where excavations are made below the groundwater level. If groundwater levels are intercepted within the excavation, adequate pumping should be provided to prevent significant groundwater volumes from accumulating.

The method suitable for dewatering an area depends on the locations, type, size and depth of the dewatering; and the hydrogeological conditions such as stratification, thickness, and hydraulic conductivity of the foundation soils below the water table into which the excavation extends or is underlain. It is assumed that any groundwater dewatering for the Site excavations would likely be completed with standard construction sump pump/well points or equivalent, depending on conditions encountered such as water table elevation and subsurface materials. The pumps must appropriately be used to prevent the pumping of fines and loss of ground

during dewatering activities and the flow of water should be appropriately managed so that sediment is not pumped into the proposed discharge point.

For the purposes of this assessment, an open excavation was assumed. The use of conventional shoring could further reduce the amount of groundwater infiltration and should be determined in consultation with the selected subcontractor.

4.1.1 Dewatering Calculations

The lithology at the Site consists of Till overlying Shale bedrock at depths ranging from approximately 1.40 mbgs to 6.0 mbgs. As a result, the potential groundwater flow rate to the proposed underground parking levels excavation was estimated using the dewatering equation for a fully penetrated well of confined aquifer fed by circular source:

$$Q = 2\pi kD (H-h_w)/(lnR_o/r_e)$$

Where: $Q = pumping rate [m^3/s]$

- k = hydraulic conductivity [m/s]
- D = aquifer thickness [m]
- H = height of piezometer level above base of aquifer before dewatering [m]
- $h_w =$ height of water after dewatering [m]
- R_o. = radius of influence [m]
- r_e = equivalent radius [m]

The radius of cone of depression R can be estimated using:

$$R_o = Ch^*Sqrt(K)$$

Where: C = is a factor equal to 3000 for radial flow to a pumping well

 $h = H - h_w =$ required drawdown [m]

K = hydraulic conductivity [m/s]

Dewatering of a rectangular area can be accomplished by using an equivalent radius (r_e) to assess drawdown where r_e is given by the following equation:

$r_e = Sqrt (length*width/\pi)$	(applies when a/b>1.5 and $R_o \ll r_e$)
$r_e = (length + width)/\pi$	(applies when a/b,1.5 and $R_o >> r_e$)

Radial Flow into Excavation

Phase 1

The total amount of groundwater required to be pumped for dewatering the excavation associated with the underground parking levels construction assuming there is no rainfall and applying a factor of safety of 2.0 will be ~76,826 L/day (~0.89 L/s). The radius of influence was determined to be approximately 14 m with a Factor of Safety of 2.0 m. These calculations and associated assumptions are provided in Table 1, Appendix G.

Phase 2 West

The total amount of groundwater required to be pumped for dewatering the excavation associated with the underground parking levels construction assuming there is no rainfall and applying a factor of safety of 2.0 will be ~77,656 L/day (~0.90 L/s). The radius of influence was determined to be approximately 15 m with a Factor of Safety of 2.0 m. These calculations and associated assumptions are provided in Table 2, Appendix G.

Phase 2 East A

The total amount of groundwater required to be pumped for dewatering the excavation associated with the underground parking levels construction assuming there is no rainfall and applying a factor of safety of 2.0 will be ~73,526 L/day (~0.85 L/s). The radius of influence was determined to be approximately 20 m with a Factor of Safety of 2.0 m. These calculations and associated assumptions are provided in Table 3, Appendix G.

Phase 2 East B

The total amount of groundwater required to be pumped for dewatering the excavation associated with the underground parking levels construction assuming there is no rainfall and applying a factor of safety of 2.0 will be ~57,058 L/day (~0.66 L/s). The radius of influence was determined to be approximately 18 m with a Factor of Safety of 2.0 m. These calculations and associated assumptions are provided in Table 4, Appendix G.

Phase 2 East C

The total amount of groundwater required to be pumped for dewatering the excavation associated with the underground parking levels level construction assuming there is no rainfall and applying a factor of safety of 2.0 will be ~33,678 L/day (~0.39 L/s). The radius of influence was determined to be approximately 20 m with a Factor of Safety of 2.0 m. These calculations and associated assumptions are provided in Table 5, Appendix G.

4.2 Dewatering Considerations

4.2.1 Estimating Dewatering Volume

The dewatering rate for the proposed excavation must also consider management of direct precipitation input. As a result, dewatering volume is estimated from the following two contributions:

- Radial flow into an excavation under a water table condition (Section 4.1).
- Direct precipitation

Direct Precipitation

Note: Radial flow into an excavation under a water table condition estimate does not take into account storm water management from rainfall events. Additional could be from rainfall due to a 100 year-storm event for the Town of Oakville of 98.4 mm (0.0984 m) rainfall in 24 hours obtained from Intensity Duration Frequency Values, Rainfall Intensity (mm/hour).

4.2.2 Short Term Dewatering Volumes

Phase 1

Direct Precipitation into the proposed excavation = A (m²) *rainfall (m) = (99.5 m x 60.0 m) *0.0984 m = \sim 587.4 m³/day = <u>587,400 L/day</u>

- Dewatering rate outside periods of active precipitation: ~ 76,826 L/day (~77 m3/day)
- Dewatering during Spring/active precipitation period: ~<u>76,826 L/day</u> (radial flow into excavation) + <u>587,400 L/day</u> (direct precipitation) = <u>664,226 L/day</u> or <u>~664.2 m³/day (7.7 L/s)</u>.

Dewatering requirements less contribution from active weather precipitation is estimated to be approximately 76,826 L/day = 77 m³/day (0.9 L/s).

Phase 2 West

Direct Precipitation into the proposed excavation = A (m²) *rainfall (m) = (101.0 m x 60.5 m) *0.0984 m = ~ 601.3 m³/day = $\underline{601,300 \text{ L/day}}$

- Dewatering rate outside periods of active precipitation: ~ 77,656 L/day (~78 m3/day)
- Dewatering during Spring/active precipitation period: ~<u>77,656 L/day</u> (radial flow into excavation) + <u>601,300 L/day</u> (direct precipitation) = <u>678,956 L/day</u> or <u>~679 m³/day (7.9 L/s)</u>.

Dewatering requirements less contribution from active weather precipitation is estimated to be approximately 77,656 L/day = 78 m^3 /day (0.9 L/s).

Phase 2 East A

Direct Precipitation into the proposed excavation = A (m²) *rainfall (m) = (110.0 m x 48.0 m) *0.0984 m = \sim 519.6. m³/day = <u>519,600 L/day</u>

- Dewatering rate outside periods of active precipitation: ~ 73,526 L/day (~74 m3/day)
- Dewatering during Spring/active precipitation period: ~<u>73,526 L/day</u> (radial flow into excavation) + <u>519,600 L/day</u> (direct precipitation) = <u>593,126 L/day</u> or <u>~593 m³/day (6.9 L/s)</u>.

Dewatering requirements less contribution from active weather precipitation is estimated to be approximately 73,526 L/day = 74 m³/day (0.85 L/s).

Phase 2 East B

Direct Precipitation into the proposed excavation = A (m²) *rainfall (m) = (78.0 m x 55.0 m) *0.0984 m = \sim 422.1. m³/day = \sim 422,100 L/day

- Dewatering rate outside periods of active precipitation: ~ 57,058 L/day (~57 m3/day)
- Dewatering during Spring/active precipitation period: ~<u>57,058 L/day</u> (radial flow into excavation) + <u>422,100 L/day</u> (direct precipitation) = <u>479,158 L/day</u> or <u>~479 m³/day (5.5 L/s)</u>.

Dewatering requirements less contribution from active weather precipitation is estimated to be approximately $57,058 \text{ L/day} = 57 \text{ m}^3/\text{day} (0.66 \text{ L/s}).$

Phase 2 East C

Direct Precipitation into the proposed excavation = A (m²) *rainfall (m) = (64.0 m x 18.0 m) *0.0984 m = ~ 113.4. m³/day = ~ $\frac{113,400 \text{ L/day}}{113,400 \text{ L/day}}$

- Dewatering rate outside periods of active precipitation: ~ 33,678 L/day (~34 m3/day)
- Dewatering during Spring/active precipitation period: ~<u>33,678 L/day</u> (radial flow into excavation) + <u>113,400 L/day</u> (direct precipitation) = <u>147,078 L/day</u> or <u>~147 m³/day (1.7 L/s)</u>.

A normal condition is considered to be a weather condition that should be expected during the operation of the construction dewatering, without extreme weather events. It is advised that dewatering should not be completed during period of active precipitation to minimize the dewatering volume.

Dewatering requirements less contribution from active weather precipitation is estimated to be approximately $33,678 \text{ L/day} = 34 \text{ m}^3/\text{day} (0.39 \text{ L/s}).$

Note.

A normal condition is considered to be a weather condition that should be expected during the operation of the construction dewatering, without extreme weather events. It is advised that dewatering should not be completed during period of active precipitation to minimize the dewatering volume.

4.2.3 Long Term Groundwater Control (Post Construction)

It is understood that long term dewatering will not be allowed at the Site. As a result, the underground parking levels should be waterproofed below the seasonal highest groundwater level. It is recommended that the proposed parking levels be waterproofed below the established "*seasonally high groundwater level*" plus the required buffer zone (nominally 1.0 m to 1.5 m above).

4.2.4 Permit to Take Water

Assuming excavation is carried out under normal weather conditions without rainfall, groundwater dewatering rates for the proposed underground parking levels excavation were determined to range from approximately 33,678 L/day (0.39 L/s) to 77,656 L/day (0.90 L/s), resulting in a total rate of 318,744 L/day (3.7 L/s). An Environmental Activity and Sector Registry (EASR) Registration is required for this volume of water taking, as the estimated water taking is more than 50,000 L/day and less than 400,000 L/day.

4.2.6 Dewatering Procedure

Based on the results of the hydraulic conductivity tests, seepage through the overburden and bedrock beneath the Site should be feasible to be handled by a sump and/or well point dewatering system. The type of dewatering system to be used should be discussed with a dewatering contractor and evaluated based on anticipated low and high volumes estimates.

The following general construction practices should be implemented to minimize the volume of water to be extracted:

- Schedule construction outside the spring period when water table is typically elevated and avoid construction during period of active precipitation.
- Excavation should be staged or constructed in such a manner to be able to manage dewatering volume conveniently.
- Reduce the length of time during which the excavation cut remains open.

4.2.7 Water Management and Discharge Plan

Water extracted during construction dewatering will be discharged into a creek near the Site.

In order to issue a discharge approval, information relating to the quality and quantity of the discharge must be provided to Town of Oakville. It is strongly recommended that the applicant provide this information eight to twelve weeks prior to the proposed start of discharge.

The rate and total volume of the discharge during dewatering should be provided. During dewatering, the discharge line should be equipped with a flow meter capable of monitoring the discharge rate and a volume totalizer to record the total volume of water discharged. The discharge rate and total daily flow should be recorded with the records maintained on site.

If needed, a weir tank and filter bag should be utilized during dewatering to reduce total suspended solids (TSS) and turbidity prior to discharging of the water into either a sewer system or surface water.

A T-Coupling and valves should be installed downstream of the flow meter, which, if necessary, can be operated to divert flow for mitigation purposes.

4.3 Assessment of Potential Impacts and Water Management

4.3.1 Impact to Existing Groundwater Users

A search of the Ontario MECP within an area extending about 500 m outward from the edge of the excavation was completed.

A summary of the MECP Well Records is presented in Appendix C; and the approximate locations of the wells are shown on Figure 5 in Appendix A. Based on review, seven (7) water wells were identified within 500 m radius of the Site.

The estimated radii of influence from the proposed underground level excavation dewatering were determined to range from approximately 15.0 m to 20.0 m, depending on excavation location. As a result, potential impacts on water wells located within 500 m radius of the Site are not anticipated, as none is within these radii of influence.

4.3.2 Impact to Surface Water and Natural Functions of the Ecosystem

A watercourse with significant riparian buffer runs through the central portion of the Site from north to south. As a result, it is anticipated that there will be potential impacts to the watercourse during construction dewatering from groundwater drawdown within the radius of influence estimated to be approximately 15.0 m.

4.3.3 Contaminants Impacts

This occurs when pre-existing soil or groundwater contamination is mobilised and transported where transmission pathways are created.

Based on the Phase Two Environmental Site Assessment (ESA) completed by Landtek, there are known contamination in the soil and groundwater at the Site. Based on the results of the ESA, an appropriate remediation strategy is being recommended.

4.3.4 Geotechnical Impacts

Geotechnical impacts occur where the geotechnical properties or state of the ground are changed by groundwater dewatering activities. The most common type of impact in this category is ground settlement, with the corresponding risk of distortion and damage to structures, services and other sensitive infrastructure.

The site is located on the east side of Trafalgar Road between Burnhamthorpe Road East and Dundas Street East in an area with a zoning classification as Existing Development (ED). It is bound to the west by Trafalgar Road followed by an agricultural land, to the north by an uncultivated land, to the east by uncultivated lands, and to the south by a construction site.

Based on the above, potential geotechnical impacts are anticipated during dewatering at the Site within the estimated radii of influence of approximately 15.0 to 20.0 m. Surrounding buildings and roads should be monitored by geotechnical instrumentation to determine impact, if any.

Dewatering could be by pumping from a sump and well point dewatering system. These systems used for lowering the water table within the excavation should be properly screened and installed to ensure that pumping will not remove sediment from low permeability overburden aquifers. Removal of significant fines may result in the formation of voids and the loss of ground.

The potential ground subsidence (settlement) of the soil within the zone of influence due to the lowering of the groundwater level should be assessed considering the maximum drawdown to be achieved. The ground settlement usually results from the increase in effective stresses, due to the lowering of the groundwater level and subsequent decrease in pore pressure. In addition, settlement associated with dewatering may also occur due to the loss of fine particles (migration of fines) within the dewatering system as a result of pumping. Therefore, adequate filtration at the system ingress points should be maintained at all times to reduce the potential of soils migration through the system.

It is anticipated that there will not be impact beyond the estimated radius of influence of 20.0 m. The proposed monitoring and mitigation plans are presented in Sections 5 and 6, respectively.

5.0 MONITORING PLAN

5.1 Construction Monitoring

Once construction dewatering is initiated it will be difficult to stop pumping or significantly reduce the rate of pumping without disrupting construction activities. It will however be possible to monitor the drawdown response at the construction site and to adjust the pumping rate to optimize drawdown and the associated pumping rate.

5.2 Management of Dewatering Abstraction

5.2.1 Monitoring, Trigger Levels and Management Responses

Abstraction management is critical to ensure target water levels within the construction zone are met, but that over-pumping does not occur.

Target groundwater levels in- and outside excavations should be set individually for each dewatering monitoring well based on location, aquifer and construction requirements, in-line with stated dewatering aims above.

Trigger levels for wells should typically be set 0.5 m above the dewatering target and 1.0 m below the dewatering target to give a 1.5 m target operational zone. These targets may be reviewed and adjusted to decrease size of the operational target zone and increase the factor of safety.

If monitoring indicates that dewatering zone groundwater levels exceed the upper trigger levels (i.e., required drawdown is not being achieved or maintained) the following management actions should be carried out (in order of preference):

- Adjust automatic pump start and stop water levels.
- Increase pumping rates within the constraints of the system; and/or
- Install additional abstraction capacity (well points, spears or sump pumps).

If monitoring indicates that excavation zone groundwater levels are below the lower trigger levels (i.e., excessive drawdown) the following management actions should be carried out (in order of preference):

- Adjust automatic pump start and stop water levels; and/or
- Decrease pumping rates; and/or
- Reduce the number of pumps operating.

5.2.2 Contingency Responses

If management responses prove to be insufficient to achieve and maintain the target levels, excavations should be slowed or suspended to enable contingencies to be implemented. Available contingency measures include the following (in order of preference):

- Construction of additional dewatering wells, spears or sumps.
- Construction of additional drains or groundwater control structures.

Excavation should resume when the required drawdown is able to be reliably obtained.

5.3 Settlement Monitoring

Ground settlement can be caused by two principal mechanisms:

- Increases in effective stress as a result of lowering of groundwater levels, resulting in compression and consolidation of the ground. Such settlements are the unavoidable consequence of lowering of groundwater level.
- Removal of fine particles from the ground (loss of fines) which can occur when poorly controlled sump pumping draws out soil particles with the pumped water. With good design and implementation, loss of fines (and the associated settlement risk) can be avoided.

The potential ground subsidence (settlement) of the soil within the zone of influence due to the lowering of the groundwater level should be assessed considering the maximum drawdown to be achieved. The ground settlement usually results from the increase in effective stresses per metre of drawdown, due to the lowering of the groundwater level and subsequent decrease in pore pressure.

The maximum amount of settlement usually occurs in the area adjacent to maximum drawdown points, and the potential of settlement decreases substantially towards the radius of influence limit. The clayey silt till deposit is relatively compressible and shale bedrock, is considered not readily compressible.

Implementation of a settlement monitoring plan should be completed within an approximate radius of influence of 14.0 m to 20.0 m. Prior to commencing dewatering, condition surveys of adjacent properties that could potentially be affected by dewatering, considering anticipated effects and specific dewatering design, should be completed.

Temporary access permit should be obtained from properties and utilities owners within the estimated radius of influence of the Site on a case-by-case basis prior to construction.

The following monitoring measures are recommended to be carried out before and during the temporary dewatering:

- Complete a pre-excavation condition survey and install settlement monitoring monuments and or markers at the existing buildings and roadways within the estimated zone of influence. This should be done to document existing ground elevations and building/structure conditions.
- The settlement monitoring monuments (markers) should be surveyed prior to the dewatering to establish a baseline and surveyed on a daily basis during the dewatering.
- A typical settlement monitoring system should comprise a series of settlement markers sited at various distances beyond and at the site, within the zone of influence of groundwater drawdown. Monitoring points should be surveyed to an accuracy of +/-2 mm. Note that the reference benchmark must be located beyond the extent of the anticipated influence of groundwater drawdown. For sensitive projects, incorporation of piezometer standpipes will allow confirmation of the field groundwater drawdown and will enable calibration of field settlement observation with theoretical assessments.
- Alert and Action settlement thresholds should be set, selected through theoretical assessment of anticipated settlements and review of sensitivity of adjacent structures

and infrastructures. It is prudent to implement staged groundwater drawdown, providing holding points to allow adequate time to enable observation of the delayed settlement response of the ground.

- The monitoring program will include review and alert levels. If instrument readings exceed "review" levels, the Proponent and its Contractor will jointly assess the necessity of altering the method, rate, or sequence of construction.
- The survey results should be provided to the project geotechnical engineer for evaluation. The estimated potential and actual settlements should also be reviewed by a structural engineer to assess the potential damage to the existing structures.

6.0 MITIGATION PLAN

The groundwater dewatering activities will result in localized depression of the groundwater table, and it is not anticipated that there will impact beyond the radius of influence of 20.0 m.

Mitigation would involve the reduction or elimination of the impacts induced by construction dewatering. As noted above, the potential exists for dewatering to cause ground settlement, with the corresponding risk of distortion and damage to structures, services and other sensitive infrastructure.

Methods to limit adverse dewatering settlement should include the following:

- Settlement associated with loss of fines should be mitigated through appropriate design of the dewatering system to control flow velocity and provide screens and/or filters matched to the grading of the in-situ soils. Entrainment of fines must be monitored during construction; actions could include analysis of TSS in discharge water and/or monitoring of accumulation of sediment in sedimentation tanks.
- Drawdown-induced ground settlement should be mitigated though pre-construction estimation of groundwater drawdown and settlement coefficients to identify risk prior to drawing the groundwater down, and water level monitoring in monitoring wells to check that larger drawdown than anticipated at distance from the excavation is not occurring.
- Differential settlement is most problematic. This should be reduced by managing the rate
 of drawdown and understanding where clear changes in soil type occur. Should
 potentially damaging settlement be indicated, these can be mitigated by installing
 groundwater cut-offs to stem or restrict groundwater flow and limit drawdown beyond the
 site.
- Sufficient temporary support should be provided for excavations to maintain stability, where seepage might otherwise induce progressive collapse of the sides of the excavation.
- During dewatering, staged drawdowns (where appropriate) should be implemented and field settlement and water level changes beyond the immediate site monitored, comparing against theoretical settlements and water levels to allow warning of potential dewatering settlement issues.

At "alert" levels, the dewatering should be reduced to a lower rate or ceased temporarily, and alternative measures considered for the excavation, which should be approved by the project geotechnical engineer and project team.

If the settlement monitoring indicates an undesirable deformation, the project manager should order construction operations to cease until the necessary mitigation measures are undertaken.

7.0 SITE DEVELOPMENT and WATER BALANCE

Phase 1 Development Water Balance

Phase 1 Area of 1.03 ha (10,349.93 m²) is a part of a larger site of 7.79 ha (77,946 m²). It should be noted that the proposed Phase 1 development will impact the entire site.

The following discussion and recommendations are based on the data gathered for the study and are presented for site planning purposes.

7.1 Site Development Concepts

Phase 1 Development

The following summarizes the approximate land coverage areas related to the Phase 1 development and its impact on the other areas of the entire site:

•	Impervious Area	0.76 ha
•	Roof Top Area	0.33 ha
•	Landscape Area + Core Area	6.70 ha
	Total Area	

7.2 Principal Hydrogeologic Features and Functions

The results of the study indicate that the Site hydrogeologic characteristics can be summarized as follows:

- Fill/Clayey Till overburden was generally observed during the borehole drilling to depths ranging from 1.5 mbgs to 6.6 mbgs, overlying fractured bedrock which extends to the maximum drilled depth of 18.7 mbgs.
- Groundwater flow at the Site is controlled by the surficial geology present across the area. The surface soils at the Site are of medium to low permeability (on the order of 10⁻⁸ m/s), and as a result, water will tend to flow overland and drain along surface watercourses after rainfall. As such, the glaciolacustrine soils will reduce the amount of groundwater infiltration, recharge, or flow. The recharge rate for this type of soil ranges from approximately 100 mm/year to 125 mm/year (MOE, 1995).
- Groundwater was generally not encountered within the glaciolacustrine overburden materials at the Site, but in the underlying bedrock. Groundwater level in the bedrock was found to vary across the site, due to the inhomogeneity of the bedrock fracture system.
- It is understood the proposed Phase 1 development will include four (4) levels of underground parking. This will require excavation down to approximately 14.6 mbgs. Based on groundwater monitoring at the Site, groundwater dewatering of the shallow groundwater system is anticipated during the proposed development and should be control by adequate methods.
- The Site topography is uneven with the topography ranging from 178 masl at the southcentral area, to 185 masl north-central area.

• Based on the groundwater level readings obtained from the installed monitoring wells at the site, groundwater flow direction at the site was determined to be in a southwest direction as shown on Figure 6, in Appendix A.

The above noted hydrogeological characteristics should be considered in conjunction with the requirement for Site development plans and in particular storm water management practices at the Site. Further information regarding water balance at the Site is presented below in section 7.3.

Based on the above information, the following considerations should be made with respect to maintenance of hydrogeologic functions and hydrogeologic conditions at the Site:

- The site consists of clayey silt till overburden overlying shale bedrock and would not be well suited to groundwater recharge due to the relatively low hydraulic conductivity of the glacial soils. Engineered infiltration methods, other Best Management Practices, and low impact.
- development methods should be implemented accordingly.

7.3 Phase 1 Development Water Balance

The proposed development will result in the construction of residential buildings and impervious areas. Without mitigation, this will lead to a decrease in infiltration and groundwater recharge.

The surface soils at the Site will provide limited water recharge into the shallow groundwater system. This is a result of the relatively impermeable clayey silt soil encountered below surface across the Site. Based on the subsurface investigation completed for the Site, no enhanced zones of groundwater flow or transmission were identified across the Site. However, groundwater recharge will occur at the Site over the natural cover at the site, while the impervious areas would prevent groundwater recharge.

Notwithstanding the above, one of the objectives during development should be to ensure that the overall volume of groundwater recharge is not significantly impacted. A water balance for the Site was prepared to assess the distribution of precipitation, evapotranspiration, infiltration, and runoff for existing (pre-development) conditions as well as post-development conditions. The water balance calculations are detailed in Appendix H.

Evapotranspiration represents the transport of water from the earth back to the atmosphere and is an important component to a water balance calculation. The Thornthwaite method was used to calculate potential evapotranspiration typical for the region. By using equations 8, 9, and 10 in Thornthwaite (1948), the potential evapotranspiration for the region was found to be 609 mm/year. The calculation is included in Appendix H.

As was presented in Table 2, the annual total precipitation was taken from the Hamilton RBG climate station for the period of 1981 to 2010. Total annual precipitations for the area is 897.1 mm/year, and mean daily temperature is 8.6 °C.

In summary, the typical shallow groundwater recharge rate for the Site is estimated to be 100 mm/year. This recharge was referenced from the MOE Table 2 and Table 3 approach in the Technical Information Requirements for Land Development Applications (MOE, 1995). The post-development water budget was calculated and is presented in Appendix H.

The water balance (pre- and post-development) is summarized from data in Table 6 in Appendix H and comparison of pre- and post-development water balance is summarized below in Table 6.

Development Phase	Precipitation (m ³)	Evapotranspiration (m ³)	Infiltration (m ³)	Run-Off (m³)
Pre-Development	69,925	46,155	7,331	16,439
Post-Development	69,925	42,180	6,700	21,046

Table 6. Com	parison of Pre- and Post-D	Development Water Balance

The increase in run-off from 16,439 m³ to 21,046 m³ is the result of developing and installing hard surfaced or impermeable areas across the Site. The post-development impermeable areas also result in the decrease of evapotranspiration and infiltration across the Site.

The above-noted values and associated calculations found in Appendix H are considered to be conservative and are based on the following assumptions:

- No infiltration will occur beneath the internal roads, public walkways, buildings or driveways.
- No evapotranspiration will occur from the internal roads, public walkways, buildings or parking areas.

7.3.1 Maintenance of Groundwater Recharge

The site is considered not to have significant amounts of groundwater recharge due to the relatively low-permeable soils encountered at surface. Infiltration values are expected to decrease from 7,331 m³/year to 6,700 m³/year, based on the water balance calculations outlined in Appendix H. This decrease in infiltration indicates that only approximately 21% of the roof runoff from the buildings must be re-directed towards overland flow or infiltration facilities in order to match the pre-development infiltration rates and surface flow.

The total Building Roofs Roof-Off was determined to be 2,975 m³, and deficit from pre- to postdevelopment infiltration determined to be 631 m³, resulting in a Water Surplus of 2,344 m³.

7.3.2 Low Impact Development (LID) Measures

Proposed LID Measures

Low impact development (LID) measures are proposed to be included in the design of the development towards addressing the water surplus from the roofs run-off of 2,344 m³. The LID measures to be implemented should be roof run-off collection to be re-directed towards overland flow or infiltration facilities.

7.4 Maintenance of Groundwater Transmission Pathways

It is understood that the earthworks and servicing will be completed within the low-permeability silty clay, clayey silt. The overall continuity of the groundwater flow at the Site should be maintained, where practical. Generally, any groundwater transmission pathways encountered can be maintained through the following means:

• The excavation of any underground services or utilities across more permeable layers may interrupt the groundwater flow. As good practice, it is recommended that trench

backfilling operations be carried out with materials that are similar to the materials that have been excavated. In particular, if any more permeable sand zones are encountered, they must not be truncated by backfilling of the excavation or trench using lower permeability materials (such as the clayey silt identified across the subject Site).

Groundwater flow may occur into the open shallow excavations if more permeable pockets of deposits, such as silty sand, are encountered; however, based on the results of the subsurface investigation, groundwater control (such as from wells or well points) is anticipated during construction. It is recommended that any excavations should be staged or constructed in such a manner to avoid the collection of overland drainage.

8.0 SUMMARY AND CONCLUSIONS

The following summarizes the results of the investigation:

- The Site is characterized by fill over bedrock or clayey silt till which in turn overlies bedrock. Bedrock was encountered across the Site to the maximum geotechnical investigation drilling depth of 18.7 mbgs.
- The Site topography of the Site is uneven with the topography ranging from 178 masl at the south-central area, to 185 masl north-central area.
- A watercourse with significant riparian buffer runs through the central portion of 3301 Trafalgar Road from north to south. The water pools in a fire pond, part of PSW 25 at the southern limit of 3301 Trafalgar Road that is surrounded by tall grasses and cattails.
- Depths to groundwater in the monitoring wells installed at the Site were obtained manually by Landtek staff between August 2021 and June 2023 and was determined to range from 0.20 mbgs in the shallow nested monitoring well to 10.91 mbgs. This is likely due to inhomogeneity of the bedrock beneath the overburden till at the Site.
- Based on the groundwater level readings obtained from the installed monitoring wells at the site, groundwater flow direction at the site was determined to be in a southwest direction.
- The short-term dewatering rate outside periods of active precipitation, under normal conditions, for the five (5) building areas were determined to range from approximately 33,678 L/day (0.4 L/s) to 77,656 L/day (0.9 L/s). Normal conditions are considered to be weather conditions that should be expected during the operation of the construction dewatering. Normal operation does not include extreme weather events.
- It is understood that long term dewatering will not be allowed at the Site. As a result, the underground parking levels should be waterproofed below the seasonal highest groundwater level. It is recommended that the proposed parking levels be waterproofed below the established "seasonally high groundwater level" plus the required buffer zone (nominally 1.0 m to 1.5 m above).
- It is understood that long term dewatering will not be allowed at the Site. As a result, the
 underground parking levels should be waterproofed below the seasonal highest
 groundwater level. It is recommended that the proposed parking levels be waterproofed
 below the established "seasonally high groundwater level" plus the required buffer zone
 (nominally 1.0 m to 1.5 m above).
- Assuming excavation is carried out under normal weather conditions without rainfall, groundwater dewatering rates for the proposed underground parking levels excavation were determined to range from approximately 33,678 L/day (0.39 L/s) to 77,656 L/day (0.90 L/s), resulting in a total rate of 318,744 L/day (3.7 L/s). An Environmental Activity and Sector Registry (EASR) Registration is required for this volume of water taking, as the estimated water taking is more than 50,000 L/day and less than 400,000 L/day.

- The results of the analyzed groundwater samples collected from the monitoring well MW4-23 located at the Phase 1 area indicate that the exceedances of inorganic metals are marginal and are comparable to background values determined from the sampling at MW101-20 at an undisturbed area of the bigger site, with the exception of Phenols and Iron.
- Low impact development (LID) measures are proposed to be included in the design of the development to address the infiltration deficits. The LID measures to be implemented include roof leader disconnection and discharge to pervious area and tree pits on a street in accordance with Town standards.

PROFES

9.0 CLOSURE

We trust this report is satisfactory for your purposes. If you have any questions regarding our submission, please do not hesitate to contact Landtek.

14

G

HENRY N. EREBOR

PRACTISING MEMBER 2792

Yours truly,

Landtek Limited

Henry Erebor, M.Sc., P.Geo.,

10.0 REFERENCES

Barnett, P.J., 1992. Quaternary Geology of Ontario; Ontario Geological Survey, Special Volume 4, Part 2.

Chapman, L.J. and D.F. Putnam, 1984. The Physiography of Southern Ontario, Third Edition; Ontario Geological Survey, Special Volume 2, 270p. Accompanied by Map 2715.

Environment Canada, Canadian Climate Normals 1981-2010, Oakville Southeast WPCP Climate Station, Ontario.

Johnson, M.D., Armstrong, D.K., Sanford, B.V., Telford, P.G., and Rutka, M.A. 1992. Paleozoic and Mesozoic geology of Ontario: in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2, p.907-1010.

Ministry of the Environment, 1979. Geology and Water Resources of the East and Middle Oakville Creeks IHD Representative Drainage Basin.

- Ministry of the Environment and Climate Change. 2010. Source Water Protection, Interactive Map. <u>http://www.applications.ene.gov.on.ca/swp/en/index.php</u>
- Natural Resources Canada. 2012. The Atlas of Canada. Available online at <u>http://atlas.nrcan.gc.ca/auth/english/index.html</u>. Accessed September 2016.

Ontario Geological Survey. 1991. Bedrock Geology of Ontario, southern sheet, Ontario Geological Survey, Map 2544, scale 1:1,000,000.

Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario, Open File 3300, Scale 1:50,000.

Ontario Ministry of the Environment, Water Well Records.

11.0 LIMITATIONS

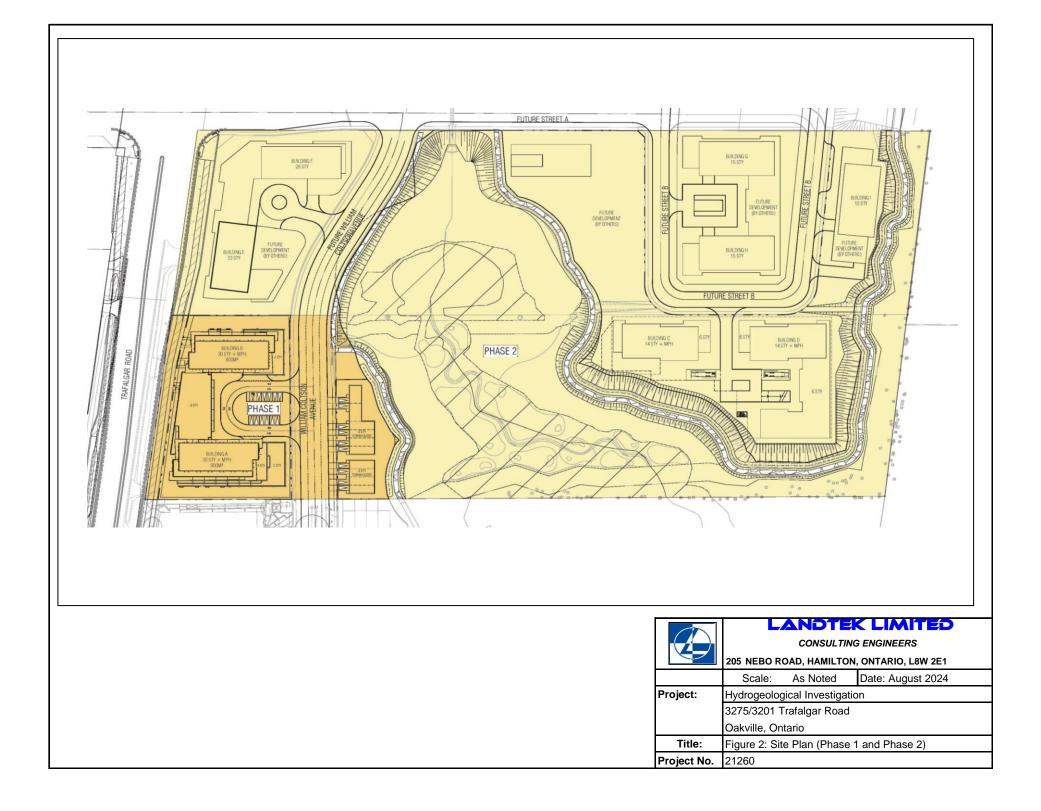
The conclusions and recommendations given in this report are based on information determined at the borehole locations. Subsurface and ground water conditions between and beyond the boreholes may be different from those encountered at the borehole locations, and conditions may become apparent during construction that could not be detected or anticipated at the time of the geotechnical investigation. It is recommended practice that Landtek be retained during construction to confirm that the subsurface conditions throughout the site are consistent with the conditions encountered in the boreholes.

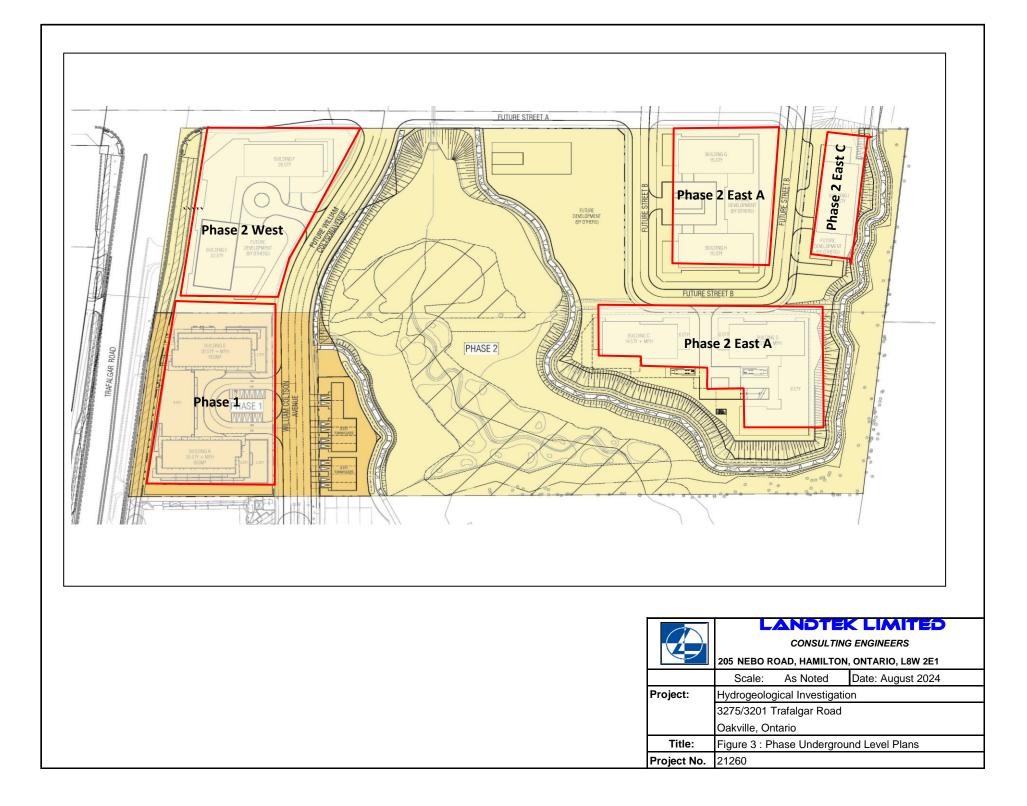
The comments made in this report on potential construction problems and possible remedial methods are intended only for the guidance of the designer. The number of boreholes may not be sufficient to determine all the factors that may influence construction methods and costs. For example, the thickness and quality of surficial topsoil or fill layers may vary markedly and unpredictably. Contractors bidding on the project or undertaking construction on the site should make their own interpretation of the factual borehole information and establish their own conclusions as to how the subsurface conditions may affect their work.

The survey elevations in the report were obtained by Landtek or others and are strictly for use by Landtek in the preparation of the geotechnical report. The elevations should not be used by any other parties for any other purpose.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Landtek accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

This report does not reflect environmental issues or concerns related to the property unless otherwise stated in the report. The design recommendations given in the report are applicable only to the project described in the text and then only if constructed substantially in accordance with the details stated in this report. Since all details of the design may not be known, it is recommended that Landtek be retained during the final design stage to verify that the design is consistent with the report recommendations, and that the assumptions made in the report are still valid.


APPENDIX A


FIGURES

	L		K LIMITED											
		CONSULTI	NG ENGINEERS											
	205 NEBO R	OAD, HAMILTO	N, ONTARIO, L8W 2E1											
	Scale:													
Project:	Hydrogeolo	Hydrogeological Investigation												
	3275/3201	Trafalgar Road	l											
	Oakville, Or	ntario												
Title:	Figure 1: Si	te Location												
Project No.	21260													

Hamilton, Ontario L8W 2E1 p: +1 (905) 383-3733 e: engineering@landtek.ca w: www.landtek.ca

project location

Key:

- Approximate location of borehole drilled by Landtek Limited between August 10th and 12th, 2021.
- Approximate location of boreholes drilled by Landtek Limited between March 20th to 27th, 2023.
- **e** Approximate location of boreholes drilled by MTE in 2020.

Notes:

Base plan and extract from the drawing "Context Plan", reference Job #: 1975.22, Dated: AUG.06.2024 as issued by GRAZIANI + CORAZZA ARCHITECTS.

revisions/ submissions

date 2022-02-25 description issued for report

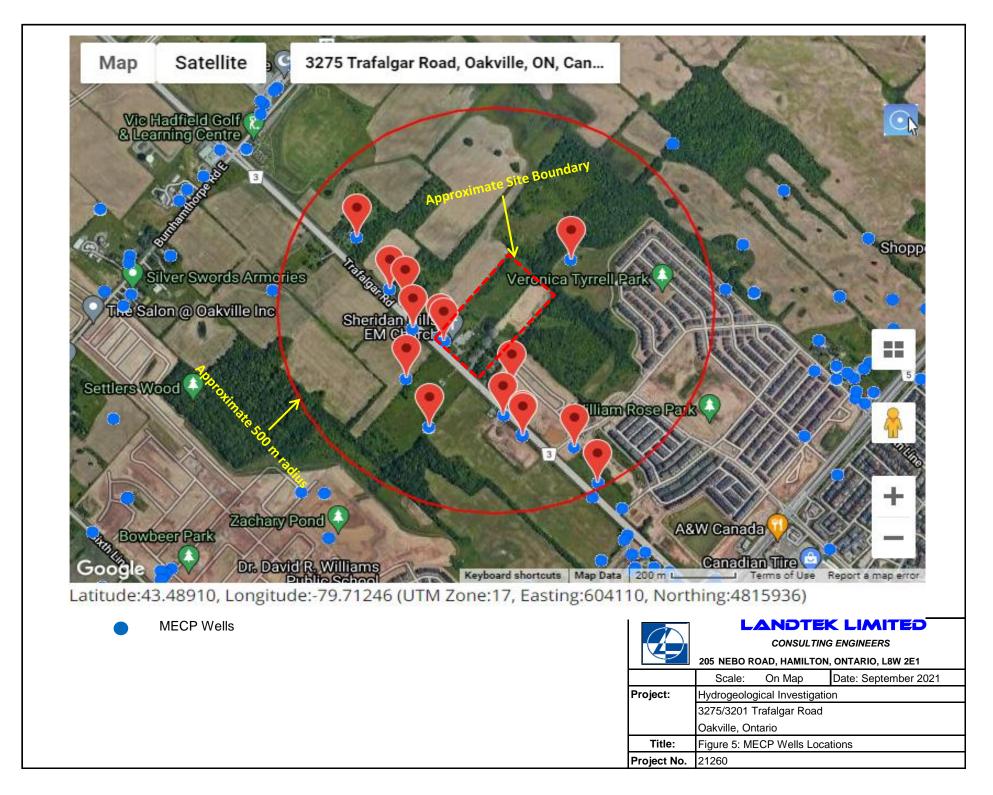
client

New Horizon Development Group

municipality

The Corporation of the Town of Oakville

project


Preliminary Geotechnical and HydroGeological Investigation 3275 & 3301 Trafalgar Road

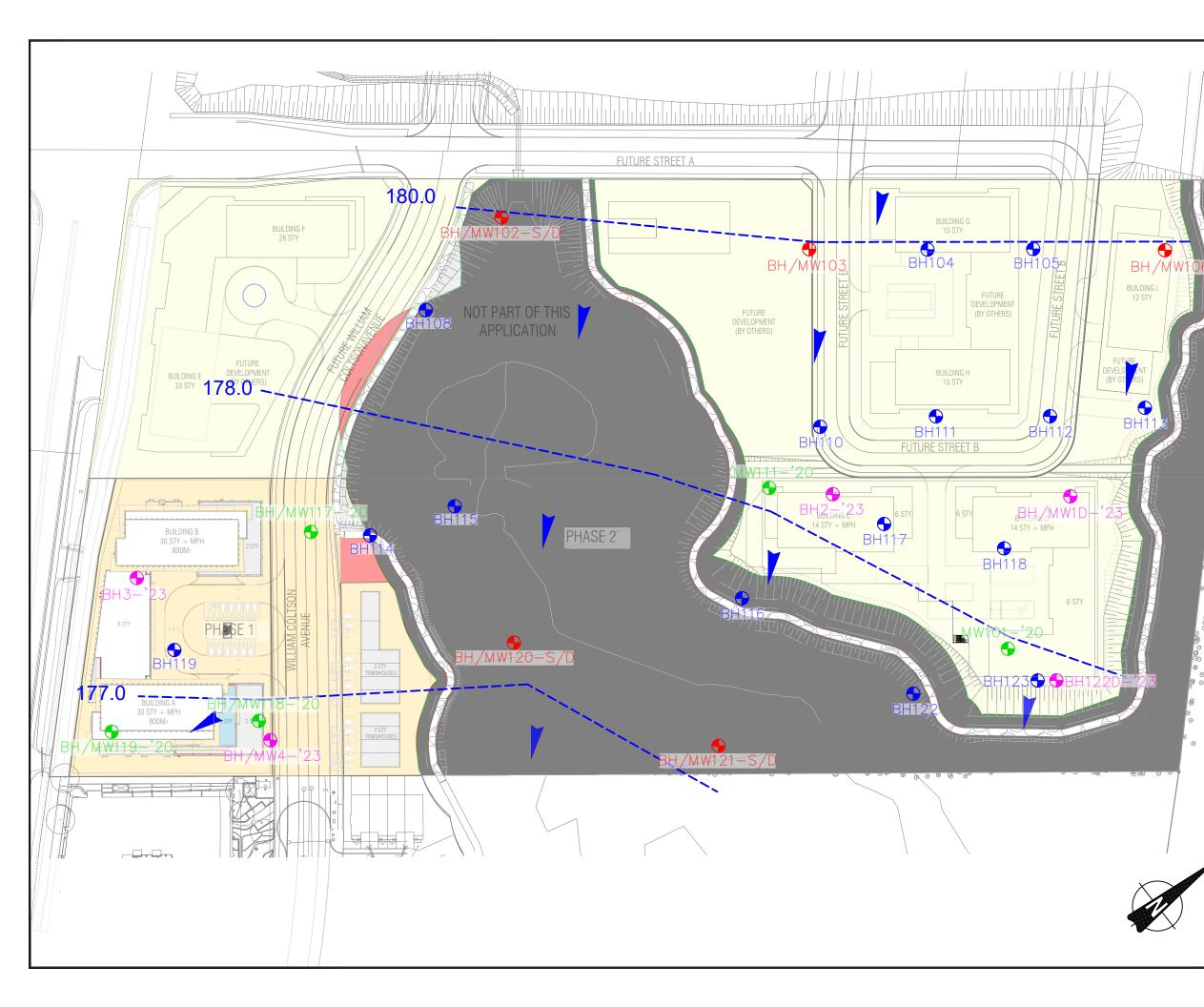

sheet

Figure 4: Borehole and Monitoring well Location Plan

date: august, 2024 drawn: mdc checked: he project #: 21260 scale: nts

21260-04

Hamilton, Ontario L8W 2E1 p: +1 (905) 383-3733 e: engineering@landtek.ca w: www.landtek.ca

project location

<u>Key</u>:

- - Cross - Section Location Key

Approximate Interpreted Groundwater Flow

177.0 Approximate Groundwater Elevation, April 28th, 2022.

Notes:

Base plan and extract from the drawing "Context Plan", reference Job #: 1975.22, Dated: AUG.06.2024 as issued by GRAZIANI + CORAZZA ARCHITECTS.

revisions/ submissions

1 2022-02-25 issued for report	#	date	description
	1	2022-02-25	issued for report

client

New Horizon Development Group

municipality

The Corporation of the Town of Oakville

project

Preliminary Geotechnical and HydroGeological Investigation 3275 & 3301 Trafalgar Road

21260-06

sheet

Figure 6: Interpreted Groundwater Flow

august, 2024 date: drawn: mdc checked: he project #: 21260 scale: nts

APPENDIX B

MONITORING WELL LOGS

ID Number: MW101-20

Project Name: Phase II ESA

MTE File No.: 48113-100

Client: Wyatt Development Group

Site Location: 3275 Trafalgar Road, Oakville

Drill Date: 9/23/2020

Drilling Contractor: Triphase

Drill Rig: CME 75

Drill Method: Hollow Stem Auger

1

Protective Cover: Monument

		Subsurface Profile				Sa	ample			
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID (ppm)	Hydrocarbon (ppm)	Well Completion Details
oft m		Ground Surface	178.9							
0 1 1 2		TOPSOIL sandy topsoil, some silt and gravel, moist FILL grey silt, some clay, trace to some sand and gravel, moist	0.0	1	ss	71	Metals, OCs, PCBs, PHCs, BTEX			Concrete
-	**	moist			-	-				U U U
4				2	SS	27				Bentonite Cor
	*			3						
6 2		water added	177.1 1.8 176.8 2.1							
		SHALE		4						
8 1 10		shale pieces								d Screen
12 12 		poor weathered red shale	175.4 3.5							Sand Pack
16-1 16-1 18-1 18-1		Drilling Terminated	<u>173.8</u> 5.1							
206										
Drafted	d by	by TU			E		Top of pipe ele Water level: 3.	evatio 80m	n: 17 bgs (9.89m asl October 7, 2020)
		Sheet:	: 1 of	1						

ID Number: MW111-20

Project Name: Phase II ESA

MTE File No.: 48113-100

Client: Wyatt Development Group

Site Location: 3275 Trafalgar Road, Oakville

Drill Date: 9/21/2020

Drilling Contractor: Triphase

Drill Rig: Geoprobe

Drill Method: Direct Push/SSA

Protective Cover: N/A

		Subsurface Profile				S	ample			
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID (ppm)	Hydrocarbon (ppm)	Well Completion Details
oft m		Ground Surface	179.0							
0 1 2 4 4	\otimes	FILL Brown sandy silt, moist FILL Brown with red and grey mottling, silt, some clay,	0.0	1	мс	99	Metals	1	0	Concrete
4	\bigotimes	trace to some sand, trace gravel. Possible reworked native.						1	0	
E I	\otimes	Large rock at 1.83m bgs								
6 2 8 1 10 1 10 1 10	\bigotimes	Drilling Terminated	176.6 2.4	2	мс	100		2	0	Bentonite
10 12 12 14 14 14 16 18 11 18 10 14 14 16 11 16 11 18 10 14 16 16 17 16 18 18 18 10 10 10 10 10 10 10 10 10 10										Sand Pack
Field T Drafte		nician: MBC : JAK	V.		F		monitoring wel	1		existing adjacent
Reviev	-						Top of pipe ele Water level: 3.	ovatio 08m	n: 17 bgs (9.16m asi October 7, 2020)

ID Number: MW117-20

Project Name: Phase II ESA

MTE File No.: 48113-100

Client: Wyatt Development Group

Site Location: 3275 Trafalgar Road, Oakville

Drill Date: 9/21/2020

Drilling Contractor: Triphase

Drill Rig: Geoprobe

Drill Method: Direct Push/SSA

Protective Cover: N/A

		Subsurface Profile				Sa	ample			
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID (ppm)	Hydrocarbon (ppm)	Well Completion Details
oft m		Ground Surface	180.1							1772)
1	\otimes	FILL Brown sand and gravel, asphalt debris	0.0						<u> </u>	
	×	Grey clayey silt, trace to some sand, trace gravel,	179.7 0.4					_		
2	\otimes	moist with trace organics					Metals, OCs, PHCs, BTEX	1	0	
2 4 4		Brown with red and grey mottling, grey clayey silt, trace to some sand, trace gravel, moist. Possible reworked native	179.4 0.8	1	MC	95		1	0	Bentonite
3	\otimes	Less mottling at 1.52m bgs			-					
6	\otimes									
6 1 1 2	\bigotimes		177.7		мс			1	0	
8		Drilling Terminated	177.7 2.4							
8 10 10 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14										
Field T	ech	nician: MBC					Well details co	uld n	ot be	provided for existing
			V.	M			adjacent monit	oring	well	, , , , , , , , , , , , , , , , , , ,
Drafte	d by	: ЈАК			L		Water level: 8.	21m	bgs (October 7, 2020)
Reviev	ved	by: TJJ Sheet	: 1 of	1						

ID Number: MW118-20

Project Name: Phase II ESA

MTE File No.: 48113-100

Client: Wyatt Development Group

Site Location: 3275 Trafalgar Road, Oakville

Drill Date: 9/21/2020

Drilling Contractor: Triphase

Drill Rig: Geoprobe

Drill Method: Direct Push/SSA

Protective Cover: N/A

		Subsurface Profile				Sa	ample			
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID (ppm)	Hydrocarbon (ppm)	Well Completion Details
oft m	_	Ground Surface	179.4							
<mark>#</mark> 0 10 10 10 10 10 10 10 10 10 10 10 10 10		TOPSOIL Light brown topsoil, sand and gravel, trace silt and organics, damp	0.0	1	мс	90	Metals, OCs,		0	Concrete
4 4	×	Gravel Greyish brown clayey silt, with sand, trace gravel	178.2 1.2				PHCs, BTEX		-	
6 6 1 1 2	1	CLAYEY SILT Reddish brown with orange and grey mottling, clayey silt with sand, trace gravel, moist							_	
8	1	Brown with increasing gravel at 1.52m bgs	176 7		MC	100		2	0	Bentonite
10 12 14 14 14 14 16 18 16 18 16 18 16 18 16 18 16 16 22 24 16 16 22 24 16 16 8 28 16 16 16 16 16 16 16 16 16 16		Drilling Terminated	176.7							Sand Pack
Field T Draftee		r: JAK	N		E		Well details pro monitoring well Top of pipe ele	I		existing adjacent 9.45m asl

Reviewed by: TJJ

Top of pipe elevation: 179.45m asl Water level: 3.15m bgs (October 7, 2020)

Sheet: 1 of 1

ID Number: MW119-20

Project Name: Phase II ESA

MTE File No.: 48113-100

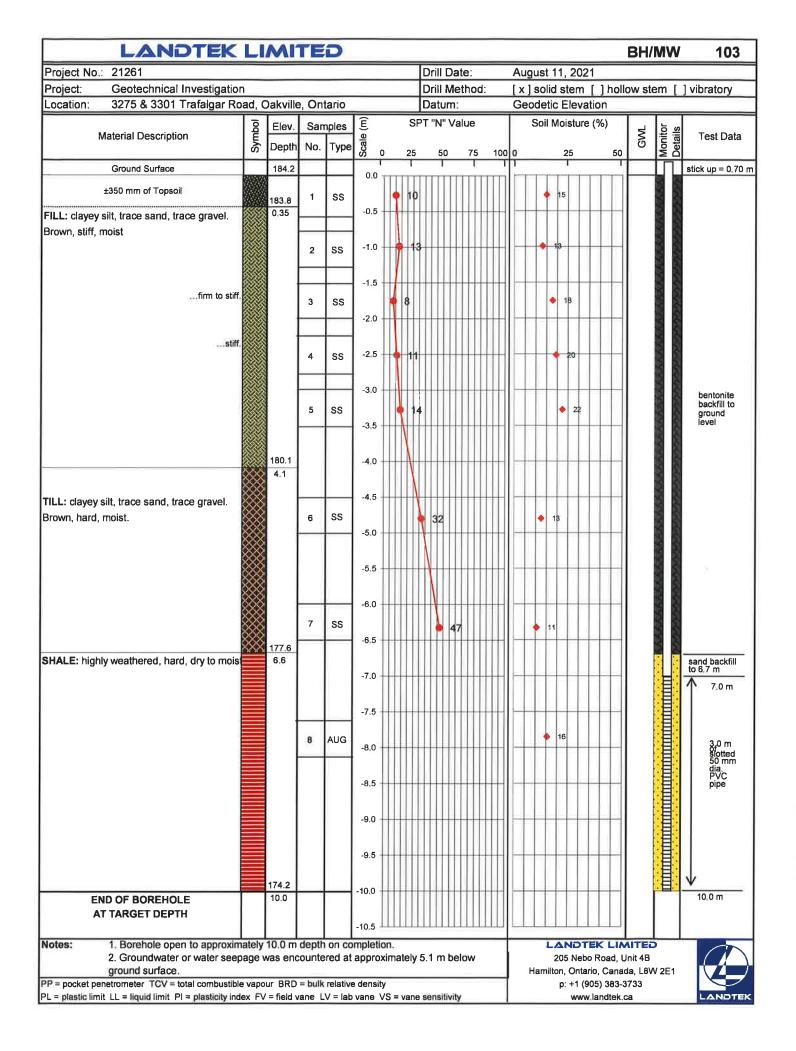
Client: Wyatt Development Group

Site Location: 3275 Trafalgar Road, Oakville

Drill Date: 9/21/2020

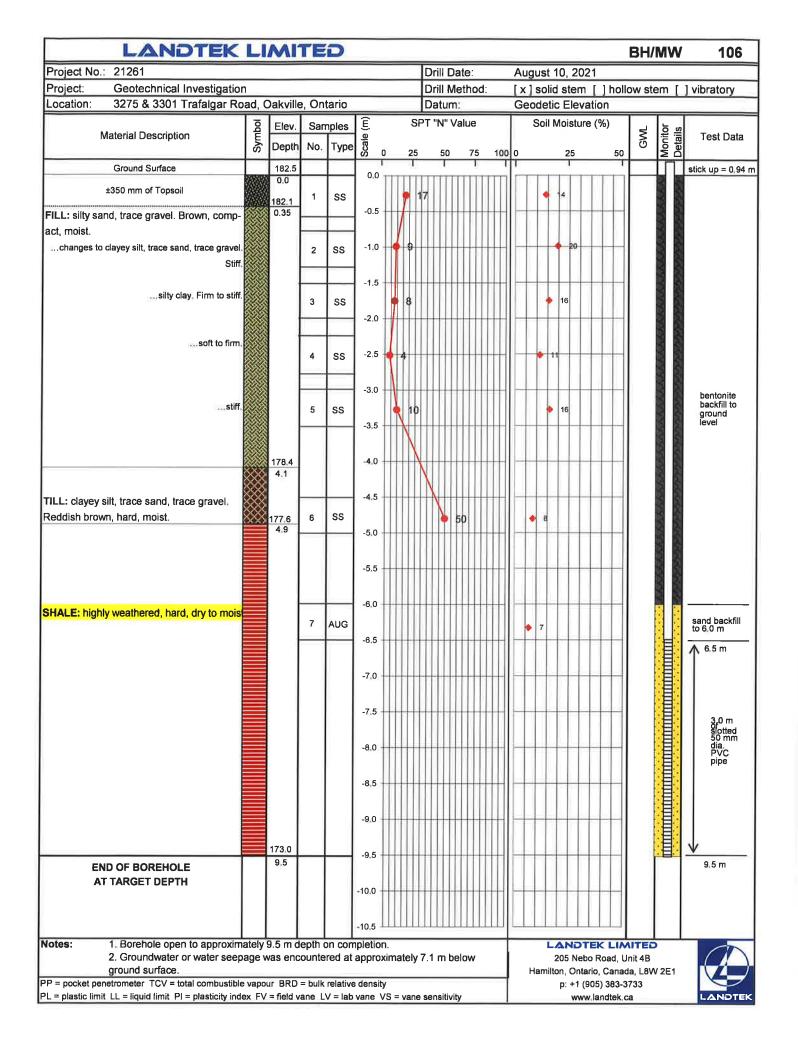
Drilling Contractor: Triphase

Drill Rig: Geoprobe


Drill Method: Direct Push/SSA

Protective Cover: N/A

		Subsurface Profile				S	ample			
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Recovery (%)	Soil Sample Lab Analysis	PID (ppm)	Hydrocarbon (ppm)	Well Completion Details
	~	Ground Surface TOPSOIL	180.5 0.0							
	8	Dark brown silty topsoil, some sand, moist with rootlets	180.0 0.5				Metals	0	0	Concrete
րիսիսի 4	×	FILL Brown with grey and red mottling, clayey silt, trace to some sand and gravel, moist. Possible reworked native		1	мс	95	-	0	0	CO
0 10 10 10 12 12 12 10 12 10 12 12 10 12 12 12 12 12 12 12 12 12 12	\bigotimes				мс					
8	\bigotimes	Brown at 2.29m bgs	177.6					о	0	Bentonite
10 12 14 14 14 14 16 18 10 14 14 16 18 10 14 14 14 14 16 18 10 10 10 10 10 10 10 10 10 10		Drilling Terminated	2.9							Sand Pack
Drafte	d by	nician: MBC : JAK by: TJJ Sheet			E		monitoring well	l evatio	n: 18	existing adjacent 1.61m asl October 7, 2020)


LANDTEK	L	MI	TE	D				MW	102D
Project No.: 21260						Drill Date:	August 9, 2021		
Project: Hydrogeological Investiga	tion					Drill Method:	[x] solid stem [] holl	ow stem] vibratory
Location: 3201/3275 Trafalgar Road	d, Oa	kville,	Ontai	rio.		Datum:	Geodetic		
	Ī	Elev.	San	nples	Ê S	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth		Туре	Scale (m)	50 75 10	0 25 50	GML Monitor Details	Test Data
Ground Surface		181.0				1 1	n i i		stick up = 0.71 m
±300 mm of topsoil		0,0			0.0				
FILL: silty clay with sand			1	SS	-0.5				
clayey silt, red, some shale fragments		0,8	2	SS	-1.0				bentonite
			3	ss	* -2.0			44444 2000	backfill to ground level
			4	SS	-2.5				sand backfill to 2.7 m
			5	ss	-3.0				3.0 m
		3.8			-3.5				1,5 m Slotted 50 mm dia PVC pipe
SHALE BEDROCK: fractured, wet		4.5			-4,5				4.5 m
END OF BOREHOLE		4.5			-5.0				
					-5.5				
					-6.0				
					-6.5				
					-7.5				
					-8.0				
					-8.5				
					-9,0				
					-9.5				
					-10.0				
Notes: 1. On completion, borehole o 2. Groundwater was encounte 3. Water level reading: WL at PP = pocket penetrometer TCV = total combustibil	ered a : 1.89	at 2.1 m m dept	durin h on N	lovem	ber 15, 2021	3	LANDTEK LIA 205 Nebo Road, I Hamilton, Ontario, Canac Ph: (905) 383-3733 Fax:	Jnit 3 1a, L8W 2E1	
PL = plastic limit LL = liquid limit PI = plasticity ind						e sensitivity	www.landteklimite		LANDTEK

LANDTEK	LI	MI	TE	D				MW	102S
Project No.: 21260						Drill Date:	April 25, 2022		
Project: Hydrogeological Investiga	ation					Drill Method:		ow stem	vibratory
Location: 3201/3275 Trafalgar Roa		kville,	Ontai	rio.		Datum:	Geodetic		
	10	Elev.	San	nples	Ê	SPT "N" Value	Soil Moisture (%)		
Material Description	Symbol				e -			GWL onitor etails	Test Data
	6	Depth	No.	Туре			0 25 50	GWL Monitor Details	
Ground Surface		181.0			0.0				stick up = 1,16 m
±300 mm of topsoil		0.0	1						
FILL: silty clay with sand			1	SS					
					-0,5				bentonite backfill to
			-						ground level
		0,8	2	SS	-1.0				
clayey silt, red, some shale fragments					1				
					-1.5				sand backfill to 1.38 m
			3	ss					<u>↑</u>
			_		-2.0				1.5 m
									1,5 m slotted 50 mm
		Î	4	ss	-2.5				dia PVC pipe
			·	<u> </u>	-2,5				pipe
	2222	3.18			-3,0				√
END OF BOREHOLE		3,10							3.18m
					-3.5				
					-4.0				
				6					
					-4.5				
			- (
					-5.0				
					-5.5				
					-6.0				
					-6.5				
					-7.0				
					-7.0				
					-7,5				
					-8.0				
					-8.5				
					-9.0				
					9.6				
					-9.5				
					-10,0				
Notes: 1. On completion, borehole o 2. Groundwater was encounted				a the r			205 Nobe Read		
3. Monitoring Well was dry or				y u ie (mining proces	13	205 Nebo Road, U Hamilton, Ontario, Canad		
PP = pocket penetrometer TCV = total combustible	e vapo	ur BRD	= bulk			2244310	Ph: (905) 383-3733 Fax: (905) 383-8433	
PL = plastic limit LL = liquid limit PI = plasticity ind	lex FV	= field v	ane L'	V = lab	vane VS = va	ne sensitivity	www.landteklimited	l.com	LANDTEK

LANDTEK	LI	Mľ	TE	D													В	Н	104
Project No.: 21261							TC	orill Date	e :		Aug	just	10, 2	2021					
Project: Geotechnical Investigation	ı						Tc	orill Met	hod:		_	_] hol	low s	stem	[]	vibratory
Location: 3275 & 3301 Trafalgar Ro		Dakville	e, Ont	tario			Tc	Datum:					c Ele						
	ō	Elev.	San	nples	Ê	S	SPT	"N" Valı	Je			Soil	Moist	ure (%)	Τ.	Ŀ		
Material Description	Symbol	Depth		r <u> </u>	Scale (m)	0 25	5	50	75 1	00			25		50	8	Monitor	Details	Test Data
Ground Surface		183.7	_		0.0			Ť	T	T	Ť		1			E	É		
±400 mm of Topsoil		183.3	1	ss	-	• 1	2					•	12						
FILL: clayey silt, trace gravel, trace sand. B-		0.4			-0,5					tl	H		Ħ	Ħ					
rown, stiff, moist.			2	ss	-1.0		16					•	4						
stiff.					-1,5					+	-	+	+	+	++-				
, sun.			3	SS	-2,0	1	14			Ц			15						
siity clay, no cobbles.			_																
			4	SS	-2.5	8							• •						
TILL: clayey silt, trace sand, trace gravel.		180.7 3.0			-3.0	+				$\left \right $				+					
Brown, very stiff, moist.			5	SS	-3.5		Ì	27		Ц	_	1	14						
					-4.0														
					1														
hard.			6	ss	-4.5			45					12	T					
					-5.0					-	H			Ħ					
SHALE: highly weathered. Red and grey.	***	177.9			-5,5					$\left\ \right\ $		+		+	+				
END OF BOREHOLE		5.8										11							
AT AUGER REFUSAL					-6.0		Ħ				T	Ħ		Π					
					-6.5														
					-7.0														
					-7.0														
					-7.5						H								
					-8,0						+			+					
					-8,5						H								
					-9.0														
					0.0														
					-9.5		T				1	Ħ	Ħ	Ħ					
					-10.0					$\left \right $	+			$\left \right $	$\left \right $				
					-10.5														
Notes: 1. Borehole open to approxim					npletio	n.				1		L	AN	DTE	K LI	NITE	.D	-	
2. Groundwater or water seep			I	Hamil	ton, C	ntario	Road, I o, Cana	ida, L8		1									
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit PI = plasticity inde							ie se	ensitivity							5) 383- andtek				LANDTEK

LANDTEK	L	Mľ	TE	D																Bł	1	105
Project No.: 21261							D) rill	Date) :		Au	igus	st 1	0, 2	202	1					
Project: Geotechnical Investigation							D	Drill	Metl	nod		[×] so	olid	ste	em	[]	holl	ow st	em	[]	vibratory
Location: 3275 & 3301 Trafalgar Ro	ad, (Dakville	e, Ont	tario			D)atu	m:			Ge	eod	etic	Ele	evat	tion					
	Pod	Elev.	Sam	nples	E)		SPT	"N"	Valu	Je			Sc	oil N	lois	ture	(%))	2	Ъ	ŝ	
Material Description	Symbol	Depth	No.	Туре	Scale (m)	0 2	25	50)	75	10	0			25			50	GM	Monitor	Detai	Test Data
Ground Surface	-	182.8			0.0		1	1		1		1			1			1				
±350 mm of Topsoil		182.4	1	ss		- 7									•	24						
FILL: silty sand, trace gravel. Brown, loose, moist.		0.35			-0,5				$^{++}$		\mathbb{H}	-			T		1					
changes to clayey silt, trace sand. Firm to stiff.			2	ss	-1.0	• 8						-		•	-17							
silty clay. Firm.			3	ss	-1,5	• 5								•	15							
stiff.			4	ss	-2.0		0															
			4		-3.0																	
firm to stiff.		179.2	5	SS	-3.5	8						-		•	17		-					
		3.6			-4.0							-										
TILL: clayey silt, trace sand, trace gravel. Brown, hard, moist.		<u>177.8</u> 5.0	6	ss	-4.5		Ì	4	o					1	3							
					-5.5												-	_				
SHALE: highly weathered, hard, dry to mois		176.3	7	AUG	-6.0								4									
END OF BOREHOLE AT TARGET DEPTH		6.5			-6.5																	
					-7.5							-										
					-8.0							-				Ħ						
					-8.5 -																	
					-9.0 -																	
					-10.0 -							-										
					-10,5																	
Notes: 1. Borehole open to approxima 2. Groundwater or water seep	age r	not enco	ounter	ed.									Har	2	05 M	Vebo	Roa	ad, U	NITE nit 4B ta, L8\			
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit PI = plasticity inde							ne se	ensiti	vity									983-3 Itek.c				LANDTEK

LANDTEK	L	Mľ	TE	D																				B	Η	11	0
Project No.: 21261							_		Dri	II D	ate	:			Au	gus	st 9	, 20	021								
Project: Geotechnical Investigation	٦								Dri	II N	leth	od	:		[x] so	bilc	ste	em		ho	llo	w ste	m	[]	vibrator	/
Location: 3275 & 3301 Trafalgar Ro	ad, (Dakville	e, Ont	tario			_		Da	tun	ĥ.				Ge	od	etic	: El	eva	tio	n						
	ō	Elev.	San	nples	Ê			SF	יי די	V" \	/alu	е				Sc	oil N	lois	ture	(%	5)	Т		5	T		
Material Description	Symbol	Depth		Туре	1 @	5		25		50		75	10	00	0			25			50		GWL	Monitor	Details	Test Da	ata
Ground Surface		183.3			0.0			1		1		T		Т	1			-U			ý.	Т					
±300 mm of Topsoil		0.0 183.0	1	ss	0.0		9	1	8								•	4									
FILL: silty sand, trace gravel. Brown, comp- act, moist.		0.3			-0.5	Ħ						T				T			T	H	T						
trace cobbles.			2	SS	-1.0		/	1	7					-			•	15									
clayey silt, no cobbles. Firm.			3	SS	-1.5	-	6									•	12										
		181.0																									
CLAYEY SILT: trace gravel, trace sand, tra- ce shale fragments. Reddish brown, stiff, m-		2.3	4	SS	-2.5		L	10	1	1								3									
oist.							Ι																				
			5	SS	-3.0		0	,										•	22								
					-4.0																						
	~~~~	178.9 4.4																									
TILL: clayey silt, trace sand, trace gravel, Brown, hard, moist.			6	ss	-4.5		T		3	2						•	12										
					-5.0																						
					-5.5																						
trace grey shale fragments.		176.8	7	SS	-6.0						1	64				•	9										
END OF BOREHOLE AT TARGET DEPTH		6.5			-6.5 -7.0																						
					-7.5																						
					-8,0 -																						
					-8.5 -																						
					-9,0		T	T							Π	T				T							
					-9.5 -	$\parallel$				Ħ					-	$\top$			$\parallel$	+							
					-10,0										-				$\ $								
					-10,5																						
Notes:         1. Borehole open to approximate           2. Groundwater or water seep					pletior	1.								I			2	05 N	Vebo	Ro	ad, I	Uni				Â	$\sum$
PP = pocket penetrometer TCV = total combustible	vano		= bulk	relative	densih	,	-	-	-	_	_	-	_	-		Har					Cana 383-		, L8W 33	2E1		<b>IV</b>	$\overline{}$
PL = plastic limit LL = liquid limit Pl = plasticity inde							va	ne	sen	sitivi	ty										dtek.					LAND	тек

LANDTEK	L	Mľ	TE	D													BH	111
Project No.: 21261							Drill	Date	:	/	Augu	st 9,	2021					
Project: Geotechnical Investigation	n						Drill	Meth	od:		[x]s	olid :	stem	[]ho	ollo	ow ste	em [	] vibratory
Location: 3275 & 3301 Trafalgar Ro	ad, (	Dakville	e, Ont				Datu	ım:		(	Geod	letic	Eleva	tion				
	ō	Elev.	Sam	ples	Ê	SI	<b>&gt;</b> Τ "Ν'	' Valu	e		S	oil Mo	oisture	(%)	٦		5 10	
Material Description	Symbol	Depth		nples Type	Scale (	0 25	5	o :	75 1	00 0			25		50	GWL	Monitor Details	Test Data
Ground Surface		183.3			0.0				1				1		1			
±300 mm of Topsoil		0.0 <u>183.0</u> 0.3	1	SS		<b>*</b> 1:	3						20					
FILL: silty sand, trace gravel. Brown, comp- act, moist.		0.3			-0,5	1												
silty clay, trace sand. Loose.			2	SS	-1.0	-						+	20					
clayey silt, trace sand. Compact.			3	ss	-1.5	12	2					•	19					
Loose.			4	ss	-2.5							-	20					
		160.3			-3.0													
SILTY CLAY: trace gravel, trace sand. Bro- wn, stiff, moist.		3.0	5	SS	-3.5	• 11							<ul> <li>25</li> </ul>					
					-4.0													
TILL: clayey silt, trace sand, trace gravel. Brown, hard, moist.		178.9 4.4	6	SS	-4,5			53		_		10						
					-5.0 -5.5					_								
""reddish brown.		176,8	7	SS	-6,0				65			•	19					
END OF BOREHOLE AT TARGET DEPTH		6.5			-6.5 -7.0													
					-7,5													
					-8,0													
					-8,5					-								
					-9,0					-					-			
					-9.5					-					-			
					-10.0									+				
					-10.5													
Notes: 1. Borehole open to approxim 2. Groundwater or water seep PP = pocket penetrometer TCV = total combustible	ager	not enco	ounter	ed.							Ha	20 milton	NDT 5 Nebc , Ontar	o Road rio, Car	, Ur 1ada	nit 4B a, L8W		
PP = pocket penetrometer TCV = total combustionPL = plastic limit LL = liquid limit PI = plasticity indu							sensi	ivity				F	o: +1 (9 www	landte				LANDTEK

LANDTEK	LI	Mľ	TE	D				BH	112
Project No.: 21261						Drill Date:	August 9, 2021		
Project: Geotechnical Investigation	า					Drill Method:	[x] solid stem [] hollo	ow stem []	vibratory
Location: 3275 & 3301 Trafalgar Ro	ad, (	Dakville	e, Ont	ario		Datum:	Geodetic Elevation		
	0	Elev.	San	ples	Ê S	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth		Туре	E S Scale (II) S O 25			GWL Monitor Details	Test Data
Ground Surface	<i>"</i>	182.8			1 1	50 75 100	0 25 50		
±350 mm of Topsoil		0.0	-		0,0				
		182.4	1	SS	-0.5	23	• 8		
FILL: silty sand, trace gravel, Brown, comp-		0.35	-		-0.5				
act, moist. clayey silt, trace sand, trace gravel. Loose,			2	ss	-1.0				
					-1.5				
Compact.			3	ss	👆 1	<u>x</u>	4 14		
					-2.0				
			4	SS	-2.5	\$ <del></del>	• 19		
		470.4			-3,0				
TILL: clayey silt, trace sand, trace gravel.		179.4 3.4	5	SS	-3.5	20	• 12		
Brown, very stiff, moist.					-3,5				
	***				-4.0				
	***								
					-4.5				
a.hard,	***		6	SS		33	♦ 12:		
	***				-5.0				
	***					N			
	***				-5.5				
	***					. <b>X</b>			
trace shale fragments. Reddish brown.	***				-6.0				
	***	176.3	7	SS	0.5	🔶 507 125 mm	● 22		
		6,5			-6.5				
END OF BOREHOLE AT TARGET DEPTH					-7.0				
					-7.5				
					-8.0				
					-8.5				
					-9.0				
					0.5				
					-9.5				
					-10.0				
					-10.5				
Notes: 1. Borehole open to approxim					npletion.		LANDTEK LIN		
2. Groundwater or water seep	age	not enco	ounter	ed.			205 Nebo Road, U		
PP = pocket penetrometer TCV = total combustible	e vapo	ur BRD	= bulk	relative	e density		Hamilton, Ontario, Canac p: +1 (905) 383-3		
PL = plastic limit LL = liquid limit PI = plasticity ind						e sensitivity	www.landtek.c		LANDTEK

LANDTEK	LI	Mľ	TE	D																BH		113
Project No.: 21261								Drill	Date				Aug	ust	10, :	202	1					
Project: Geotechnical Investigation	ı							)rill	Meth	nod	l:	_	_					holl	ow st	em [	] vib	oratory
Location: 3275 & 3301 Trafalgar Ro	ad, (	Dakville	e, Ont	ario			D	)atu	m:			(	Geo	deti	c El	evat	tion					
	5	Elev.	San	ples	Ê		SPT	"N"	Valu	e		T	:	Soil	Mois	ture	(%)		Ι.	<u> </u>		
Material Description	Symbol	Depth		Туре	ae		25	50		75	10	000			25		• •	50	GM	Monitor Details	T	Fest Data
Ground Surface		182.4					1	1		1		Π	li -		1			1				
±350 mm of Topsoil		0.0	1	ss	0.0	•	9								16							
FILL: silty sand, trace gravel. Brown, stiff, moist.		0.35			-0.5									Ħ	T			T				
change to clayey silt, trace sand, trace gravel. Firm to stiff.			2	SS	-1.0										•	20		T				
,silty clay.			3	SS	-1.5	8	5								16	r.						
clayey silt. Stiff.				-	-2.0																	
			4	SS	-2.5	1	11							1	15							
		179.1	5	ss	-3,0	ļ	15								•	20						
TILL: clayey silt, trace sand, trace gravel. Brown, stiff to very stiff, moist.		3.3			-3,5		V															
					-4.0		١															
SHALE: highly weathered. Red and grey.	***	177.6	6	SS	-4.5			N	50	/ 10	)0 mr	n	• 3	3	Ħ							
END OF BOREHOLE		4.8			-5.0		+++	$\left  \right $				Ш	-	++	+		+	+				
AT AUGER REFUSAL								111			Ш	Ш			11							
					-5,5		111	111	111					11	++	$\square$		$\square$				
							Ш					Ш										
												Ш										
					-6,0			111	ĦT		111	11			T							
					-6.5			+++	Ht				-	H	++		+	H				
								111				Ш										
					-7.0	++++		+++	+++		+++		-	$\left  \right $	+	+	+	+				
					-7 5																	
					-8,0																	
					-8.5																	
					-9,0																	
					-9,5																	
					-10,0																	
					-10.5	1.1.1.1.1	111	щ	цЦЦ	ш	111	1		<u> </u>	- 1			Ц				
Notes: 1. Borehole open to approxim					npletio	n.								L								
2. Groundwater or water seep	age	not enc	ounter	ed,									F	lami					Jnit 4B da 18\	N 2E1		( - / - )
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit PI = plasticity ind							ane s	ensit	ivity						<b>p</b> : -	+1 (9 www	05) 3	383-3	3733		ŀ	

LANDTEK	LI	Mľ	TE	D				BH	114
Project No.: 21261						Drill Date:	August 12, 2021		
Project: Geotechnical Investigation	n					Drill Method:	[x] solid stem [] holk	ow stem [] vi	bratory
Location: 3275 & 3301 Trafalgar Ro	ad, (	Dakville	e, On	tario		Datum:	Geodetic Elevation		
-	ō	Elev.	San	nples	Ê SI	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth		Туре	Scale (m) Scale (m) 25			GWL Monitor Details	Test Data
Ground Surface	- "	179.3			<u> </u>	50 75 100	0 25 50		
±300 mm of Asphalt		170.0			0.0				
	1292.92	÷	1	ss		🥐 38	🔶 1		
±300 mm of Sand and Gravel		178.7 0.6			-0.5	<del>/</del>			
FILL: clayey silt, trace gravel. Brown, hard,		0.0				/			
moist.					-1.0				
		<u>177.8</u> 1.5		<u> </u>	-1.5				
	$\otimes$	1.5	2	ss	6	19	● 8		
	***				-2.0				
TILL: clayey silt, trace sand, trace gravel.	***								
Brown, very stiff, moist.	***				-2.5				
	$\otimes$								
SHALE: highly weathered. Red, hard, dry.	888	176.2	3	AUG	-3.0				
END OF BOREHOLE		3.1	3	AUG			10		
AT TARGET DEPTH		011			-3.5				
					-3-5				
					-4.0				
					-4.5				
					-5.0				
					-5.5				
					-6.0				
					-6.5	+++++++++++++++++++++++++++++++++++++++			
					-7.0				
					-7.5				
					-8.0				
					-8.5				
					-9.0				
					-9.5				
					-10.0				
					10.0				
					-10.5				
Notes: 1. Borehole open to approxim		30m	lepth (						
2. Groundwater or water seep							205 Nebo Road, U		
					1		Hamilton, Ontario, Canad		
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit PI = plasticity ind						sensitivity	p: +1 (905) 383-3 www.landtek.c		

LANDTEK	LI	Mľ	TE	D																		В	H	115	5
Project No.: 21261								D	rill	Da	te:		_	AL	gu	st 1	2, 2	202	1						
Project: Geotechnical Investigation	۱							D	rill	Me	tho	d:		[ X	] s	olid	ste	m	[]	holl	ow s	tem	[]	vibratory	
Location: 3275 & 3301 Trafalgar Ro	ad, C	Dakville						D	atu	Im:				Ge	eod	etic	Ele	evat	ion						
	Ī	Elev.	San	nples	Ê		S	SPT	"N'	' Va	lue			Γ	S	oil M	loist	ure	(%)	)		The	<i>"</i>		
Material Description	Symbol	Depth	No.	nples Type	Scale (	)	25	5	5	0	75	5	100	0			25			50	В	Monito	Details	Test Dat	a
Ground Surface		179.0					T		1		1	N	1	†			1			Т		T			
±300 mm of Asphalt					0.0	Π	Π	Π	Π	I	Ш	Π	Π									Т			
±300 mm of Sand and Gravel	15355		1	ss						40					1										
		178.4	-		-0.5	Ħ	Ħ	17	T		TT		Ħ							$\square$					
FILL: silty sand, trace gravel, trace clay. Br-																									
own, hard, moist.					-1.0	III	Ħ		Ħ	Ħ	ttt		Ħ		T	1	Ħ	$\top$		T					
					-1,5		1/				H	++	Ħ		H	-	H		1	+					
		177.2 1.8	2	SS			•	19							•	10									
	888	1.0		-	-2.0		₩	H	H			++		-	$\vdash$	+	$\vdash$		+	+					
TILL: clayey silt, trace sand, trace gravel.	888	6																							
Brown, very stiff, moist.	$\otimes$				-2,5	$\left  \right  \right $	₩	+++	++-	++		++	₩	-					+	+	1				
	***						11																		
SHALE: highly weathered. Red, hard, dry.		175.9	3	AUG	-3.0	$\left  \right $	₩	$\left  \right $				++	++		٠	9		H	+	+					
		3.1																							
END OF BOREHOLE					-3.5	$\left  \right $	₩			++	$\left  \right $	++	+	-	$\vdash$	+-		+	+	+					
AT TARGET DEPTH									11																
					-4.0	$\left  \right $	₩	$\left  \right $			$\left  \right $	++-			$\vdash$	+-	+	+	+	+					
													Ш												
					-4.5		#				$\left  \right $			-	$\vdash$		-	+	+	+					
					-5.0		#							_		_	-	+	-	+					
					-5.5		#						Ш			_	4	+	+	+					
							11																		
					-6.0		1	Щ			Ш	1	Ш					$\square$	_	$\square$					
					26															11					
					-6.5		1	Ш	Ш				Ш						+	Ш					
					-7.0						Ш		Ш							$\square$					
					- 65																				
					-7.5															$\square$					
					-8.0								Ш												
					0.0																				
					-8.5																				
					-0.5																				
					-9.0																				
					-9.0		Π	Π				Т	Ш												
					-9.5		[]					T							T						
					40.0																				
					-10.0								П							Π					
Nataon 4 Developments and a second			10-1		-10.5			- tota			eret rit	- to be	and of				A. h. '		EM	1.10		T			_
Notes: 1. Borehole open to approxim 2. Groundwater or water seep					npietio	1.															Jnit 4E			a	1
	-													ļ	Ha		on, C	Ontar	io, (	Cana	da, L8		E1		Ĵ
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit PI = plasticity ind								ne e	ene	tjuit	,									383∹ dtek.	3733 ca			LANDT	FEK

LANDTEK	LI	Mľ	TE	D																BH	1	16
Project No.: 21261							Dr	ill D	ate	:		A	ugu	st 1	1, 2	202	1					
Project: Geotechnical Investigation	1			_			Dr	ill N	leth	od:	_	[)	(]s	olid	ste	m	[]	holl	ow st	em [	] vibrato	у
Location: 3275 & 3301 Trafalgar Ro	ad, C	Dakville					Da	tum	1:			G	eod	etic	: Ele	evat	tion					
	ğ	Elev.	Sam	ples	Ê	S	PT "	N" \	/alue	е		Γ	S	oil N	lois	ture	(%)	)		5 0		
Material Description	Symbol	Depth	No.	ples Type	Scale	25		50	7	75	100	0			25			50	GM	Monitor Details	Test D	Data
Ground Surface		178.3			0.0	1		1		1		1_										
±250 mm of Topsoil	1000	0.0 178.1			1.5		Ш											43				
FILL: silty clay, trace sand. Brown, firm, mo-		0.25	1	SS	-0.5 -																	
ist.					-0.0														1			
								Ш	Ш										1			
					-1.0 -		TT	TH	TH										1			
		176.8						111											I			
		1.5			-1.5				111	Ħ					Ħ			Ħ	1			
TILL: clayey silt, trace sand, trace gravel.	***		2	SS			<b>१</b>   P	0					•	8								
Brown, hard, moist.	***				-2.0		t	ĦĦ	+++	tt			++	+	Ħ			+	1			
	***						N												1			
	***				-2.5		ΗN		+++	++	++-		++	-	H			Ħ	1			
	***							۱I	111										1			
SHALE: highly weathered. Red, hard, dry.	XXXX	175.2	3	SS	-3.0 -	+++++		۵	50/	12	5 mr	n –		1	2							
		3.1						Ш	Ш										1			
END OF BOREHOLE AT TARGET DEPTH					-3.5		+++	+++	+++	++-	++-			+	H			H				
AT TARGET DEPTIT								111	111										1			
					-4.0		+++	+++	+++	++-	+++		++	+		+	+	+				
				1													1		1			
					-4.5 -	+++++	+++	+++	+++	+	++-		++	+	$\vdash$	+	+	+				
									111										1			
					-5,0 -		$\left  \right $	$\left\{ + \right\}$	+++	++-		-	++	+	$\vdash$	+	+	+				
							111		111													
					-5,5 -	+++++	+++		$\mathbb{H}$	++	++		++	+	$\vdash$	+	+	+				
							Ш		111							11						
					-6.0 -	+++++	+++	+++	+++	++-	+++		++	+-	$\vdash$	+	+	+				
					-6,5 -				+++	++	+++		++	+	$\vdash$	+	+	+				
					-7.0	+++++	$\left  \right  \right $	$\left  \right  \right $	+++	+++			++	+	$\vdash$	+	+	+				
									Ш													
					-7.5	+++++	$\left  \right  \right $		$\left  \right  \right $		-++-	-	++	+	$\left  \right $	+	+	+				
					-8.0	+++++			$\left  \right  \right $		+++	-	++	+	$\left  \right $	++	+	+				
									Ш													
					-8.5	+++++	$\left  + \right $		$\left  \right  \right $		+++		++	+-		+	+	+				
					-9.0	+++++	$\left  \right  \right $	₩			++-	ŀ	+	+-		+	+	+				
							111		Ш													
					-9.5	+++++		₩			+++	-	+		+	+	+	+				
					-10.0			$\left  \right  \right $	$\left  \right  \right $		+++		$\mathbb{H}$	+-	-	+	+	+				
					-10.5				Ш	Ш	Ш	Ļ	Ц			Ļļ		Ц				
Notes: 1. Borehole open to approxim							-					t							AITE	5		
<ol> <li>Groundwater or water seep surface.</li> </ol>	age	encount	tered a	at appi	roximat	ely 2.7	m b	elow	/ gro	ound	1		<b>ل</b> اء						Jnit 4B da, L8\	N 2E4		
PP = pocket penetrometer TCV = total combustible	e vapo	ur BRD	= bulk	relative	e density	/	_						па	orna					0a, Lov 3733	V ZEI		>
PL = plastic limit LL = liquid limit PI = plasticity inde	ex FV	/ = field v	ane L	V = lab	vane \	/S = van	e ser	nsitiv	ity		_			_		ww	.land	dtek.	ca		LAN	DTEK

LANDTEK	LI	Mľ	TE	D				BH	117
Project No.: 21261						Drill Date:	August 12, 2021		
Project: Geotechnical Investigation	n					Drill Method:	[x] solid stem [] hold	ow stem [] v	ibratory
Location: 3275 & 3301 Trafalgar Ro	ad, C	Dakville	e, Oni	ario		Datum:	Geodetic Elevation		
	ō	Elev.	San	ples	E SF	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth	-	Туре	electrony of the second	50 75 100	0 25 50	GWL Monitor Details	Test Data
Ground Surface		179.1		-		TIT	1 1 1		
±275 mm of Topsoil		178.8			0.0				
FILL: silty sand, trace gravel, trace clay, to	336	0.3	1	SS	13		20		
clayey silt, trace sand, trace gravel. Brown,				-	-0.5				
stiff, moist.		177.9							
TILL: clayey silt, trace sand, trace gravel.	$\bigotimes$	0,9	2	SS	-1.0	30			
Brown, very stiff, moist.	***					N			
	888				-1.5				
trace grey shale fragments at 1.8 m.	888		3	ss		57	11		
	888		5	33	-2.0				
	888	176.8			-2.0				
SHALE: highly weathered. Red, hard, dry.		2.3							
			4	AUG	-2.5		11		
		176,0	5	AUG	-3.0		<b>●</b> 8		
END OF BOREHOLE		3.1							
AT TARGET DEPTH					-3.5				
					-4.0				
					-4.5				
					5.0				
					-5.0				
					-5.5				
					-6.0				
					-6.5				
					-7.0				
					-7.5				
					-7.5				
	ŭ - 1								
					-8.0				
					-8.5	+++++++++++++++++++++++++++++++++++++++			
					-9.0	+++++++++++++++++++++++++++++++++++++++			
					-9.5				
					-10.0				
					10.5				
					-10.5				
Notes: 1. Borehole open to approxim 2. Groundwater or water seep					npietion.		205 Nebo Road, U		
21 Ciouldwater of water see	age I		- an itigi				Hamilton, Ontario, Canad		
PP = pocket penetrometer TCV = total combustible							p: +1 (905) 383-3	733	
PL = plastic limit LL = liquid limit PI = plasticity ind	ex F∖	/ = field \	ane L	V = lab	vane VS = vane	sensitivity	www.landtek.c	a	LANDTEK

LANDTEK	LI	Mľ	TE	D																				BH		118
Project No.: 21261									Dri	II D	ate				Au	gu	st 1	1, 2	202	1						
Project: Geotechnical Investigation									Dri	II M	leth	od	:		[ x	] se	bilc	ste	em	[]	ho	llo	w ste	m [	] vi	bratory
Location: 3275 & 3301 Trafalgar Ro	ad, C	Dakville	e, Ont						Da	turr	1:				Ge	od	etic	: El	eva	tio	٦	_				
	<u>s</u>	Elev.	San	nples	Ē			SP	T "I	<b>N</b> " V	/alu	е				Sc	oil N	lois	ture	e (%	)	Т		۲ ۵		
Material Description	Symbol	Depth		nples Type	Scale	0	2	25		50		75	1	00	0			25	i		50	,	GWL	Monitor Details		Test Data
Ground Surface		179.4			0.0			1		1		1		1							ŝ.	1				
±150 mm of Topsoil		179,2				11												4.5				П				
FILL: clayey silt, trace gravel, trace sand. Brown, stiff, moist.		0.15	1	SS	-0,5	Ц	N	12									1	15								
Brown, sun, moist.		178.5											Н													
TILL: clayey silt, trace sand, trace gravel.	$\otimes$	0.9	2	SS	-1.0	#	111	þ	3	1			#	Н	H	-	1	44	+	H					1	
Brown, hard, moist.	***				E.																					
	***				-1.5	₩							++-	Н	H	+	+	$\vdash$	+	$\left  \right $	-					
	$\otimes$	177.9	3	SS		Ш		∮	3	b							10	11								
SHALE: highly weathered. Reddish brown,		1,8			-2.0	#		+			111		#		H	+	+	$\vdash$	+	$\vdash$	-					
hard, dry to moist.						П												11								
			4	AUG	-2.5	#			1				#	Ц		٠	8	H	+	$\left  \right $	-					
					-3,0	#		#						Ц	-	+	╞	$\vdash$	+	H	+					
			5	AUG												6										
		175.9			-3.5	#		#	11-		Ш		#	Ш	H	-	-		-		+					
END OF BOREHOLE		3,5				Ш																				
AT TARGET DEPTH					-4.0	Щ.	Ш	#	Щ.		Ш		1	Ц	H	-	-	$\square$	-	$\square$						
					-4.5	Щ.	Ш	#		1	Ш	1	1	Ц	H	+	-	Ц	+	H	+					
					-5.0	4		1			Ш	1	1			4			1							
					-5.5	Ш		1			Ш	Ш														
					-6.0	Ш		1		Ш	Ш	Ш			Ц	4			-		-					
					-6,5	Ш						Ш														
					0,0																					
					-7,0							Ш														
					-1.0																					
					-7.5																					
					1.0																					
					-8.0																					
					-0.0																					
					-8.5																					
					-0.0										H		П		Т							
					-9.0																					
					-9.0										Π											
					-9.5																					
					-9.0	Π		$\prod$		T		T														
					-10.0																					
					-10.0			IT		Π	Π	T	Π		Π	T					Π					
					-10.5																					
Notes: 1. Borehole open to approxim	atoly	30 m	onth			-						_		-	_	_	-				1.14		TEO		L	-
2. Groundwater or water seep					pietio	11.																	it 4B			
	-						_		_							Ha		on, C	Onta	rio,	Cana	ada	a, L8W	2E1		
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit Pl = plasticity ind							= va	ine :	sen	sitiv	ty										383- dtek					LANDTEK

LANDTEK	LI	Mľ	TE	D																					BH		11	9
Project No.: 21261								Т	Dri	I D	ate	:			Aι	ıgı	st	12,	20	)21						_		
Project: Geotechnical Investigation	1								Dril	I M	eth	od	:		[ x	] s	olio	d s	ter	n [		holl	ow	ste	m [	] vil	oratory	1
Location: 3275 & 3301 Trafalgar Ro	ad, C	Dakville	e, Ont	tario					Dat	tum	Ŭ.				Ge	eoc	leti	c E	Elev	vat	ion							
	8	Elev.	Sam	ples	le (m)		÷	SP	T "N	<b>1</b> " V	'alu	е			1	S	oil	Mo	istu	ire (	(%)		Γ.	_ ]	5 0			
Material Description	Symbol	Depth		Туре	Scale	0	2	25		50		75	1(	00	0			2	25			50	į	ev R	Monitor Details		Fest Da	ata
Ground Surface	020502	180.9			0.0			! 		, 				å	Ľ	-	-	T			_	ń		_			_	_
±250 mm of Topsoil	-	180,6	1	ss				1										1										
FILL: sandy silt, trace gravel, trace cobbles.		0.25		35	-0.5		I	1	1																			
Brown, compact, moist.					-0.0																							
,no cobbles, trace clay, Loose.			2	SS	-1.0	-	9	,							-		•	14				-						
	2222	179,4 1.5			-1,5	+++		++		++		++		H	H	$\left  \right $	+	+	-		+	+						
SILTY CLAY: trace sand, trace gravel. Bro- wn, firm to stiff, moist.		1.5	3	SS	-2.0		8								_		•	•	18									
TILL: clayey silt, trace sand, trace gravel.		178,6			-		N															11						
Brown, very stiff, moist.	***	2.3	4	ss	-2,5	44		4	24	-					-		•	13	$\square$		+							
Brown, very stin, moist.	***							N	TI																			
	$\otimes$				-3.0	Ш			X.																			
hard.	***		5	ss				Ш	N						Ľ		10					11						
	***	177.4	5	33	-3.5					4	5																	
END OF BOREHOLE		3.5			-0.0			П																				
AT TARGET DEPTH																												
					-4.0	TT	T	TT	Ħ	T	Ħ	tt	Ħ				T					П						
							11	Ш		Ш																		
					-4.5	+++	₩	Ħ		Ħ		╈	H		F	H	+	1	H		t	H						
								Ш																				
					-5,0	+++	₩	₩	$\left  \right $	+		+		-	-	$\left  \right $	+	+	$\left  \right $	-	+	H						
								Ш		Н			Ш															
					-5.5	111	#	44		#		#	Ш	-			+	+		-	-	Н						
							П		111																			
					-6.0	Ш																						
					0.0																							
					-6.5	Ħ	T	Ħ	111	T		Ħ	Ш	1				T	П		T	П						
									111			Ш		Ш														
					-7.0	ĦĦ	tt	Ħ	Ħ	Ħ		Ħ	H		H		+	t	H	+	t	Ħ		- 1				
					-7,5	+++	++	₩	+++	₩		╫	$\left  \right $	-	Н		+	+	$\square$	-	+	H						
						111				Ш																		
					-8_0	+++	++	₽	+++			╢		-	Н	-	+	+	$\vdash$	+	+	$\left  - \right $						
								Ш						Ш										1				
					-8,5	111	4	#	111	4		1		4	L		+	+	$\square$	_	+	4						
						Ш								Ш														
					-9.0	Щ	#	#	111	#		#					+	-		_	+							
					-9.5	Ш	1	11	Ш	11		11				4	+	1		_		$\square$						
					-10.0	Ш																						
					.0.0																							
					10.5																							
Natara d Davatala	alah	2.0	anth		-10.5	and the											_			-								
Notes: 1. Borehole open to approxim 2. Groundwater or water seep					pietic	n.											Ľ					LIA ad, U					$\bigcap$	
						_			_							Ha	mili								2E1			
PP = pocket penetrometer TCV = total combustible														Τ				p:				83-3		3			2	
PL = plastic limit LL = liquid limit PI = plasticity ind	ex FV	= field v	ane L'	v = lab	vane	vs =	= va	ne	sens	sitivi	ty	_			_	-	-		w	ww.l	and	tek.c	ca		_		LANC	TEK

LANDTEK	L	Mľ	TE	D				MW	120S
Project No.: 21260						Drill Date:	April 5, 2022		
Project: Hydrogeological Investiga						Drill Method:	[x]solid stem []h	ollow stem []	vibratory
Location: 3201/3275 Trafalgar Road	d, Oa	kville,	Ontai	io		Datum:	Geodetic		
	Ī	Elev.	San	nples	Ê S	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth	1	nples Type	କ୍ଷ ୪୦୦୦ 25	50 75 100	0 25	00 GWL Details	Test Data
Ground Surface		178,5			0.0	I I	1 · · · · · · · · · · · · · · · · · · ·		stick up = 0.68 m
±600 mm of topsoil		0.0			0.0				bentonite backfill to
	121212		1	SS	-0.5				ground level and backfill 0.6 m
FILL: silty clay, brown trace sand			-		-1.0				0.6.m
trace gravel			-						1-5 m Slotted 50 mm
			2	SS	-1.5				50 mm
CLAYEY SILT TILL: trace sand	2000				-2.0				dia PVC pipe
trace gravel		1.8	-		~				/
END OF BOREHOLE		2.4	1		-2.5				2.4 m
					-3.0				
					-3.5				
					-4.0				
					-4.5			-	
					-5,0				
					-5.5				
					-0,0				
					-6,0				
					-6.5				
					-7.0				
		7.5			-7.5				
		1.5							
					-8.0				
					-8.5				
					-9.0				
					-9.5				
					-10.0				
					-10.5				
					-11.0				1
					-11.5				
					-12.0				
					-12.5				
					-13.0				
					-13.5				li i
					-14.0				
					115				
					-14.5				
					-15.0				
Notes: 1. On completion, borehole or									
<ol> <li>Groundwater was not enco</li> <li>Water level reading: WL at</li> </ol>							205 Nebo Roa		
PP = pocket penetrometer TCV = total combustible							Hamilton, Ontario, Ca Ph: (905) 383-3733 Fa		
PL = plastic limit LL = liquid limit PI = plasticity ind						sensitivity	www.landteklin		LANDTEK

LANDTEK	LI	Mľ	TE	D				MW	120D
Project No.: 21260						Drill Date:	August 9, 2021		
Project: Hydrogeological Investiga	tion					Drill Method:	[x] solid stem [] holl	ow stem []	vibratory
Location: 3201/3275 Trafalgar Road	d, Oa	kville,	Ontai			Datum:	Geodetic		
	ō	Elev.	San	nples	Ê SI	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth		nples Type	Cale Scale	50 75 100	0 25 50	GWL Monitor Details	Test Data
Ground Surface		178.5				1 1 1	1 1 1		stick up = 0.63 m
±600 mm of topsoil	Î.	0,0			0.0				
	ZNZNZA		1	SS	-0.5			68	
FILL: silty clay, brown trace sand									
trace gravel					-1.0				
			2	SS	-1.5			6 8	
			-						bentonite
CLAYEY SILT TILL: trace sand		1.8	1		-2.0				backfill to ground
trace gravel					-2.5				level
SHALE BEDROCK: redish, fractured		2.4	3	SS	2.0				
					-3.0				
			- 0						
		1	4	ss	-3,5				
					-4.0				
									and backfill o 4.2 m
				-	-4.5				<u>04.2 m</u> ↑4.5 m
			5	ss	-5.0				
					-5.5				3,0 m
					-6.0				3,0 m slotted 50 mm
					-0.0				PVC
					-6,5				pipe
					-7.0				
		7.5			-7.5				<u>v</u>
END OF BOREHOLE		, °							7.5 m
					-8_0				
					-8.5				
					-9.0				
					-9.5				
					-10.0				
					-10,5				
					-11.0				
					-11.5				
					-12.0				
					-12.5				
					28				
					-13.0				
					-13.5				
					-14.0				
					-14.5				
					-15.0				
Notes: 1. On completion, borehole o									
<ol> <li>Groundwater was not encorrect 3. Water level reading: WL at</li> </ol>							205 Nebo Road, Hamilton, Ontario, Cana		
PP = pocket penetrometer TCV = total combustibl	e vapo	ur BRD	= bulk	relativ	e density		Ph: (905) 383-3733 Fax:		
PL = plastic limit LL = liquid limit PI = plasticity ind						sensitivity	www.landteklimite		LANDTEK

LANDTEK		MI	TE	D								MW	121S
Project No.: 21260						Drill [	Date:		April 5, 2022				
Project: Hydrogeological Investig	ation					_	/lethod	:	[ x ] solid sten	n []holl	ow ste	em [	] vibratory
Location: 3201/3275 Trafalgar Roa		kville.	Onta	rio		Datu		-	Geodetic	1 1 1.01		1	
		T			Ê	SPT "N"		_	Soil Moistu	re (%)	r –		
Material Description	Symbol	Elev.		nples T	<u> </u>		V GIGC			(,0)	۲ g	Monitor Details	Test Data
	ß	Depth	No.	Туре	o Scale	25 50	75	100	0 25	50	0	Det Mo	
Ground Surface		178.3			1 1	1 1	1	1	1 1	1		П	stick up = 0.79 m
±600 mm of topsoil		0.0			0,0								bentonite backfill to
			1	ss	-0.5	_							ground level
FILL: silty clay, brown trace sand				-									sand backfill to 0.6 m
trace gravel				<u> </u>	-1.0								1.5 m
			2	ss	-1.5								1,5 m Slotted 50 mm
			-										dia. PVC
	2222	24			-2.0		-						pipe
SHALE BEDROCK: redish, weathered		2,1			-2.5	_						E.	¥ 2.4 m
END OF BOREHOLE	8												2.4 10
					-3.0								
					-3.5								
											1		
					-4.0								
					-4.5								
					-5.0								
					-5,5	+ +							
					-6.0								
					-6.5			_					
					7.0								
					-7.0								
					-7.5			_					
					-8.0			_					
					-0.0								
					-8.5	-	-	-					
					-9.0								
					-9.0								
					-9.5	+ +							
					-10.0								
					-10.0								
					-10.5	++							
					-11.0								
					-11.0								
					-11.5	-		-					
					-12.0								
					-12.0								
					-12.5								
					-13.0						1		
					-13.5			_			1		
					-14.0						1		
					-14.5								
					-15.0								
Notes: 1. On completion, borehole	open t	0.6.5.00		L					LANT	TEK LI		பு	
Notes: 1. On completion, borehole 2. Groundwater was encour	ntered a	at 5.0 m	n durin	g the	drilling proce	ess				lebo Road,			
3. Monitoring Well was dry of	on Aug	ust 28,	2022	_					Hamilton, Or	itario, Cana	da, L8\		
PP = pocket penetrometer TCV = total combusti						000 0000	vite		Ph: (905) 383-				
PL ≠ plastic limit LL = liquid limit PI = plasticity i	ndex F	v = rield	vane l	v = iat	vane vs=v	rane sensit	vitý		1 WWW.I	andteklimite	ru COM		EANDTE

LANDTEK	LI	Mľ	TE	D				MW	121D
Project No.: 21260						Drill Date:	August 9, 2021		
Project: Hydrogeological Investiga	ation					Drill Method:	[x] solid stem [] holl	ow stem	vibratory
Location: 3201/3275 Trafalgar Road	d, Oa	kville,	Ontar	io		Datum:	Geodetic		
	Ī	Elev.	San	ples	Ê S	PT "N" Value	Soil Moisture (%)		
Material Description	Symbol	Depth		Туре	Cale (L) Scale (L) 25	50 75 100		GWL Monitor Details	Test Data
Ground Surface		178.3			<u>й 0 25</u>	50 75 100			stick up = 1,00 m
±600 mm of topsoil		0.0			0.0				ation up - 1,00 m
			1	ss	-0.5				
FILL: silty clay, brown trace sand									
trace gravel					-1.0				
-			2	ss	-1.5				
			-						bentonite
	222				-2,0				backfill to ground
SHALE BEDROCK: redish, weathered		2,1			-2,5				level
			3	SS					
					-3.0				
					-3.5				
			4	SS	-4.0			222	1
					-4.0				
					-4.5				and here 1.470
			5	ss	-5.0				sand backfill to 4.7 m
unweathered		4.9	-						∱ 5.0 m
					-5.5				1,5 m slotted 50 mm
					-6.0				50 mm dia.
									dia. PVC pipe
		6.5			-6.5				6.5 m
END OF BOREHOLE		<u> </u>			-7.0				
					-7.5				
					-1.5				
					-8.0				
					-8.5				
					12				
					-9.0				
					-9.5				
					10.0				
					-10.0				
					-10.5				
					-11.0				
					11.0				
					-11.5				
					-12.0				
					-12.5				
					-13.0				
					13.6				
					-13.5				-
					-14.0				
	1				-14.5				
	1								
					-15.0				
Notes: 1. On completion, borehole o 2. Groundwater was encount				a tha	drilling process	、	205 Nebo Road,		
<ol><li>Water level reading: WL a</li></ol>	t 1.02	m dept	h on M	lover	ber 15, 2021		Hamilton, Ontario, Cana		
PP = pocket penetrometer TCV = total combustible	le vapo	our BRD	= bulk	relativ	e density	1 Martin Martin and State	Ph: (905) 383-3733 Fax:	(905) 383-8433	
PL = plastic limit LL = liquid limit PI = plasticity inc	dex F\	/ = field v	vane L	.V = lat	vane VS = var	e sensitivity	www.landteklimite	d.com	LANDTEK

LANDTEK	LI	Mľ	TE	D				_			_								_				E	ЗΗ	1	22
Project No.: 21261									Drill	Da	ite:			A	ug	ust	11	, 20	021							
Project: Geotechnical Investigation	1								Drill	Me	etho	od:		[	x ]	sol	id s	ster	n [	]	holl	ow s	ten	n []	vibrato	ry
Location: 3275 & 3301 Trafalgar Ro	ad, (	Dakville	e, Oni	tario					)atı	ım				G	Seo	de	tic I	Ele	vati	on						
	8	Elev.	San	nples	le (m)		S	SPT	"N	" Va	alue			Г	;	Soil	Мс	oistu	ure (	(%)			T	5 0		
Material Description	Symbol	Depth	No.	Туре	Scale		25	5	5	0	7	5	100	0 0				25			50	В	Mooit	Details	Test	Data
Ground Surface		178.4		]	0.0		1		1		ji		í) Arrestor					1			1					
±250 mm of Topsoil		178.1			0.0						П															
FILL: silty clay to clayey silt, trace sand, tra- ce gravel. Brown, stiff, moist.		0,25	1	SS	-0.5	1	9				#		+		_		-	21		+						
					-1.0															_						
		176.9			-1.5																					
TILL: clayey silt, trace sand, trace gravel, Brown, very stiff, moist.		1.5	2	ss	-2.0			2	1								4									
		175.9			22			N																		
		2.5			-2.5																					
SHALE: highly weathered. Red, hard, dry.		175,3	3	SS	-3.0 -						50/	125	5 mr	r	1	E	+	-	$\left  \right $	+	+					
END OF BOREHOLE AT TARGET DEPTH		3.1			-3.5																					
					22																					
					-4.0	T			T		T		T		T		T			T	Π					
					-4.5				Ħ						t					┢	Η					
					-5.0	-									┢	$\left  \right $	+		-	╀	Η					
					-5.5		_							-	+		-	-		+	$\left  \right $					
					-6.0	+								-	+		_			+						
					-6.5	#								-	-		_			+						
					-7.0									-			_				Ц					
					-7.5									-						-						
					-8.0																					
					-8.5																					
					-9.0																					
					-9.5					T																
					-10.0 -										+		+				$\left  \right $					
					-10.5	11									I.						Ц					
Notes: 1. Borehole open to approxim 2. Groundwater or water seep surface.							2.7	m	belo	w	grou	und			F		20	5 N	ebo	Roa	ad, L	AITE Init 48 da, L8	3	2E1	C	$\square$
PP = pocket penetrometer TCV = total combustible PL = plastic limit LL = liquid limit PI = plasticity ind							var	ne s	ensi	tivit	v .			1				: +1	(90	5) 3		733				

LANDTEK	LI	Mľ	TE	D																				BH		12	3
Project No.: 21261								Τ	Dri	I D	ate	:			Auç	gus	st 1	1, 2	202	1							
Project: Geotechnical Investigation									Dri	ł M	eth	od			[X]							llo	w ste	m [	] vit	oratory	
Location: 3275 & 3301 Trafalgar Ro	ad, C	Dakville							Dat	turr	1:			_	Ge	ode	etic	; El	eva	tio	n						
	8	Elev.	San	nples Type	Ê			SP	'T "N	<b>1</b> '' V	'alu	е				So	oil N	lois	ture	(%	)	Т	_	5 0			
Material Description	Symbol	Depth	No.	Type	ale																		GML	Monitor Details	1	Fest Da	ta
	S		140.	Type	လိ	0	_2	25		50		75	10	0	0	_	_	25		_	50	•		ΣŐ	_		_
Ground Surface	020000	179.0			0.0			<u>!</u>				<u>.</u>		4	-		T	÷			_	1					
±250 mm of Topsoil	0000	178.7			1			12					111	П			11					Ш					
FILL: silty sand. Brown, compact, moist.		0.25	1	SS	-0,5		T	13																			
	899				-0,5			Π					Ш														
					1																	Ш					
clayey silt, trace sand. Firm.			2	SS	-1.0	11	1	T		T	Ħ		ttt	11	H	1	10	H		Ħ		11					
		477.5						V					111									Ш					
	222	177.5			-1.5	+				++		++	₩	-11	H	+	┢	$\vdash$	+	$\vdash$		1					
SHALE: highly weathered. Reddish brown,		1.5	3	ss						6	50	/ 12	5 mn			6						Ш					
hard, dry to moist.					-2.0	Щ		1							4	-	+				_	4					
									111				Ш	Ш								Ш					
					-2.5	Π		T	Π			T	$\prod$	1	T	T				Π							
								Н	111				111														
					-3.0	Ħ		Ħ		Ħ	H	Ħ	Ht	1	ht	t	1	H	+	Ħ	1	1					
		476.5	4	AUG										Н	•	•	8										
		175.5 3.5			-3.5	++		++		++		++	$\left  \right $		-+-	+	+-	$\vdash$	-	$\vdash$	+						
END OF BOREHOLE		3.5											Ш									Ш					
AT TARGET DEPTH					-4.0	Ш		1							4	4	_		4	$\square$							
					09-				111													Ш					
														1													
					-4.5	tt		T	TT	T	Ħ	T	TT	1								1					
																						Ш					
					-5.0	H		+	+++	₩		₩		1	H	+	+-	-	+	+	+	1					
								Ш	Ш					Ш								Ш					
					-5.5			#		#		#	-	4	4	+	-	-	+	$\square$	+	1					
														Ш													
					-6.0																						
					-0.0	Ш			Ш	П			Ш	1													
						Ш			111					1	11							Ш					
					-6.5	Ħ	tt	Ħ	111	tt	Ħ	Ħ	Ħt	1	H	t	Ħ		+	H	+	1					
																						н					
					-7.0	+++	++	₩	+++	╫		₩		-	$\vdash$	+		-		-+	+	1					
					-7.5	Ш		11	111	11																	
				0.11					111													Ш					
							Ш															Н					
					-8.0	Ш		T		T		T										1					
				1 1					111	Н				Ш								Ш					
					-8.5	Hł	Ħ	₩	++	₩		₩	+++	1	-	+	+	-	+	+	+	1					
				1 1					111			Ш		Ш								Ш					
					-9.0		++	₩		++		₩				+	+	-	-	+	-						
				1					111																		
					-9.5	Ш	1	11		1		11	111					_									
					- / •																						
					40.0																						
					-10.0	111	11	T		T		11			T				T		T	1					
					-10.5	Ш	11		Ш	Ц		11	LLL.	1		1			1			ł					
Notes: 1. Borehole open to approxim					npletio	n.								T			L		DT	EK	L	M	ITED			0	
2. Groundwater or water seep	age r	not enco	ounter	ed.																			nit 4B				
PP = pocket penetrometer TCV = total combustible		ur opp	- bull-	nolotio	a daea	hv								-		Har					Can 383		a, L8W /aa	/ 2E1		4	/
PL = plastic limit LL = liquid limit Pl = plasticity ind							= va	ine	sen	sitivi	ty								www							LAND	тек

#### LOG OF BOREHOLE BHMW1D-23

Proje		e: Propo 75 & 33	osed Residential Development 01 Trafalgar Road, Oakville ubsurface Conditions	-		ampies		Drill Date: 2023-03-23 Drilling Method: Hollow Stem/Coring Datum: Geodetic Elevation Penetration / Strength Results	Moisture / Plasticity		-79	726512	ation: 179_6
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Bjow Counts/150 mm	N Value	Undrained Shear Strength Values           40         80         120         160           Penetration Test Values         ×         (Blows / 0.3m)         ×           20         40         60         80	PL MC LL MOISTURE / Plasticity Moisture / Plasticity 10 20 30 40°	taits	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
		- - 180.0- -									24" Locking Vault-		
)		- - 179.0-	Organic Material -250 mm Topsoil Sitity Clay trace gravel. Brown, firm to stiff, moist,	1	SS	3 3 5 5	8	$\mathbf{X}$	10_0			a	
			Silt Till trace gravel, trace sand, trace clay, Brown, very stiff, moist,	2	ss	6 13 16	29		. 10.0				
		- 178.0 — -	wery stiff to hard.	3	ss	7 12 18	30		10_0				
		- - 177.0 -											
			Shaie TCR = 100% RQD = 0%	4	SS CORE	50-3"	50	λ. I	10.0				
		- - - 175.0	TCR = 100% RQD = 48%	6	CORE					0 <b>14</b> m			GW Monitoring Le August 2021
		- - 174.0 - - -	TCR = 100% RQD = 55%	7	CORE								
			TCR = 100% RQD = 94%	8	CORE								
		71.0	TCR = 100% RQD = 83%	9	CORE								
			Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage r 3. 4.	18.7 i not en	m depth icounter	n on com red durin	pletion. Ig drilling				205 amili	Nebo F ton, On	K LIMITED Road, Unit 4B tario, L8W 2E1 ) 383-3733

#### LOG OF BOREHOLE BHMW1D-23

						_OG	OF B	OREHOLE BHMW1D-23				SHEET 2 of 2
Pro	ject No.:	21263						Drill Date: 2023-03-23	Northing	j: 43	497758	
			osed Residential Development					Drilling Method: Hollow Stem/Coring	Easting:			
	cation: 32	_	01 Trafalgar Road, Oakville	<del>.</del>				Datum: Geodetic Elevation	Ground	Surfa	ace Elev	ation: 179.6
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Blow Counts/150 mm	N Value	Penetration / Strength Results     Molsture / Plasticity       Undrained Shear Strength Values	Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
-		-										
- - - 10 - - - - - -		- 170.0 - - 169.0 - -	TCR = 98% RQD = 83%	10	CORE							
- - 		- - 168.0 - - - -	TCR = 100% RQD = 91%	11	CORE			· · ·				
		167.0 —   166.0 — 	TCR = 100% RQD = 96%	12	CORE							
- - 		- 165.0 — - - -	TCR = 100% RQD = 93%	13	CORE							
- - 16 - - - - 17		164.0	TCR = 100% RQD = 99%	14	CORE							
- - - 18 - -		- 162.0 - - - - - - - - - 	TCR = 100% RQD = 91%	15	CORE							
		-	End of Log									
-19			Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage I 3. 4.						:	205 amil	Nebo R ton, Oni	C LIMITED toad, Unit 4B tario, L8W 2E1 1383-3733

#### LOG OF BOREHOLE BH2-23

_		_				_OG	OF B	OREHOLE BH2-23					SHEET 1 of 2
Proj	ect No.:	21263						Drill Date: 2023-03-22		Northing	: 43	49694	
			osed Residential Development					Drilling Method: Hollow Sterr/Coring	1	Easting:			
Loca	ition: 3		01 Trafalgar Road, Oakville					Datum: Geodetic		Ground	Surf	ace Elev	ation: 179
		S	Subsurface Conditions		S	amples		Penetration / Strength Results	Moisture / Plasticity				
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Blow Counts/150 mm	N Value	Undrained Shear Strength Values ▲ (kPa) ▲ 40 80 120 160 Penetration Test Values × (Blows / 0.3m) × 20 40 60 80	PL MC LL Moisture / Plasticity 10 20 30 40	Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
-			Organic Material ~250 mm Topsoil			2			10.0				
-	+		Clayey Silt trace sand. Brown, firm, moist.	1	SS	2 3 4	5	$\langle \rangle$	10.0				
= ≂1		178.0-	very stiff.	2	SS	8 12 12	24		10.0				
2		- - 177.0	Silt Till trace gravel, trace sand: Brown, dense, moist,	3	ss	8 19 20	39		10.0				
1 1 1 3		-	•	4	SS	10 20 28	48		,10.0				
3 		176.0— - -	,trace clay. Very moist to wet,	5	ss	23 30 31	61		10.0				
- 4 		- 175.0 — 											
<u> </u>			Shale	$\vdash$			<u> </u>		10.0				
-		-	TCR = 100% RQD = 36%	6	CORE	50-2"	50						
5   6 		174.0 — - - 173.0 — -	TCR = 100% RQD = 63%	7	CORE								
- 7 - 7		- - 172.0 - - -	TCR = 100% RQD = 68%	8	CORE								
- 8			TCR = 100% RQD = 65%	9	CORE								
- - - 10		- 	Additional Notes: 1. Borehole open to approximately	18.5	m depth	1 on corr	pletion						
	4		2. Groundwater or water seepage ( 3. 4.	encou	Intered	during d	rilling at	approximately 3.2 m below the ground	surface,	Ha	ami	lton, On	Road, Unit 4B tario, L8W 2E1 ) 383-3733

#### LOG OF BOREHOLE BH2-23

_						.OG	OF R	OREHOLE BH2-23					SHEET 2 of 2
Proj	ject No.:	21263						Drill Date: 2023-03-22		Northing	: 43	49694	
1 .			osed Residential Development					Drilling Method: Hollow Stem/Coring	I	Easting:			
Loca	ation: 32		01 Trafalgar Road, Oakville					Datum: Geodetic		Ground	Surf	ace Elev	ation: 179
		S	ubsurface Conditions		Sa	mples		Penetration / Strength Results	Moisture / Plasticity				
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Blow Counts/150 mm	N Value	Undrained Shear Strength Values (kPa)	PL MC LL → → → → Moisture / Plasticity ° 10 20 30 40	Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
- - - -11		- - - 168.0-	TCR = 100% RQD = 78%	10	CORE								
- - - -12		- - 167.0 -	TCR = 100% RQD = 86%	11	CORE				2° 2° 1° 1				
		- 166.0 — - - -	TCR = 94% RQD = 87%	12	CORE				• < 4) =				
		165.0 — - - - 164.0 — - -	TCR = 97% RQD = 91%	13	CORE								
- 16  		-  63.0 - - -	TCR = 100% RQD = 90%	14	CORE								
- 17 - - - 18 -		62.0 - - - 61.0 - -	TCR = 100% RQD = 90%	15	CORE								
- 19 		60.0 - - - - - - - - - - - - - - - - - -	End of Log										
			Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage of 3. 4.	18.5 i ancou	m depth Intered d	on com luring dr	pletion, illing at a	pproximately 3.2 m below the ground	surface	2	205 amil	Nebo R ton, Oni	C LIMITED oad, Unit 4B ario, L8W 2E1 383-3733

#### LOG OF BOREHOLE BH3-23

Proje		ie: Propo 275 & 33	osed Residential Development 01 Trafalgar Road, Oakville ubsurface Conditions	T		LOG	OF B	Drill Date: 2023-03-20 Drilling Method: Hollow Stem/Coring Datum: Geodetic Elevation Penetration / Strength Results	Moisture / Plasticity	Northing Easting Ground	: -79	.495378 728858	SHEET 1 of 2 atlon: 180.6
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Blow Counts/150 mm	N Value	Undrained Shear Strength Values (kPa) * 40 80 120 160 Penetration Test Values × (Blows / 0.3m) × 20 40 60 80	PL MC LL Moisture / Plasticity 10 20 30 40	Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
	1		Organic Material ~250 mm Topsoil Clayey Silt trace gravel, Brown, stiff, moist,	1	ss	7 6 4 4	10	1	15,0				
	Ŧ	1971 - U. 1971	very stiff.	2	ss	7 9 10	19		<b>13.1</b>				
		179.0 	Silt Till trace gravel, trace sand, trace clay, Brown, hard, moist.	3	ss	7 12 21	33		13.2				
		 178.0		4	SS	11 25 29	54		10.1				
		- - 177.0		5	SS	14 22 27	49		11.1				
		0.000		6	SS	16 18 20	38		<b>9</b> .2				
		176.0— — —		7	SS	17 23 21	44		9.0				
		- 175.0-											
			<b>Shale</b> TCR = 100% RQD = 56%	8	SS CORE	50-2"	50	, k	<b>2.8</b>				
		174.0— - - 173.0— -	TCR = 98% RQD = 63%	10	CORE				- ^				
			TCR = 98% RQD = 67%	11	CORE								
		171.0 - - 170.0 -	TCR = 100% RQD = 78%	12	CORE								
			Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage r 3. 4.	18.7 not en	m depti icounte	h on com red durir	pletion. ng drilling	J.			205 Iamil	Nebo R ton, On	K LIMITEO Road, Unit 4B tario, L8W 2E1 ) 383-3733

#### LOG OF BOREHOLE BH3-23

						.0G	OF B	OREHOLE BH3-23			_	5	SHEET 2 of 2
Pro	ect No.:	21263						Drill Date: 2023-03-20		Northing:	: 43	495378	
			osed Residential Development					Drilling Method: Hollow Stern/Coring	I	Easting:	-79	728858	
Loc	ation: 32	275 & 33	01 Trafalgar Road, Oakville					Datum: Geodetic Elevation		Ground S	Surfa	ace Elev	ation: 180,6
		S	ubsurface Conditions		Si	mples		Penetration / Strength Results	Moisture / Plasticity				
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Blow Counts/150 mm	N Value	Undrained Shear Strength Values (kPa) 40 40 80 120 160 Penetration Test Values × (Blows / 0.3m) × 20 40 60 80	PL MC LL Moisture / Plasticity 10 20 30 40	Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
- - - 12 -		 169.0  	TCR = 100% RQD = 67%	13	CORE								
- 		168.0 — - - - 167.0 — -	TCR = 100% RQD = 78%	14	CORE								
- 15		- 166.0 — - - 165.0 —	TCR = 100% RQD = 80%	15	CORE								
- 16 - 16 		163.0 	TCR = 100% RQD = 84%	16	CORE								
- 18			TCR = 100% RQD = 92%	17	CORE								
- 19		- - - 161.0 - -	End of Log										
1 21		160.0											
-22		-	Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage 3. 4.	18.7 not er	m depth	on com ed durin	pletion. g drilling			2	205 Imil	Nebo F ton, On	K LIMITED Road, Unit 4B tario, L8W 2E1 383-3733

#### LOG OF BOREHOLE BHMW4-23

				_		LOG	OF B	OREHOLE BHMW4-23					SHEET 1 of 2
	ect No.:							Drill Date: 2023-03-22			-	495439	
-			osed Residential Development 01 Trafalgar Road, Oakville					Drilling Method: Hollow Stem/Coring Datum: Geodetic Elevation				727801	-
LOCA	11011: 32			-	9	amples		Penetration / Strength Results Molsture / Plasticit	_	rouni	1 SUN	ace Elev	ation: 178,9
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	Description	Number	Type	Blow Counts/150 mm	N Vatue	Undrained Shear Strength Values ▲ (KPa) ▲ 40 80 120 160         PL MC LL           Penetration Test Values × (Blows / 0.3m) × 20 40 60 80         Moisture / Plasticit 0 20 30 40		Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
-0		- - 179.0	FIII								24" Locking Vault		
-			Sand, some gravel_Brown, compact, moist	1	ss	2 10 10 9	20	10.6					
		178.0 — - -	asilty clay, trace gravel. Stiff.	2	SS	2 5 6	11	26.2					
2		- - 177.0-	Silt Till trace gravel, trace clay_Brown, very stiff, moist_	3	ss	4 10 12	22	h4.3					
2 2 2 2 2		- - 176.0-	trace sand, Hard,	4	SS	7 15 24	39	14.4	3/8" Bentonite Pellets				
-3 - -		-	,no clay, trace cobbles. Dense,	5	ss	12 19 27	46	*	3/8". Bent				
			trace clay, Hard,	6	SS	9 14 32	46	* \$9.4		11 4 m			GW Monitoring Level August 2021
-6		-	Shale TCR = 100%	7	SS	50-2"	50	ж 17.8					
-7		72.0	RQD = 33% TCR = 98% RQD = 83%	8	CORE								
-8		71.0	TCR = 100% RQD = 84%	9	CORE								KLIMITED
	Ð		Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage n 3. 4.								205 Harni	i Nebo F Iton, On	Road, Unit 4B tario, L8W 2E1 383-3733

#### LOG OF BOREHOLE BHMW4-23

Proje		e: Propo 75 & 33	osed Residential Development 01 Trafalgar Road, Oakville	1				Drill Date: 2023-03-22 Drilling Method: Hollow Stem/Coring Datum: Geodetic Elevation		Northing Easting Ground	: -79	727801	ation: 178.9
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m) o	ubsurface Conditions	Number	Type	seldure Blow Counts/150 mm	N Value	Penetration / Strength Results Undrained Shear Strength Values (KPa) * 40 80 120 160 Penetration Test Values × (Blows / 0.3m) × 20 40 60 80	PL MC LL PL MC LL Moisture / Plasticity	Well Details	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
0			TCR = 99% RQD = 76%	10	CORE				* 1 = *				
2	1	- - 67.0- -	TCR = 100% RQD = 95%	11	CORE								
			TCR = 97% RQD = 74%	12	CORE								
		- - - 64.0 - -	TCR = 100% RQD = 94%	13	CORE								
			TCR = 98% RQD = 98%	14	CORE				Phone		tot 10 Screen -		
	16	- - - 51.0- -	TCR = 98% RQD = 98%	15	CORE						<ul> <li>2. Schedule 40 PVC Slot 10 Screen</li> </ul>		
	16	50.0-	End of Log Additional Notes: 1. Borehole open to approximatel 2. Groundwater or water seepage 3.	y 18.7 not er	m depth	on com ed durin	pletion.	- -			205	Nebo R	CLIMITED

#### LOG OF BOREHOLE BHMW122D-23

Proje		e: Propo 75 & 33	osed Residential Development 01 Trafalgar Road, Oakville					Drill Date: 2023-03-24 Drilling Method: Hollow Stem/Coring Datum: Geodetic Elevation		Eastir	<b>ig:</b> -79	.497477 726035 ace Elev	ation: 178.9
	Stratigraphic Symbol	Depth/Elevation (m)	ubsurface Conditions		S	seldum Blow Counts/150 mm		Penetration / Strength Results	PL MC LL	lis	Groundwater Conditions	Headspace Vapor (ppm) [LEL(%)]	Comments
	Stratigra	Depth/Ele		Number	Type	Blow Cot	N Value	Penetration Test Values           ×         (Blows / 0.3m)         ×           20         40         60         80	Molsture / Plasticity 10 20 30 40	Well Details		Headspai [LEL(%)]	
		- - 179.0-	Organic Material					-			24" Locking Vault-		
			~250 mm Topsoil Silty Clay trace gravel, trace sand, Brown, stiff, moist.	1	SS	4 4 5 6	9	1	10.0				
		178.0 — - -	very sliff.	2	SS	5 7 9	16		10.0				
	1		Silt Till trace gravel, trace sand, trace grey shale fragments. Red and brown, dense, moist.	з	SS	10 19 33	52		10.0				
		1		4	SS	48 50-3"	50		10.0				
TOTAL DE LA COMPLETE		76.0— — —	Shale TCR = 100% RQD = 0%	5	SS CORE	50-5"	50		10.0				
	1	 175.0 - -	TCR = 100% RQD = 49%	7	CORE					-M4m			GW Monitoring Le August 2021
			TCR = 100% RQD = 86%	8	CORE								
	1	73.0-											
		72.0	TCR = 100% RQD = %	9	CORE								
		71.0	TCR = 100% RQD = %	10	CORE								
			Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage i 3. 4.	18.7 not er	m depti ncounte	n on corr red durir	npletion. ng drilling	].			205 Hami	5 Nebo F liton, On	K LIMITED Road, Unit 4B Itario, L8W 2E1 ) 383-3733

#### LOG OF BOREHOLE BHMW122D-23

					L	.0G (	OF B	OREHOLE BHMW122	D-23			:	SHEET 2 of 2
Pro	ject No.:	21263						Drill Date: 2023-03-24		Northing	: 43	497477	
	-		osed Residential Development					Drilling Method: Hollow Stem/Coring	I	Easting:			
	ation: 32		01 Trafalgar Road, Oakville	r				Datum: Geodetic Elevation		Ground	Surfi	ace Elev	ation: 178.9
Depth Scale (m)	Stratigraphic Symbol	Depth/Elevation (m)	ubsurface Conditions	Number		Blow Counts/150 mm	N Value	Penetration / Strength Results	Moisture / Plasticity	Well Details	Groundwater Conditions	Headspace Vapor (ppm) {LEL(%)]	Comments
-													
- - - - - - -		- 169.0 - - - 168.0	TCR = 98% RQD = %	11	CORE								
		- - - 167.0 - - -	TCR = 100% RQD = %	12	CORE				-				
		 166.0   165.0	TCR = 100% RQD = %	13	CORE								
- - 		- - 164.0 - -	TCR = 100% RQD = %	14	CORE								
- 16 		- 163.0 — - - 162.0 —	TCR = 100% RQD = %	15	CORE				#10 Mail Stor Cond.				
- 17		- - - 161.0 - - -	TCR = 100% RQD = %	16	CORE						A Othennie 7		
			End of Log										
- 19		60.0-											
			Additional Notes: 1. Borehole open to approximately 2. Groundwater or water seepage n 3. 4.	18.7 iot en	m depth counter	on com; ed durin;	oletion. g drilling.				205 amil	Nebo R ton, On	<b>CLIMITED</b> toad, Unit 4B tario, L8W 2E1 383-3733

## APPENDIX C

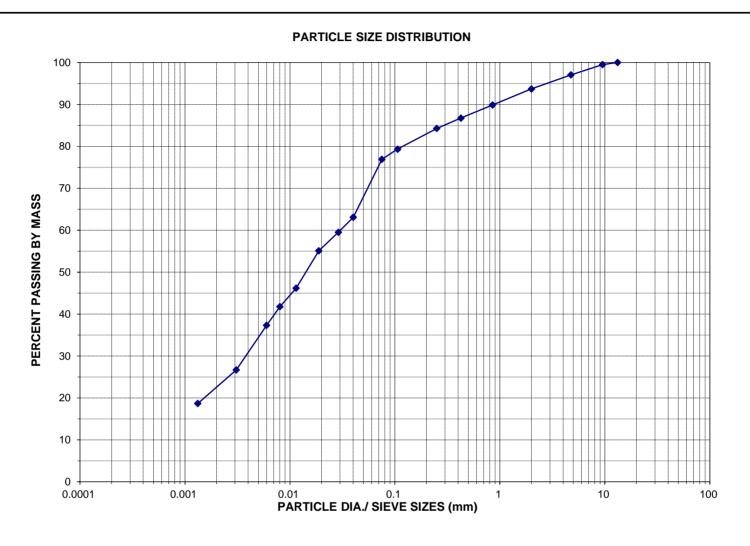
## SUMMARY OF MECP WELLS RECORDS



# Summary of MECP Well Records

						WATER_FOUND_DEPT	Static water Level									
Well #	WELL_ID	DATE_COMPLETED	DATE_RECEIVED	EAST83	NORTH83	H (FT)	(ft)	KIND	FINAL_STATUS	USE_1ST	USE_2ND	DEPTH_TO (ft)	DEPTH_TO (m)	Well Construction	STREET	CITY/TOWNSHIP
1	2802105	23-Jun-62	04-Sep-62	602683.6	4816675	20	8	Fresh	Water Supply	Domestic	NA	20	6.10	Bedrock	NA	Oakville Town
2	2802106	05-Oct-65	07-Dec-65	602509.6	4816850	65	9	Fresh	Water Supply	Domestic	NA	68	20.73	Bedrock	NA	Oakville Town
3	2802107	15-Apr-51	20-Sep-51	602936.6	4816358	63	18	Fresh	Water Supply	Public	NA	99	30.18	Bedrock	NA	Oakville Town
4	2802108	12-May-51	20-Sep-51	602936.6	4816363	65	15	Fresh	Water Supply	Public	NA	87	26.52	Bedrock	NA	Oakville Town
5	2802112	12-Oct-53	25-Nov-53	602564.6	4816547	40	8	Fresh	Water Supply	Public	NA	50	15.24	Bedrock	NA	Oakville Town
6	2806985	26-Jul-88	16-Aug-88	602670.2	4816688	48	9	NA	Water Supply	Domestic	NA	65	19.82	Bedrock	NA	Oakville Town
7	2808922	03-Jul-98	18-Feb-99	602641.6	4816383	28	17	Fresh	Water Supply	Domestic	NA	65	19.82	Bedrock	NA	Oakville Town
8	7132311	07-Oct-09	21-Oct-09	602559.0	4816814	NA	20	NA	Abandoned	NA	NA	NA	NA	NA	NA	3871 Trafalgar Road
9	7135929	19-Nov-09	14-Dec-09	602401.0	4817024	NA	8.5	NA	Abandoned	NA	NA	26.3	8.02	Overburden	NA	Oakville Town
10	7218875	11-Oct-13	02-Apr-14	603080.0	4816959	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Oakville Town
11	7224933	25-Jun-14	31-Jul-14	602585.0	4816717	NA	NA	NA	Observation	Monitoring	NA	30	9.15	Bedrock	Trafalgar Rd. S outh of Hwy 407 To Glenashton Dr.	Oakville Town
12	7224934	25-Jun-14	31-Jul-14	602875.0	4816427	NA	NA	NA	Observation	Monitoring	NA	21	6.40	Bedrock	Trafalgar Rd. S outh of Hwy 407 To Glenashton Dr.	Oakville Town
13	7323167	28-Sep-18	22-Nov-18	602898.0	4816533	NA	NA	NA	Observation	Monitoring	NA	30	9.15	Bedrock	Dundas Street East & Trafalgar Road	Oakville Town
14	7323168	28-Sep-18	22-Nov-18	603100.0	4816323	NA	NA	NA	Observation	Monitoring	NA	30	9.15	Bedrock	Dundas Street East & Trafalgar Road	Oakville Town
15	7345664	14-Jun-19	28-Oct-19	603177.0	4816202	NA	NA	NA	Observation	Monitoring	NA	31	9.45	Bedrock	Trafalgar Rd & Dundas Sttreet E	Oakville Town

# APPENDIX D


## **GRAINSIZE ANALYSIS**



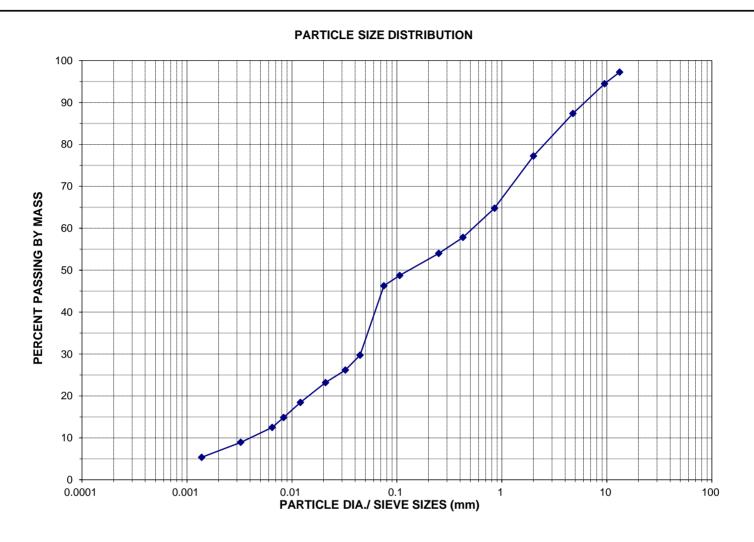
CONSULTING ENGINEERS

## PARTICLE SIZE ANALYSIS

PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: CL SOURCE: BH 1-23 SS2 FILE NO.: 21261 LAB SAMPLE NO.: S-038F SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo



<b>▲</b>	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE	
CLAY		SILT		S	AND		GRAVEL		


SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	100.0	
9.5	99.5	
4.75	97.1	
2.0	93.7	
0.850	89.9	
0.425	86.7	
0.250	84.3	3.9% Gravel
0.106	79.3	20.2% Sand
0.075	76.9	49.3% Silt
0.0401	63.1	26.6% Clay
0.0290	59.5	20.0 % Clay
0.0188	55.1	
0.0115	46.2	
0.0080	41.7	
0.0060	37.3	
0.0031	26.6	
0.0013	18.7	



CONSULTING ENGINEERS

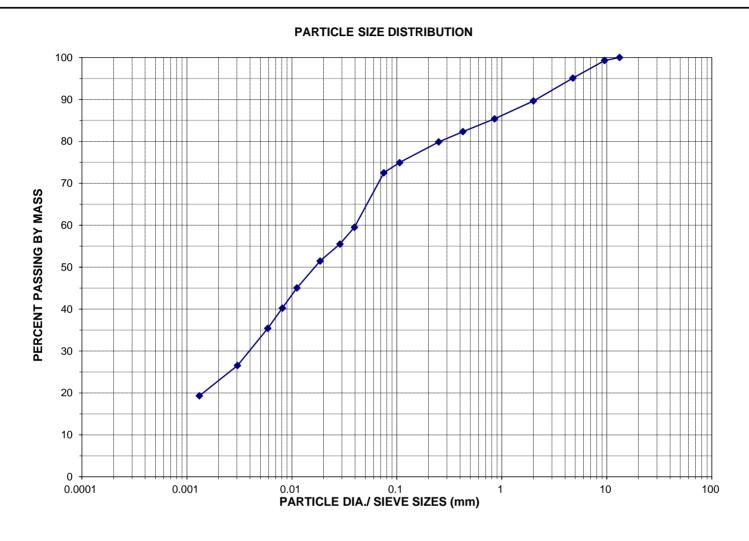
## PARTICLE SIZE ANALYSIS

PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: ML SOURCE: BH 2-23 SS5 FILE NO.: 21261 LAB SAMPLE NO.: S-038D SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo



<b>←</b>	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE	
CLAY		SILT		S	AND		GRAVEL		

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	97.2	
9.5	94.4	
4.75	87.3	
2.0	77.2	
0.850	64.8	
0.425	57.8	
0.250	54.0	12.7% Gravel
0.106	48.7	41.0% Sand
0.075	46.3	37.4% Silt
0.0445	29.7	
0.0323	26.2	8.9% Clay
0.0209	23.2	
0.0120	18.4	
0.0083	14.9	
0.0065	12.5	
0.0032	8.9	
0.0014	5.3	






**LANDTEK LIMITED** CONSULTING ENGINEERS

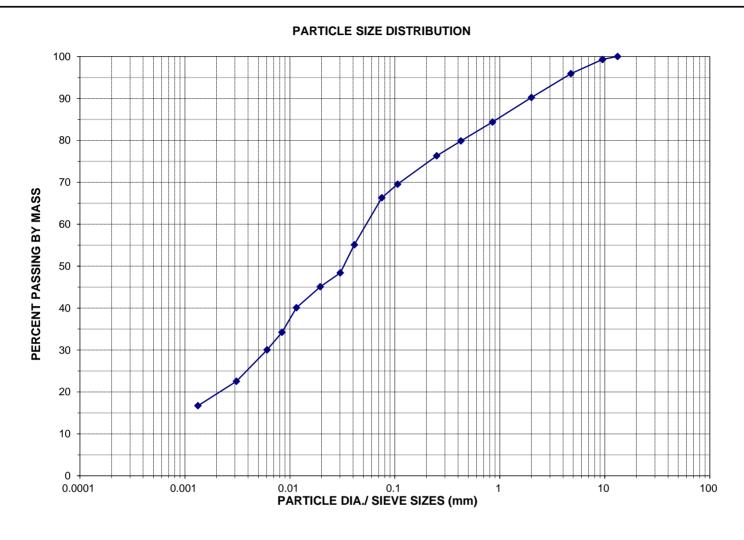
#### PARTICLE SIZE ANALYSIS

PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: CL SOURCE: BH 3-23 SS4 FILE NO.: 21261 LAB SAMPLE NO.: S-038C SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo



<b>↓</b>	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE	
CLAY	SILT			SAND			GRAVEL		

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	100.0	
9.5	99.3	
4.75	95.1	
2.0	89.6	
0.850	85.4	
0.425	82.3	
0.250	79.8	4.9% Gravel
0.106	74.9	22.6% Sand
0.075	72.5	46% Silt
0.0394	59.5	26.5% Clay
0.0286	55.5	20.3 % Clay
0.0186	51.5	
0.0112	45.0	
0.0081	40.2	
0.0059	35.4	
0.0030	26.5	
0.0013	19.3	


22.6 54



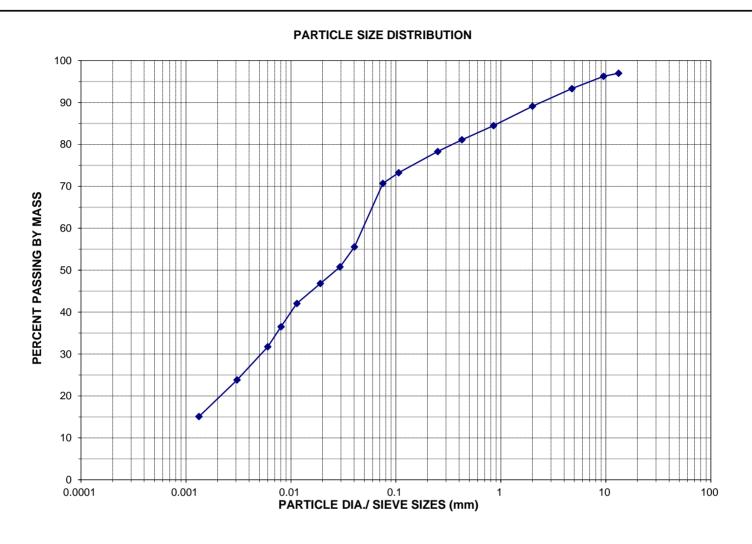
**LANDTEK LIMITED** CONSULTING ENGINEERS

#### PARTICLE SIZE ANALYSIS

PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: CL SOURCE: BH 3-23 SS7 FILE NO.: 21261 LAB SAMPLE NO.: S-038B SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo



<b>←</b>	FINE	MEDIUM	COARSE	FINE	MEDIUN	I COARSE	FINE	COARSE	
CLAY		SILT		S	AND		GRAVEL		


SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	100.0	
9.5	99.3	
4.75	95.9	
2.0	90.2	
0.850	84.4	
0.425	79.9	
0.250	76.3	4.1% Gravel
0.106	69.5	29.6% Sand
0.075	66.3	56.2% Salit
0.0411	55.1	
0.0302	48.4	22.5% Clay
0.0195	45.1	
0.0115	40.1	
0.0084	34.2	
0.0061	30.0	
0.0031	22.5	
0.0013	16.7	



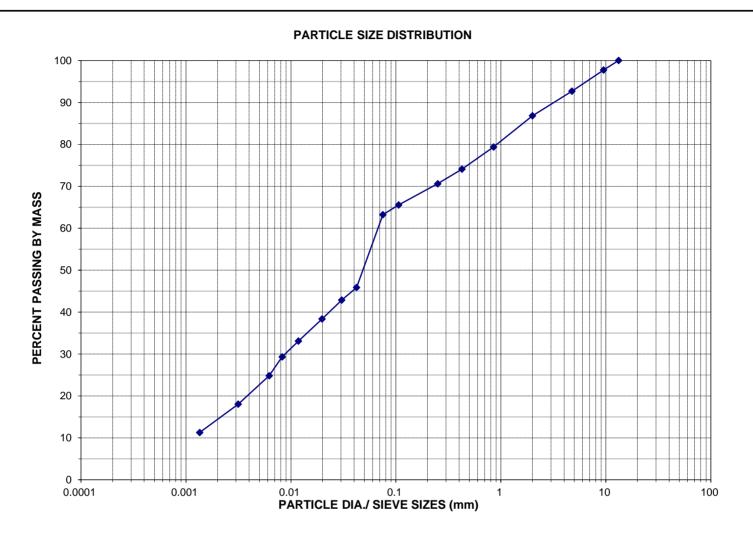
CONSULTING ENGINEERS

## PARTICLE SIZE ANALYSIS

PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: CL SOURCE: BH 4-23 SS4 FILE NO.: 21261 LAB SAMPLE NO.: S-038G SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo



<b>→</b>	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE	
CLAY		SILT		SAND			GRAVEL		


SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	97.0	
9.5	96.2	
4.75	93.3	
2.0	89.1	
0.850	84.4	
0.425	81.1	
0.250	78.3	6.7% Gravel
0.106	73.2	22.6% Sand
0.075	70.7	46.9% Silt
0.0402	55.5	23.8% Clay
0.0294	50.8	23.0 % Clay
0.0190	46.8	
0.0114	42.0	
0.0080	36.5	
0.0060	31.7	
0.0031	23.8	
0.0013	15.1	



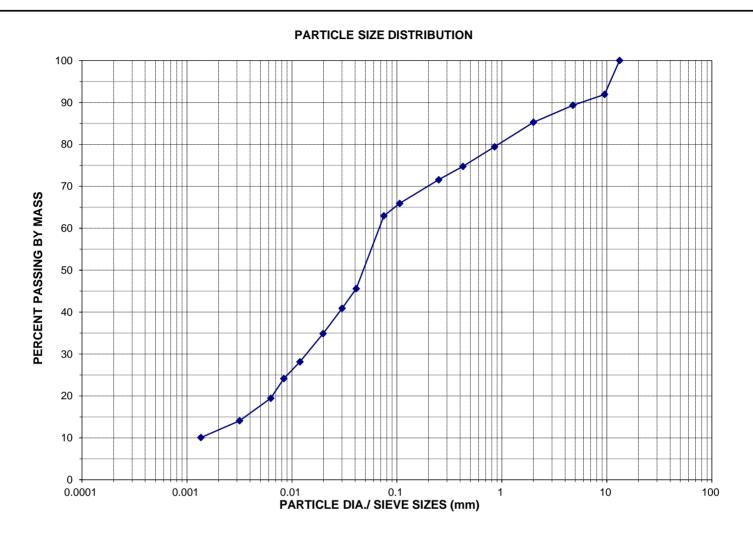
CONSULTING ENGINEERS

## PARTICLE SIZE ANALYSIS

PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: CL SOURCE: BH 4-23 SS6 FILE NO.: 21261 LAB SAMPLE NO.: S-038E SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo



<b>→</b>	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE
CLAY	SILT			SAND			GR	AVEL


SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	100.0	
9.5	97.7	
4.75	92.7	
2.0	86.8	
0.850	79.3	
0.425	74.1	
0.250	70.6	7.3% Gravel
0.106	65.5	29.5% Sand
0.075	63.2	45.2% Silt
0.0422	45.9	45.2 % Silt 18.0 % Clay
0.0305	42.8	10.0 % Clay
0.0198	38.3	
0.0118	33.1	
0.0082	29.3	
0.0062	24.8	
0.0031	18.0	
0.0014	11.3	



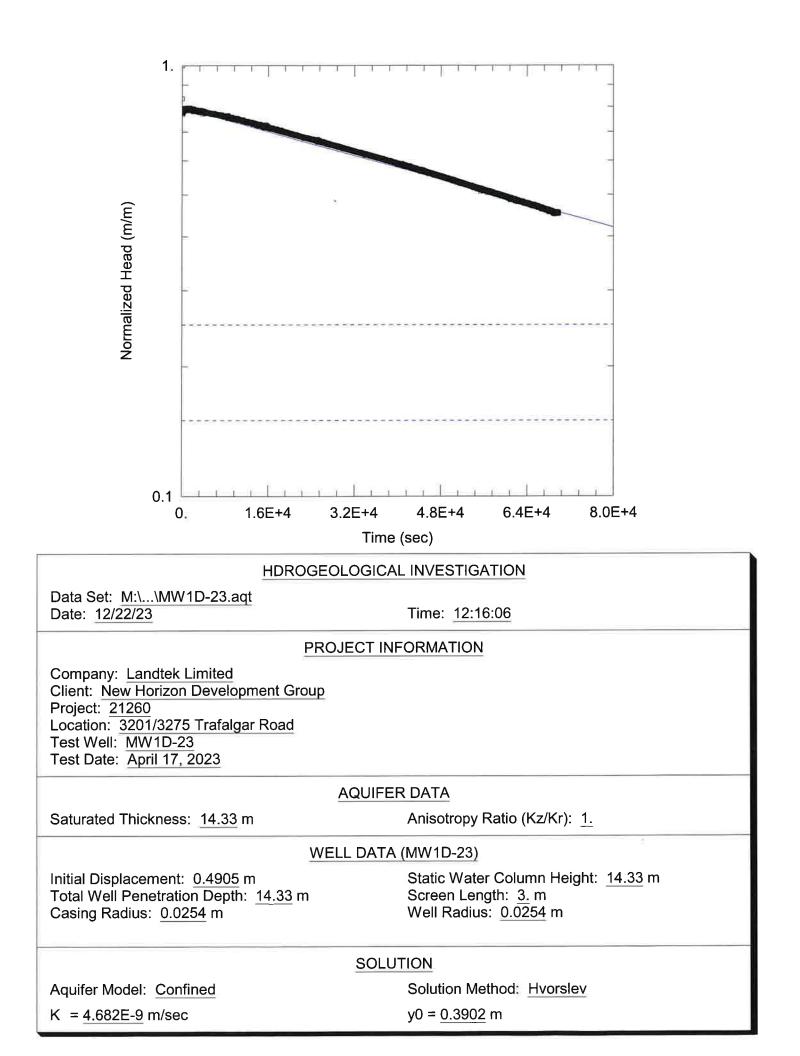
CONSULTING ENGINEERS

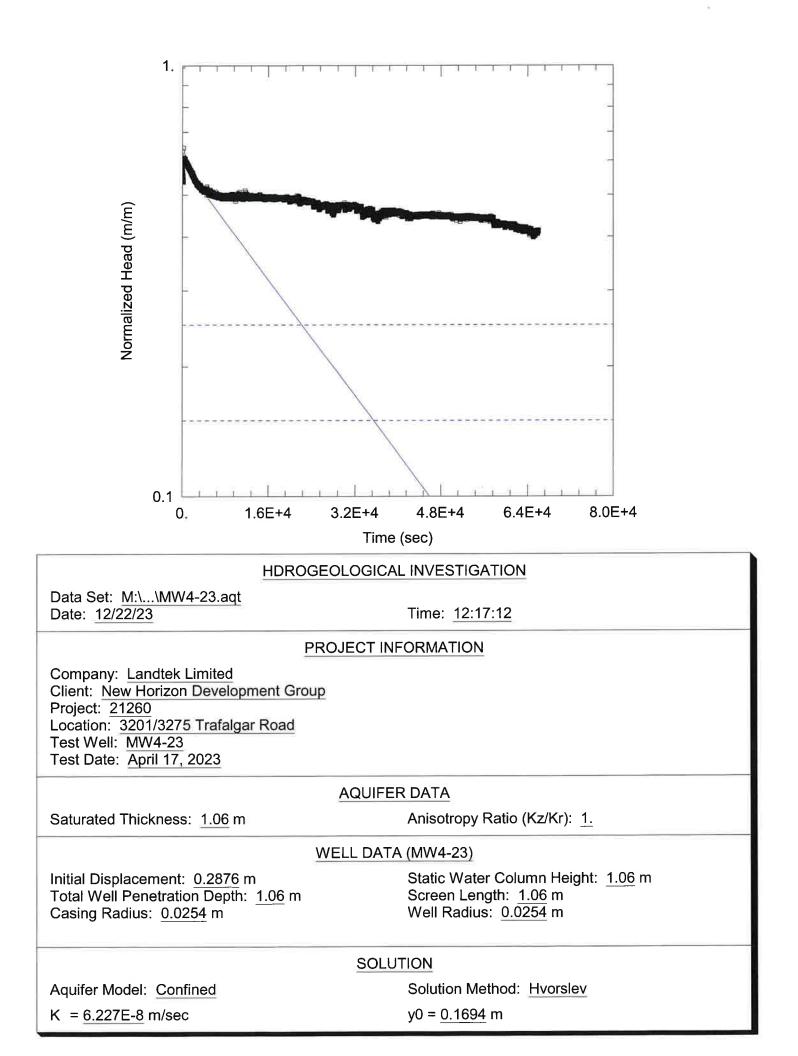
## PARTICLE SIZE ANALYSIS

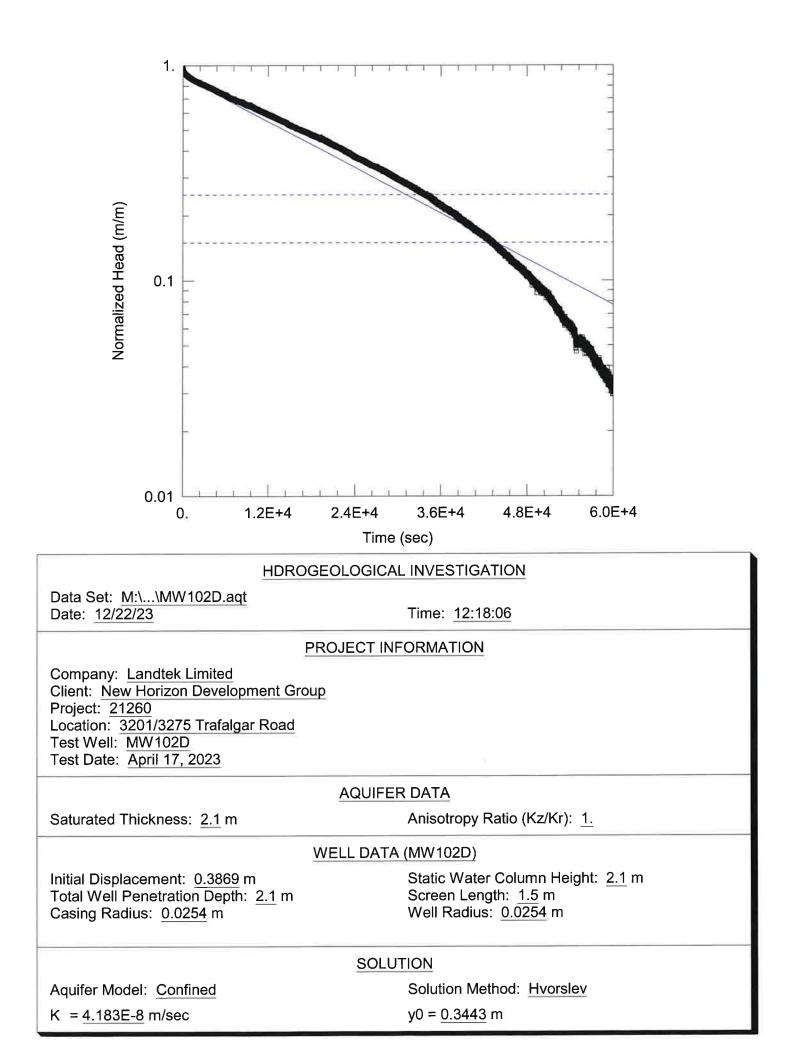
PROJECT: Residential Development LOCATION: 3275/3301 Trafalgar Road, Oakville CLIENT : New Horizon Development Group SOIL TYPE: CL SOURCE: BH 122D-23 SS3 FILE NO.: 21261 LAB SAMPLE NO.: S-038A SAMPLE DATE: March 20, 2023 SAMPLED BY: Geo

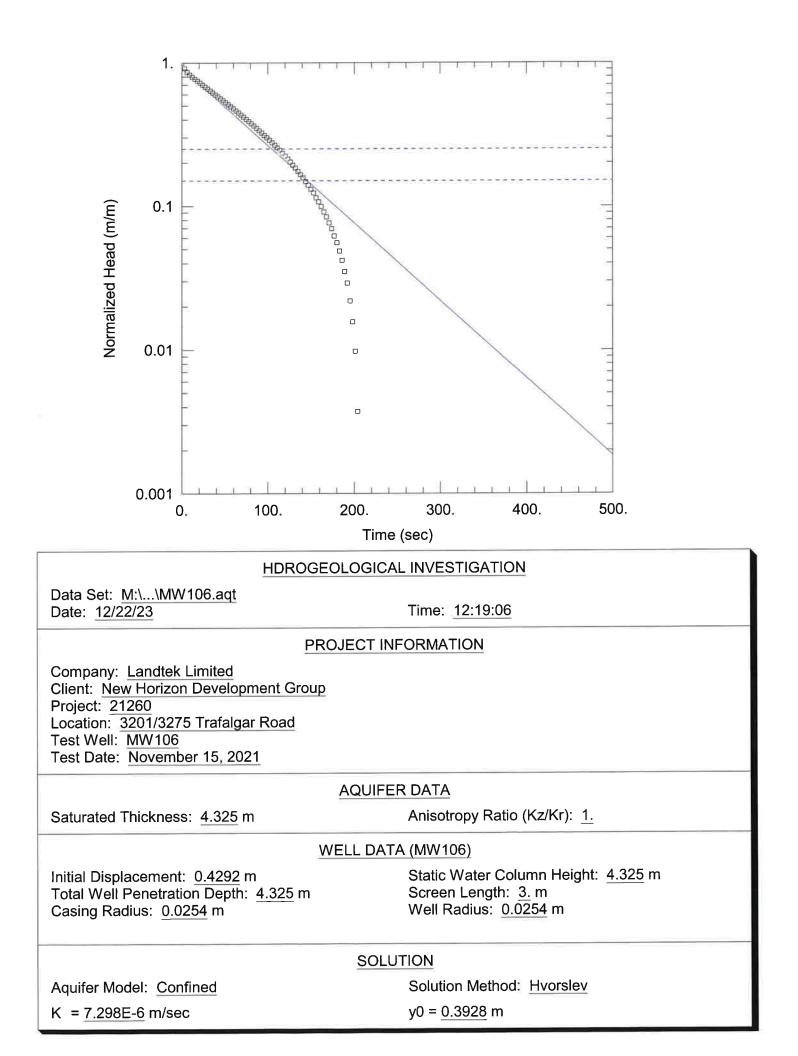


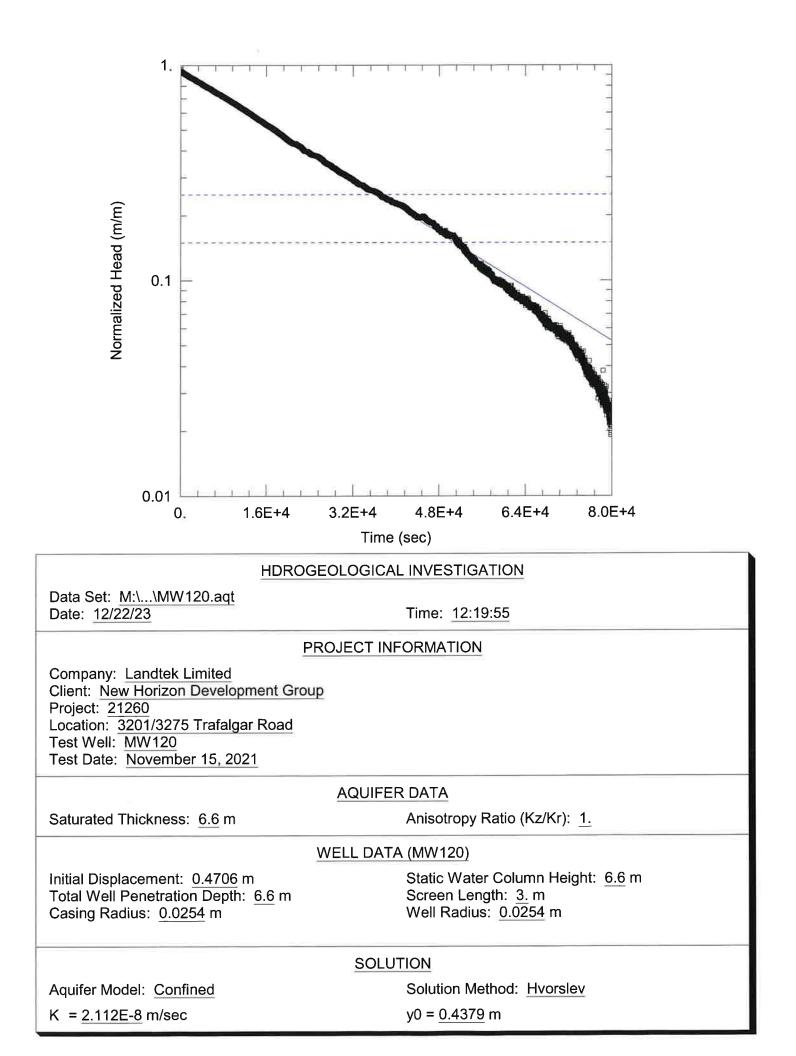
<b>←</b>	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	COARSE
CLAY		SILT		S	AND		GR	AVEL

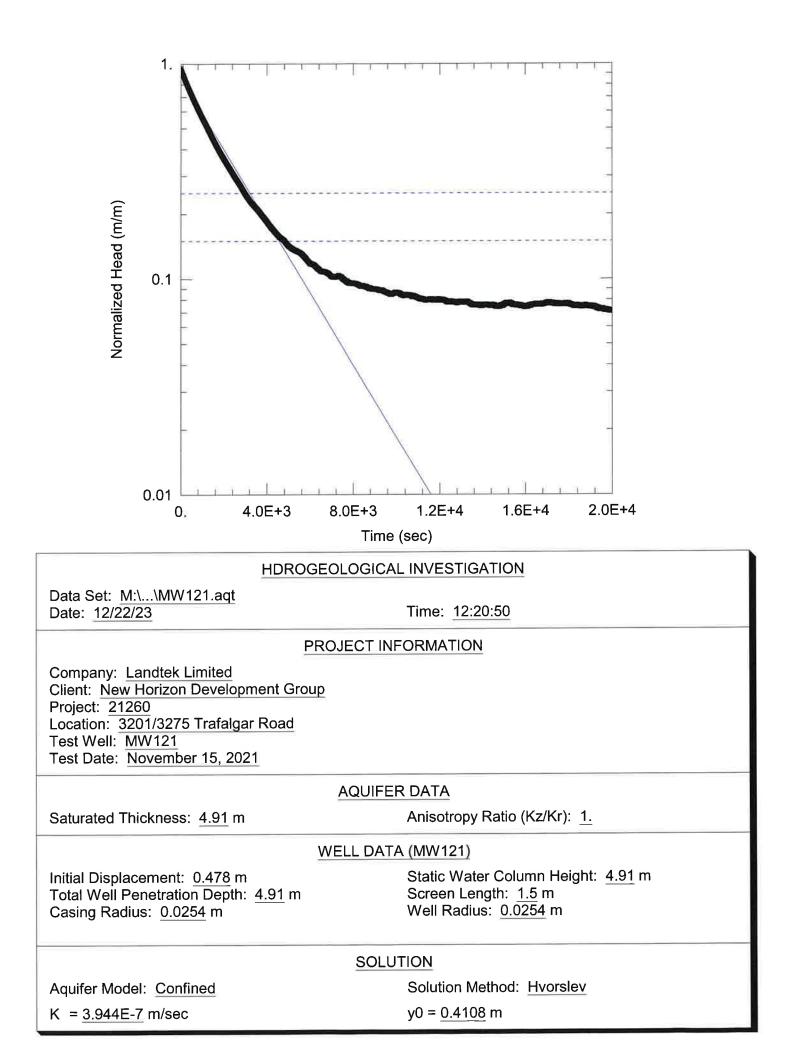

SIEVE SIZE	PERCENT PASSING	
/PARTICLE DIA. (mm)	SAMPLE	COMMENTS
13.2	100.0	
9.5	91.9	
4.75	89.3	
2.0	85.3	
0.850	79.4	
0.425	74.7	
0.250	71.6	10.7% Gravel
0.106	65.9	26.3% Sand
0.075	63.0	48.9% Silt
0.0410	45.6	14.1% Clay
0.0300	40.9	14.1 % Clay
0.0198	34.8	
0.0119	28.1	
0.0084	24.1	
0.0063	19.4	
0.0032	14.1	
0.0014	10.1	

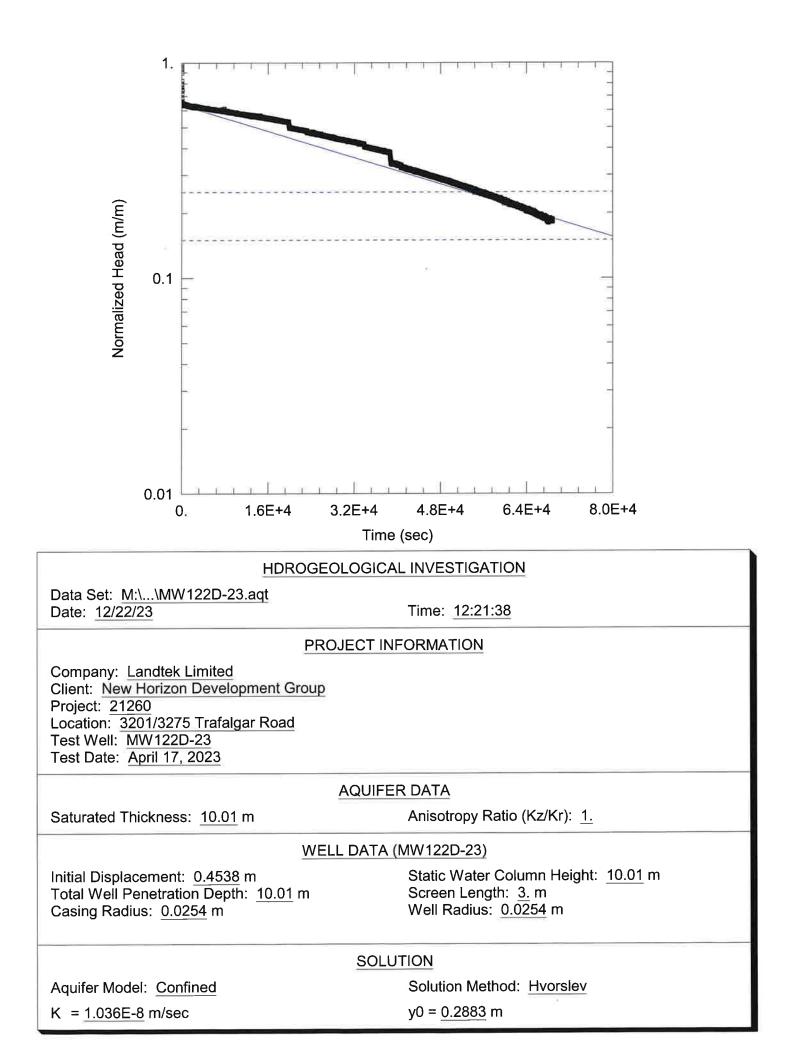




## APPENDIX E


## HYDRAULIC CONDUCTIVITY TESTING ANALYSIS RESULTS














## APPENDIX F

## LABORATORY CERTIFICATE OF ANALYSIS





LANDTEK LIMITED ATTN: HENRY EREBOR 205 NEBO ROAD, UNIT 4B HAMILTON ON L8W 2E1

Date Received: 30-NOV-21 Report Date: 08-DEC-21 07:10 (MT) Version: FINAL

Client Phone: 905-383-3733

# Certificate of Analysis

Lab Work Order #: L2667745 Project P.O. #: Job Reference: 21260 C of C Numbers: Legal Site Desc:

NOT SUBMITTED

arassaylun stur-

Costas Farassoglou Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



21260

# ANALYTICAL GUIDELINE REPORT

L2667745 CONTD ....

Page 2 of 7 08-DEC-21 07:10 (MT)

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits
					Analyzed		
L2667745-1 NMW120D							
Sampled By: CLIENT on 29-NOV-21						#1	
Matrix: WATER							
Physical Tests							
рН	8.00		0.10	pH units	01-DEC-21	6.5-8.5	
Total Suspended Solids	8.1		3.0	mg/L	03-DEC-21	15	
Anions and Nutrients							
Phosphorus, Total	0.0081		0.0030	mg/L	02-DEC-21	0.4	
Cyanides							
Cyanide, Total	<0.0020		0.0020	mg/L	01-DEC-21	0.02	
Bacteriological Tests							
E. Coli	0		0	CFU/100m	01-DEC-21	200	
Tatal Matala				L			
Total Metals	0.0047	DUUO	0.0040				
Arsenic (As)-Total	0.0017	DLHC	0.0010	mg/L	01-DEC-21	0.02	
Cadmium (Cd)-Total	<0.000050	DLHC DLHC	0.000050	mg/L	01-DEC-21 01-DEC-21	0.008	
Chromium (Cr)-Total	<0.0050 <0.0050	DLHC	0.0050	mg/L	01-DEC-21 01-DEC-21	0.08 0.04	
Copper (Cu)-Total Lead (Pb)-Total	<0.0050	DLHC	0.00050	mg/L mg/L	01-DEC-21 01-DEC-21	0.04	
Manganese (Mn)-Total	0.0303	DLHC	0.0050	mg/L	01-DEC-21 01-DEC-21	0.12	
Mercury (Hg)-Total	<0.000050		0.000005	mg/L	02-DEC-21	0.0004	
horodry (rig) rotar			0		02 020 21	0.0004	
Nickel (Ni)-Total	<0.0050	DLHC	0.0050	mg/L	01-DEC-21	0.08	
Selenium (Se)-Total	<0.00050	DLHC	0.00050	mg/L	01-DEC-21	0.02	
Silver (Ag)-Total	<0.00050	DLHC	0.00050	mg/L	01-DEC-21	0.12	
Zinc (Zn)-Total	<0.030	DLHC	0.030	mg/L	01-DEC-21	0.04	
Speciated Metals							
Chromium, Hexavalent	<0.50		0.50	ug/L	01-DEC-21	40	
Aggregate Organics							
BOD	4.4		2.0	mg/L	01-DEC-21	15	
Phenols (4AAP)	<0.0010		0.0010	mg/L	03-DEC-21	0.008	
Volatile Organic Compounds							
Benzene	<0.50		0.50	ug/L	02-DEC-21	2	
Chloroform	<1.0		1.0	ug/L	02-DEC-21	2	
1,2-Dichlorobenzene	<0.50		0.50	ug/L	02-DEC-21	5.6	
1,4-Dichlorobenzene	<0.50		0.50	ug/L	02-DEC-21	6.8	
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L	02-DEC-21	5.6	
Dichloromethane	<2.0		2.0	ug/L	02-DEC-21	5.2	
trans-1,3-Dichloropropene Ethylbenzene	<0.50 <0.50		0.50 0.50	ug/L ug/L	02-DEC-21 02-DEC-21	2	
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L ug/L	02-DEC-21 02-DEC-21	17	
Tetrachloroethylene	<0.50		0.50	ug/L	02-DEC-21	4.4	
Toluene	<0.50		0.50	ug/L ug/L	02-DEC-21 02-DEC-21	2	
Trichloroethylene	1.41		0.50	ug/L	02-DEC-21	7.6	
o-Xylene	<0.50		0.50	ug/L	02-DEC-21		
m+p-Xylenes	<1.0		1.0	ug/L	02-DEC-21		
Xylenes (Total)	<1.1		1.1	ug/L	02-DEC-21	4.4	
Surrogate: 4-Bromofluorobenzene	86.3		70-130	%	02-DEC-21		
Surrogate: 1,4-Difluorobenzene	100.7		70-130	%	02-DEC-21		
Polycyclic Aromatic Hydrocarbons							

** Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

* Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Oakville Storm Sewer By-Law (2009-031)



21260

# ANALYTICAL GUIDELINE REPORT

L2667745 CONTD ....

Page 3 of 7 08-DEC-21 07:10 (MT)

1260							08-DEC-21 07:10 (MT
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits
L2667745-1 NMW120D							
Sampled By: CLIENT on 29-NOV-21							
Matrix: WATER						#1	
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	<0.010		0.010	ug/L	07-DEC-21		
Acenaphthylene	<0.010		0.010	ug/L	07-DEC-21		
Anthracene	<0.010		0.010	ug/L	07-DEC-21		
Benzo(a)anthracene	<0.010		0.010	ug/L	07-DEC-21		
Benzo(a)pyrene	<0.010		0.010	ug/L	07-DEC-21		
Benzo(b&j)fluoranthene	<0.010		0.010	ug/L	07-DEC-21		
Benzo(ghi)perylene	<0.010		0.010	ug/L	07-DEC-21		
Benzo(k)fluoranthene	<0.010		0.010	ug/L	07-DEC-21		
Chrysene	<0.010		0.010	ug/L	07-DEC-21		
Dibenz(a,h)anthracene	<0.010		0.010	ug/L	07-DEC-21		
Fluoranthene	<0.010		0.010	ug/L	07-DEC-21		
Fluorene	<0.010		0.010	ug/L	07-DEC-21		
Indeno(1,2,3-cd)pyrene	<0.010		0.010	ug/L	07-DEC-21		
1-Methylnaphthalene	<0.010		0.010	ug/L	07-DEC-21		
2-Methylnaphthalene	<0.010		0.010	ug/L	07-DEC-21		
Naphthalene	<0.010		0.010	ug/L	07-DEC-21		
Perylene	<0.010		0.010	ug/L	07-DEC-21		
Phenanthrene	<0.010		0.010	ug/L	07-DEC-21		
Pyrene	0.022		0.010	ug/L	07-DEC-21		
Surrogate: 2-Fluorobiphenyl	85.8		40-130	%	07-DEC-21		
Surrogate: D14-Terphenyl	86.3		40-130	%	07-DEC-21		
Total PAHs	<0.044		0.044	ug/L	07-DEC-21	2	
Phthalate Esters							
Bis(2-ethylhexyl)phthalate	<2.0		2.0	ug/L	07-DEC-21	8.8	
Surrogate: 2-fluorobiphenyl	89.5		40-130	%	07-DEC-21		
Surrogate: p-Terphenyl d14	77.5		40-130	%	07-DEC-21		
Semi-Volatile Organics							
3,3-Dichlorobenzidine	<0.40		0.40	ug/L	07-DEC-21	0.8	
Di-n-butylphthalate	<1.0		1.0	ug/L	07-DEC-21	15	
Surrogate: 2-Fluorobiphenyl	89.5		40-130	%	07-DEC-21		
Surrogate: p-Terphenyl d14	77.5		40-130	%	07-DEC-21		
Surrogate: p-Terphenyl d14	77.9		40-130	%	07-DEC-21		
Phenolics							
Pentachlorophenol	<0.50		0.50	ug/L	07-DEC-21	2	
Surrogate: 2,4,6-Tribromophenol Polychlorinated Biphenyls	100.4		40-150	%	07-DEC-21		
Aroclor 1242	<0.020		0.020	ug/L	02-DEC-21		
Aroclor 1248	<0.020		0.020	ug/L	02-DEC-21 02-DEC-21		
Aroclor 1240	<0.020		0.020	ug/L	02-DEC-21 02-DEC-21		
Aroclor 1260	<0.020		0.020	ug/L	02-DEC-21		
Surrogate: Decachlorobiphenyl	132.9		50-150	%	02-DEC-21		
Total PCBs	< 0.040		0.040	ug/L	02-DEC-21	0.4	
Surrogate: Tetrachloro-m-xylene	108.9		50-150	%	02-DEC-21	0.4	
Organochlorine Pesticides							
Aldrin	<0.0080		0.0080	ug/L	03-DEC-21		
	1	1	1	1	1		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Oakville Storm Sewer By-Law (2009-031)



21260

# ANALYTICAL GUIDELINE REPORT

L2667745 CONTD ....

Page 4 of 7 08-DEC-21 07:10 (MT)

Sample Details							08-DEC-21 07:10 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits
L2667745-1 NMW120D							
Sampled By: CLIENT on 29-NOV-21							
Matrix: WATER						#1	
Organochlorine Pesticides							
alpha-BHC	<0.0080		0.0080	ug/L	03-DEC-21		
beta-BHC	<0.0080		0.0080	ug/L	03-DEC-21		
gamma-hexachlorocyclohexane	<0.0080		0.0080	ug/L	03-DEC-21	40	
a-chlordane	<0.0080		0.0080	ug/L	03-DEC-21		
g-chlordane o,p-DDD	<0.0080 <0.0040		0.0080 0.0040	ug/L	03-DEC-21 03-DEC-21		
pp-DDD	<0.0040 <0.0040		0.0040	ug/L ug/L	03-DEC-21 03-DEC-21		
o,p-DDE	<0.0040 <0.0040		0.0040	ug/L	03-DEC-21 03-DEC-21		
pp-DDE	<0.0040		0.0040	ug/L	03-DEC-21		
op-DDT	<0.0040		0.0040	ug/L	03-DEC-21		
pp-DDT	<0.0040		0.0040	ug/L	03-DEC-21		
Dieldrin	<0.0080		0.0080	ug/L	03-DEC-21		
Hexachlorobenzene	<0.0080		0.0080	ug/L	03-DEC-21	0.04	
Mirex	<0.0080		0.0080	ug/L	03-DEC-21	40	
Oxychlordane	<0.0080		0.0080	ug/L	03-DEC-21		
Pentachloronitrobenzene	<0.010		0.010	ug/L	03-DEC-21		
Surrogate: Decachlorobiphenyl	124.0		40-130	%	03-DEC-21		
Surrogate: Tetrachloro-m-xylene	113.3		40-130	%	03-DEC-21		
Organic Parameters							
Nonylphenol	<1.0		1.0	ug/L	02-DEC-21	1	
Nonylphenol Diethoxylates	<0.10		0.10	ug/L	02-DEC-21		
Total Nonylphenol Ethoxylates	<2.0		2.0	ug/L	02-DEC-21	10	
Nonylphenol Monoethoxylates	<2.0		2.0	ug/L	02-DEC-21		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
 Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

### Sample Parameter Qualifier key listed:

Qualifier Descriptio	n		
· · ·		Dilution required due to high conce	entration of test analyte(s).
Methods Listed (if applic			
ALS Test Code	Matrix	Test Description	Method Reference***
625-33DCBENZIDINE-WT		3,3-Dichlorobenzidine	SW846 8270
		tracts are analyzed on GC/MSD.	
625-BIS-2-PHTH-WT	Water	Bis(2-ethylhexyl)phthalate	SW846 8270
Aqueous samples are ex 625-DNB-PHTH-WT	tracted and ext Water	tracts are analyzed on GC/MSD. Di-n-Butyl Phthalate	SW846 8270
Aqueous samples are ex 625-PAH-LOW-WT	tracted and ex Water	tracts are analyzed on GC/MSD. EPA 8270 PAH (Low Level)	SW846 8270
chromatographically co-e	lute with benze	o(b)fluoranthene or benzo(k)fluora	
625-PCP-WT	Water	Pentachlorophenol	SW846 8270
BOD-WT	Water	BOD	APHA 5210 B
oxygen demand (BOD) a dissolved oxygen meter.	re determined Dissolved BOI ed by adding a	by diluting and incubating a samp O (SOLUBLE) is determined by filt a nitrification inhibitor to the diluted	
	Water	Cyanide, Total	ISO 14403-2
			lation. Cyanide is converted to cyanogen chloride by reacting with chloramine- and isonicotinic acid to form a highly colored complex.
When using this method, detectable cyanide analy: CR-CR6-PWQO-IC-WT	high levels of zed by this me Water	thiocyanate in samples can cause thod, ALS recommends analysis f Chromium +6	e false positives at ~1-2% of the thiocyanate concentration. For samples with for thiocyanate to check for this potential interference EPA 7199
States Environmental Pro	otection Agenc	y (EPA). The procedure involves a	s for Evaluating Solid Waste" SW-846, Method 7199, published by the United analysis for chromium (VI) by ion chromatography using diphenylcarbazide in a ween the total chromium and the chromium (VI) results.
Analysis conducted in ac Protection Act (July 1, 20		the Protocol for Analytical Method	s Used in the Assessment of Properties under Part XV.1 of the Environmental
EC-SCREEN-WT	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of co EC-WW-MF-WT	nductivity whe Water	re required during preparation of o E. Coli	ther tests - e.g. TDS, metals, etc. SM 9222D
A 100 mL volume of sam Method ID: WT-TM-1200		hrough a membrane, the membra	ne is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h.
HG-T-CVAA-WT	Water	Total Mercury in Water by CVAAS	EPA 1631E (mod)
Water samples undergo a MET-T-CCMS-WT	a cold-oxidatio Water	n using bromine monochloride pric Total Metals in Water by CRC ICPMS	or to reduction with stannous chloride, and analyzed by CVAAS. EPA 200.2/6020A (mod)
Water samples are diges	ted with nitric a	and hydrochloric acids, and analyz	zed by CRC ICPMS.
Method Limitation (re: Su	lfur): Sulfide a	nd volatile sulfur species may not	be recovered by this method.
Analysis conducted in ac Protection Act (July 1, 20		the Protocol for Analytical Method	s Used in the Assessment of Properties under Part XV.1 of the Environmental
NP,NPE-LCMS-WT	Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water samples are filtere	ed and analyze Water	ed on LCMS/MS by direct injection Pesticides, Organochlorine in Water	SW846 8270
Samples are extracted us	sing a solvent i	mixture and the resulting extracts	are analyzed on GC/MSD

### **Reference Information**

P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried of after persulphate digestic			4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically
PAH-SUM-CALC-WT	Water	TOTAL PAH's	CALCULATION
Total PAH in terms of the		H analytes reported for a given sa H analytes to be included.	mple. Note that regulatory agencies and criteria differ in their definitions of
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted from are analyzed by GC/MSD		ample at neutral pH with aliquots o	f dichloromethane using a modified separatory funnel technique. The extracts
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are analy	zed directly by	a calibrated pH meter.	
		the Protocol for Analytical Method for samples under this regulation is Phenol (4AAP)	s Used in the Assessment of Properties under Part XV.1 of the Environmental s 28 days EPA 9066
An automated method is red complex which is mea			uffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is fil four hours or until a const			er and the residue retained is dried in an oven at 104–1°C for a minimum of
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260
Aqueous samples are an	alyzed by hea	dspace-GC/MS.	
XYLENES-SUM-CALC- WT	Water	Sum of Xylene Isomer Concentrations	CALCULATION
Total xylenes represents	the sum of o->	vylene and m&p-xylene.	
*** ALS test methods mav ir	ncorporate mo	difications from specified reference	e methods to improve performance.
	•		

Chain of Custody numbers:									
The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:									
Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location						
WT	ALS ENVIRONMENTAL - WATERLOO ONTARIO, CANADA	,							

#### **GLOSSARY OF REPORT TERMS**

test results prior to comparison with specified criteria values.

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than. D.L. - The reporting limit. N/A - Result not available. Refer to qualifier code and definition for explanation.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review. Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to



			quan	.,	ornopon			
		Workorder:	L266774	15	Report Date:	08-DEC-21		Page 1 of 11
205 NEBC HAMILTC	( LIMITED D ROAD, UNIT 4E IN ON L8W 2E1							
Contact: HENRY E	REBUR							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-33DCBENZIDINE-WT	Water							
Batch R5668839								
WG3670311-2 LCS 3,3-Dichlorobenzidine			21.0	RRQC	%		E0 140	
COMMENTS: RRQC	: Recovery is hel	ow ALS control				ted samples hav	50-140 e not been aff	07-DEC-21
WG3670311-1 MB			шпиз. Керо			teu samples nav	e not been an	ecieu.
3,3-Dichlorobenzidine			<0.40		ug/L		0.4	07-DEC-21
Surrogate: p-Terphenyl	d14		95.1		%		40-130	07-DEC-21
625-BIS-2-PHTH-WT	Water							
Batch R5668839								
WG3670311-2 LCS	ta		400.0		%		50.440	
Bis(2-ethylhexyl)phthala	le		138.0		70		50-140	07-DEC-21
WG3670311-1 MB Bis(2-ethylhexyl)phthala	te		<2.0		ug/L		2	07-DEC-21
Surrogate: 2-fluorobiphe	nyl		83.3		%		40-130	07-DEC-21
Surrogate: p-Terphenyl	d14		95.1		%		40-130	07-DEC-21
625-DNB-PHTH-WT	Water							
Batch R5668839								
WG3670311-2 LCS								
Di-n-butylphthalate			142.0		%		50-150	07-DEC-21
WG3670311-1 MB Di-n-butylphthalate			<1.0		ug/L		1	07-DEC-21
Surrogate: 2-Fluorobiph	envl		83.3		%		40-130	07-DEC-21
Surrogate: p-Terphenyl	-		95.1		%		40-130	07-DEC-21
625-PAH-LOW-WT	Water							0. 220 2.
Batch R5667840	Water							
WG3670311-2 LCS								
1-Methylnaphthalene			70.5		%		50-130	07-DEC-21
2-Methylnaphthalene			72.2		%		50-130	07-DEC-21
Acenaphthene			77.7		%		50-130	07-DEC-21
Acenaphthylene			76.2		%		50-130	07-DEC-21
Anthracene			86.8		%		60-130	07-DEC-21
Benzo(a)anthracene			90.1		%		60-140	07-DEC-21
Benzo(a)pyrene			84.0		%		60-130	07-DEC-21
Benzo(b&j)fluoranthene			83.1		%		60-130	07-DEC-21
Benzo(ghi)perylene			74.1		%		50-140	07-DEC-21
Benzo(k)fluoranthene			84.9		%		60-130	07-DEC-21
Chrysene			86.2		%		60-140	07-DEC-21



Client:

Contact:

### **Quality Control Report**

Workorder:L2667745Report Date:08-DEC-21Page2of11LANDTEK LIMITED205 NEBO ROAD, UNIT 4BHAMILTON ON L8W 2E1HENRY EREBOR

lest I	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R5667840								
WG3670311-2 LCS								
Dibenz(a,h)anthracene			74.7		%		60-130	07-DEC-21
Fluoranthene			86.8		%		60-130	07-DEC-21
Fluorene			82.8		%		60-130	07-DEC-21
Indeno(1,2,3-cd)pyrene			79.1		%		60-140	07-DEC-21
Naphthalene			78.8		%		50-130	07-DEC-21
Perylene			83.3		%		60-130	07-DEC-21
Phenanthrene			84.4		%		60-130	07-DEC-21
Pyrene			89.0		%		60-130	07-DEC-21
WG3670311-1 MB 1-Methylnaphthalene			<0.010		ug/L		0.01	07-DEC-21
2-Methylnaphthalene			<0.010		ug/L		0.01	07-DEC-21
Acenaphthene			<0.010		ug/L		0.01	07-DEC-21
Acenaphthylene			<0.010		ug/L		0.01	07-DEC-21
Anthracene			<0.010		ug/L		0.01	07-DEC-21
Benzo(a)anthracene			<0.010		ug/L		0.01	07-DEC-21
Benzo(a)pyrene			<0.010		ug/L		0.01	07-DEC-21
Benzo(b&j)fluoranthene			<0.010		ug/L		0.01	07-DEC-21
Benzo(ghi)perylene			<0.010		ug/L		0.01	07-DEC-21
Benzo(k)fluoranthene			<0.010		ug/L		0.01	07-DEC-21
Chrysene			<0.010		ug/L		0.01	07-DEC-21
Dibenz(a,h)anthracene			<0.010		ug/L		0.01	07-DEC-21
Fluoranthene			<0.010		ug/L		0.01	07-DEC-21
Fluorene			<0.010		ug/L		0.01	07-DEC-21
Indeno(1,2,3-cd)pyrene			<0.010		ug/L		0.01	07-DEC-21
Naphthalene			<0.010		ug/L		0.01	07-DEC-21
Perylene			<0.010		ug/L		0.01	07-DEC-21
Phenanthrene			<0.010		ug/L		0.01	07-DEC-21
Pyrene			<0.010		ug/L		0.01	07-DEC-21
Surrogate: 2-Fluorobiphen	ıyl		77.0		%		40-130	07-DEC-21
Surrogate: D14-Terphenyl			91.5		%		40-130	07-DEC-21

625-PCP-WT

Water



### **Quality Control Report**

				••••••				
		Workorder: I	_2667745	Rep	ort Date: 08-DE	C-21	ł	Page 3 of 11
205	DTEK LIMITED NEBO ROAD, UNIT 4B IILTON ON L8W 2E1	i						
Contact: HEN	RY EREBOR							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PCP-WT	Water							
Batch R5668 WG3670311-1 M								
WG3670311-1 M Pentachlorophenol	В		<0.50		ug/L		0.5	07-DEC-21
Surrogate: 2,4,6-Tr	ibromophenol		95.6		%		40-150	07-DEC-21
BOD-WT	Water							
Batch R5666								
WG3668460-2 D BOD	UP	<b>L2667552-3</b> <2.0	<2.0	RPD-NA	mg/L	N/A	30	01-DEC-21
WG3668460-3 L	cs				-			
BOD			104.0		%		85-115	01-DEC-21
WG3668460-1 M BOD	В		<2.0		mg/L		2	01-DEC-21
CN-TOT-WT	Water							
Batch R5660								
WG3668154-3 D Cyanide, Total	UP	<b>WG3668154-5</b> 0.0058	0.0058		mg/L	0.2	20	01-DEC-21
WG3668154-2 L Cyanide, Total	CS		89.1		%		80-120	01-DEC-21
WG3668154-1 M Cyanide, Total	В		<0.0020		mg/L		0.002	01-DEC-21
WG3668154-4 M Cyanide, Total	S	WG3668154-5	91.4		%		70-130	01-DEC-21
CR-CR6-PWQO-IC-W	Water							
Batch R5660								
WG3668600-4 D Chromium, Hexava	<b>UP</b> Ilent	<b>WG3668600-3</b> <0.50	<0.50	RPD-NA	ug/L	N/A	20	01-DEC-21
WG3668600-2 L Chromium, Hexava			98.3		%		80-120	01-DEC-21
WG3668600-1 M Chromium, Hexava			<0.50		ug/L		0.5	01-DEC-21
WG3668600-5 M Chromium, Hexava		WG3668600-3	98.3		%		70-130	01-DEC-21
EC-WW-MF-WT	Water							
Batch R5660 WG3668112-1 M E. Coli	0876 B		0		CFU/100mL		1	01-DEC-21

HG-T-CVAA-WT W



			Workorder:	L2667745	R	eport Date: 08-D	)EC-21		Page 4 of 11
Client:	HAMILTO	) ROAD, UNIT 4B N ON L8W 2E1	i						
Contact:	HENRY E	REBOR							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-CVAA-WT		Water							
Batch WG3668232-4 Mercury (Hg)	-		<b>WG3668232-3</b> <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	02-DEC-21
WG3668232-2 Mercury (Hg)				95.3		%		80-120	02-DEC-21
WG3668232- Mercury (Hg)				<0.0000050		mg/L		0.000005	02-DEC-21
WG3668232-0 Mercury (Hg)			WG3668232-5	97.1		%		70-130	02-DEC-21
MET-T-CCMS-W	т	Water							
Batch	R5659992								
WG3667817-/ Arsenic (As)-			<b>WG3667817-3</b> <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	01-DEC-21
Cadmium (C			<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	01-DEC-21
Chromium (C			<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	01-DEC-21
Copper (Cu)-	-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	01-DEC-21
Lead (Pb)-To			<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	01-DEC-21
Manganese (	(Mn)-Total		0.380	0.372		mg/L	2.1	20	01-DEC-21
Nickel (Ni)-T	otal		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	01-DEC-21
Selenium (Se	e)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	01-DEC-21
Silver (Ag)-T	otal		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	01-DEC-21
Zinc (Zn)-Tot	tal		<0.030	<0.030	RPD-NA	mg/L	N/A	20	01-DEC-21
WG3667817-2 Arsenic (As)-				103.5		%		80-120	01-DEC-21
Cadmium (C				99.97		%		80-120	01-DEC-21
Chromium (C				101.3		%		80-120	01-DEC-21
Copper (Cu)-	Total			101.1		%		80-120	01-DEC-21
Lead (Pb)-To	otal			103.6		%		80-120	01-DEC-21
Manganese (	(Mn)-Total			101.0		%		80-120	01-DEC-21
Nickel (Ni)-Te	otal			100.7		%		80-120	01-DEC-21
Selenium (Se	e)-Total			102.4		%		80-120	01-DEC-21
Silver (Ag)-T	otal			98.6		%		80-120	01-DEC-21
Zinc (Zn)-Tot	tal			101.8		%		80-120	01-DEC-21
				<0.00010		mg/L		0.0001	01-DEC-21
Cadmium (C	d)-Total			<0.0000050		mg/L		0.000005	01-DEC-21



WG3668160-4 MS

L2667468-1

		Workorder:	L2667745		Report Date: 08-D	EC-21		Page 5 of 11
2 H	ANDTEK LIMITED 05 NEBO ROAD, UNIT 4E IAMILTON ON L8W 2E1	3						
Contact: H	IENRY EREBOR							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
	659992							
WG3667817-1 Chromium (Cr)-	MB Total		<0.00050		mg/L		0.0005	01-DEC-21
Copper (Cu)-To			<0.00050		mg/L		0.0005	01-DEC-21 01-DEC-21
Lead (Pb)-Total			<0.000050		mg/L		0.00005	01-DEC-21
Manganese (Mr			<0.00050		mg/L		0.0005	01-DEC-21
Nickel (Ni)-Tota			<0.00050		mg/L		0.0005	01-DEC-21
Selenium (Se)-1			<0.000050		mg/L		0.00005	01-DEC-21
Silver (Ag)-Tota			<0.000050		mg/L		0.00005	01-DEC-21
Zinc (Zn)-Total			<0.0030		mg/L		0.003	01-DEC-21
WG3667817-5	MS	WG3667817-3			-			
Arsenic (As)-To	tal		101.4		%		70-130	01-DEC-21
Cadmium (Cd)-	Total		103.2		%		70-130	01-DEC-21
Chromium (Cr)-	Total		102.0		%		70-130	01-DEC-21
Copper (Cu)-To	tal		103.1		%		70-130	01-DEC-21
Lead (Pb)-Total			101.9		%		70-130	01-DEC-21
Manganese (Mr	n)-Total		N/A	MS-B	%		-	01-DEC-21
Nickel (Ni)-Tota	I		98.6		%		70-130	01-DEC-21
Selenium (Se)-	Fotal		100.1		%		70-130	01-DEC-21
Silver (Ag)-Tota	I		100.4		%		70-130	01-DEC-21
Zinc (Zn)-Total			107.6		%		70-130	01-DEC-21
NP,NPE-LCMS-WT	Water							
	661876							
WG3668160-3 Nonylphenol	DUP	<b>L2667468-1</b> <1.0	<1.0	RPD-NA	ug/L	N/A	30	02-DEC-21
Nonylphenol Mc	phoethoxylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	02-DEC-21
Nonylphenol Die	-	<0.10	<0.10	RPD-NA	ug/L	N/A	30	02-DEC-21
WG3668160-2	LCS		10110		-9	1.07	00	02 020 21
Nonylphenol	200		76.9		%		75-125	02-DEC-21
Nonylphenol Mc	onoethoxylates		93.4		%		75-125	02-DEC-21
Nonylphenol Die	ethoxylates		92.5		%		75-125	02-DEC-21
WG3668160-1 Nonylphenol	МВ		<1.0		ug/L		1	02-DEC-21
Nonylphenol Mc	onoethoxylates		<2.0		ug/L		2	02-DEC-21
Nonylphenol Die	-		<0.10		ug/L		0.1	02-DEC-21
WC2669160 4	-	1 2667469 4						



		Workorder:	L266774	5	Report Date: 08	3-DEC-21		Page 6 of 11
Client:	LANDTEK LIMITED 205 NEBO ROAD, UNIT HAMILTON ON L8W 28							
Contact:	HENRY EREBOR							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NP,NPE-LCMS-	WT Water							
Batch	R5661876							
WG3668160- Nonylphenol	-	L2667468-1	117.3		%		60 140	
	Monoethoxylates		117.3		%		60-140	02-DEC-21 02-DEC-21
	Diethoxylates		97.6		%		60-140 60-140	02-DEC-21
	-		57.0		70		00-140	02-DEC-21
OCP-ROUTINE-								
Batch WG3667876-	R5660108							
Aldrin	2 203		125.3		%		50-150	01-DEC-21
gamma-hexa	achlorocyclohexane		122.2		%		50-150	01-DEC-21
a-chlordane			122.0		%		50-150	01-DEC-21
g-chlordane			126.2		%		50-150	01-DEC-21
alpha-BHC			129.3		%		50-150	01-DEC-21
beta-BHC			93.9		%		50-150	01-DEC-21
o,p-DDD			108.2		%		50-150	01-DEC-21
pp-DDD			102.5		%		50-150	01-DEC-21
o,p-DDE			109.6		%		50-150	01-DEC-21
pp-DDE			119.6		%		50-150	01-DEC-21
op-DDT			148.2		%		50-150	01-DEC-21
pp-DDT			135.6		%		50-150	01-DEC-21
Dieldrin			127.9		%		50-150	01-DEC-21
Hexachlorob	enzene		115.5		%		50-150	01-DEC-21
Mirex			159.1	LCS-H	%		50-150	01-DEC-21
Oxychlordan			127.3		%		50-150	01-DEC-21
Pentachloror	nitrobenzene		122.9		%		50-150	01-DEC-21
WG3667876- Aldrin	1 MB		<0.0080				0.008	
	achlorocyclohexane		<0.0080		ug/L ug/L		0.008	01-DEC-21
a-chlordane	actionocyclonexane		<0.0080		ug/L		0.008	01-DEC-21
g-chlordane			<0.0080		ug/L		0.008	01-DEC-21
alpha-BHC			<0.0080		ug/L		0.008	01-DEC-21 01-DEC-21
beta-BHC			<0.0080		ug/L		0.008	01-DEC-21
o,p-DDD			<0.0040		ug/L		0.004	01-DEC-21
pp-DDD			<0.0040		ug/L		0.004	01-DEC-21
o,p-DDE			<0.0040		ug/L		0.004	01-DEC-21
pp-DDE			<0.0040		ug/L		0.004	01-DEC-21
PP								



### **Quality Control Report**

		Workorder:	L266774	5	Report Date: 0	8-DEC-21		Page 7 of 11
Client:	LANDTEK LIMITED 205 NEBO ROAD, UNIT 4 HAMILTON ON L8W 2E1							
Contact:	HENRY EREBOR							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OCP-ROUTINE-	WT Water							
Batch	R5660108							
WG3667876- op-DDT	1 MB		<0.0040		ug/L		0.004	01-DEC-21
pp-DDT			<0.0040		ug/L		0.004	01-DEC-21
Dieldrin			<0.0080		ug/L		0.008	01-DEC-21
Hexachlorob	enzene		<0.0080		ug/L		0.008	01-DEC-21
Mirex			<0.0080		ug/L		0.008	01-DEC-21
Oxychlordan	۵		<0.0080		ug/L		0.008	01-DEC-21
Pentachloror			<0.0000		ug/L		0.000	01-DEC-21
	ecachlorobiphenyl		129.3		%		40-130	01-DEC-21
-	etrachloro-m-xylene		90.3		%		40-130	01-DEC-21
P-T-COL-WT	Water							
	R5660859							
WG3668291- Phosphorus,	3 DUP	<b>L2667974-4</b> 0.0223	0.0203		mg/L	9.2	20	02-DEC-21
WG3668291- Phosphorus,			101.2		%		80-120	02-DEC-21
WG3668291- Phosphorus,			<0.0030		mg/L		0.003	02-DEC-21
WG3668291-		L2667974-4						
Phosphorus,	Total		101.1		%		70-130	02-DEC-21
PCB-WT	Water							
Batch	R5661504							
WG3667876- Aroclor 1242			117.8		%		05 (00	
Aroclor 1242 Aroclor 1248			117.8		%		65-130	02-DEC-21
Aroclor 1246 Aroclor 1254			112.2		%		65-130	02-DEC-21
					%		65-130	02-DEC-21
Aroclor 1260			120.7		70		65-130	02-DEC-21
WG3667876- Aroclor 1242			<0.020		ug/L		0.02	02-DEC-21
Aroclor 1248	6		<0.020		ug/L		0.02	02-DEC-21
Aroclor 1254	Ļ		<0.020		ug/L		0.02	02-DEC-21
Aroclor 1260	)		<0.020		ug/L		0.02	02-DEC-21
Surrogate: D	ecachlorobiphenyl		129.5		%		50-150	02-DEC-21
Surrogate: T	etrachloro-m-xylene		77.9		%		50-150	02-DEC-21
	<b>N</b> (							

PH-WT



			Workorder: I	_2667745	Rep	oort Date: 08-DE	C-21	F	Page 8 of 11
Client:	HAMILTO	ROAD, UNIT 4B N ON L8W 2E1	i						
Contact:	HENRY EI	REBOR							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT		Water							
<b>Batch</b> <b>WG3668028-</b> 4 рН	R5659948 4 DUP		<b>WG3668028-3</b> 7.94	8.01	J	pH units	0.07	0.2	01-DEC-21
<b>WG3668028-</b> 2 рН	2 LCS			7.03		pH units		6.9-7.1	01-DEC-21
PHENOLS-4AAF	P-WT	Water							
Batch	R5666236								
WG3668316-3 Phenols (4A/	AP)		<b>L2667878-1</b> <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	03-DEC-21
WG3668316-2 Phenols (4A/				99.2		%		85-115	03-DEC-21
WG3668316- Phenols (4AA				<0.0010		mg/L		0.001	03-DEC-21
WG3668316-4 Phenols (4A/			L2667878-1	98.6		%		75-125	03-DEC-21
SOLIDS-TSS-W	г	Water							
Batch	R5663596								
WG3669001-3 Total Susper			<b>L2668522-1</b> <3.0	<3.0	RPD-NA	mg/L	N/A	20	03-DEC-21
WG3669001-2 Total Suspen				102.2		%		85-115	03-DEC-21
WG3669001- Total Suspen				<3.0		mg/L		3	03-DEC-21
VOC-ROU-HS-W	/т	Water							
Batch	R5661813								
WG3668101-4 1,1,2,2-Tetra		0	<b>WG3668101-3</b> <0.50	<0.50		ug/L	NI/A	20	
1,2-Dichlorob			<0.50 <0.50	<0.50	RPD-NA RPD-NA	ug/L ug/L	N/A N/A	30 30	02-DEC-21
1,4-Dichlorot			<0.50	<0.50	RPD-NA RPD-NA	ug/L	N/A	30 30	02-DEC-21 02-DEC-21
Benzene			<0.50	<0.50	RPD-NA	ug/L	N/A	30 30	02-DEC-21 02-DEC-21
Chloroform			<1.0	<1.0	RPD-NA	ug/L	N/A	30	02-DEC-21
cis-1,2-Dichlo	oroethylene		56.0	55.9		ug/L	0.1	30	02-DEC-21
Dichlorometh			<2.0	<2.0	RPD-NA	ug/L	N/A	30	02-DEC-21
Ethylbenzene			<0.50	<0.50	RPD-NA	ug/L	N/A	30	02-DEC-21
m+p-Xylenes	3		<0.40	<0.40	RPD-NA	ug/L	N/A	30	02-DEC-21
o-Xylene			<0.30	<0.30	RPD-NA	ug/L	N/A	30	02-DEC-21
Tetrachloroet	thylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	02-DEC-21



### **Quality Control Report**

Workorder: L2667745 Report Date: 08-DEC-21 Page 9 of 11 LANDTEK LIMITED Client: 205 NEBO ROAD, UNIT 4B HAMILTON ON L8W 2E1 Contact: HENRY EREBOR Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-ROU-HS-WT Water R5661813 Batch WG3668101-4 DUP WG3668101-3 Toluene < 0.40 < 0.40 **RPD-NA** ug/L N/A 30 02-DEC-21 trans-1,3-Dichloropropene <0.30 <0.30 **RPD-NA** ug/L N/A 30 02-DEC-21 Trichloroethylene 1310 1340 ug/L 1.5 30 03-DEC-21 WG3668101-1 LCS 1,1,2,2-Tetrachloroethane 84.2 % 70-130 02-DEC-21 99.6 1,2-Dichlorobenzene % 70-130 02-DEC-21 1,4-Dichlorobenzene 107.4 % 70-130 02-DEC-21 Benzene 93.7 % 70-130 02-DEC-21 Chloroform % 96.8 70-130 02-DEC-21 cis-1,2-Dichloroethylene 93.5 % 70-130 02-DEC-21 Dichloromethane 98.2 % 70-130 02-DEC-21 Ethylbenzene 93.7 % 70-130 02-DEC-21 m+p-Xylenes 97.7 % 70-130 02-DEC-21 o-Xylene 93.2 % 70-130 02-DEC-21 Tetrachloroethylene % 97.8 70-130 02-DEC-21 Toluene 95.1 % 70-130 02-DEC-21 trans-1,3-Dichloropropene 95.9 % 70-130 02-DEC-21 Trichloroethylene 95.9 % 70-130 02-DEC-21 WG3668101-2 MB 1,1,2,2-Tetrachloroethane <0.50 0.5 ug/L 02-DEC-21 1,2-Dichlorobenzene <0.50 0.5 ug/L 02-DEC-21 1.4-Dichlorobenzene < 0.50 ug/L 0.5 02-DEC-21 Benzene <0.50 ug/L 0.5 02-DEC-21 Chloroform ug/L 1 <1.0 02-DEC-21 cis-1,2-Dichloroethylene <0.50 ug/L 0.5 02-DEC-21 2 Dichloromethane <2.0 ug/L 02-DEC-21 Ethylbenzene 0.5 < 0.50 ug/L 02-DEC-21 m+p-Xylenes 0.4 < 0.40 ug/L 02-DEC-21 o-Xylene < 0.30 ug/L 0.3 02-DEC-21 Tetrachloroethylene <0.50 ug/L 0.5 02-DEC-21 Toluene < 0.40 ug/L 0.4 02-DEC-21 trans-1,3-Dichloropropene < 0.30 ug/L 0.3 02-DEC-21 Trichloroethylene <0.50 ug/L 0.5 02-DEC-21 Surrogate: 1,4-Difluorobenzene 101.2 % 70-130 02-DEC-21



Trichloroethylene

### **Quality Control Report**

			quant	.,				
		Workorder:	L266774	5	Report Date: 08-	DEC-21		Page 10 of 11
Client:	LANDTEK LIMITED 205 NEBO ROAD, UNIT HAMILTON ON L8W 21							
Contact:	HENRY EREBOR							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-	WT Water							
Batch	R5661813							
WG3668101 Surrogate: 4	-2 MB 4-Bromofluorobenzene		96.9		%		70-130	02-DEC-21
WG3668101		WG3668101-3						
	achloroethane		88.7		%		50-150	02-DEC-21
1,2-Dichloro	obenzene		99.6		%		50-150	02-DEC-21
1,4-Dichloro	obenzene		104.0		%		50-150	02-DEC-21
Benzene			94.4		%		50-150	02-DEC-21
Chloroform			99.4		%		50-150	02-DEC-21
cis-1,2-Dich	loroethylene		94.8		%		50-150	02-DEC-21
Dichlorome	thane		104.6		%		50-150	02-DEC-21
Ethylbenzer	ne		89.0		%		50-150	02-DEC-21
m+p-Xylene	es		92.9		%		50-150	02-DEC-21
o-Xylene			90.4		%		50-150	02-DEC-21
Tetrachloro	ethylene		91.4		%		50-150	02-DEC-21
Toluene			93.0		%		50-150	02-DEC-21
trans-1,3-Di	ichloropropene		101.4		%		50-150	02-DEC-21

MS-B

%

02-DEC-21

-

N/A

Workorder: L2667745

Report Date: 08-DEC-21

Client: LANDTEK LIMITED 205 NEBO ROAD, UNIT 4B HAMILTON ON L8W 2E1 Contact: HENRY EREBOR

Joniaci.

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

#### Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



### Chain of Custody (COC) / Analytical

**Request Form** 



COC Number: 17 - 802478

1 of

Page

Canada Toll Free: 1 800 668 9878

Report To	Contact and company name below will app	ear on the final report		Report Format			1	Selec	t Service I	evel Be	ow - C	Conta	t your	AM to	confirm	all E&	P TATs	(surch	arges	may apply	,
Company:	Landtek Limited		Select Report Fo	ormat: 🔽 PDF		DD (DIGITAL)		Re	gular [R]	🗸 St	andard	TAT if	received	by 3 pr	1 - busine	ss days	- no surc	harges a	pply		
Contact:	Henry Erebor		Quality Control (	QC) Report with Re	eport 🗌 YES	DNO	<u>ک</u>	4 da	y [P4-20%		Т	NCY	1 Bus	iness	day (E	- 100%	6]				
Phone:	289-880-3992		Compare Result	ts to Criteria on Report	provide details below	v if box checked	JORIT D 880	3 dag	y [P3-25%			ERGE	Same Day, Weekend or Statutory holiday [E2 -200% _							_	
	Company address below will appear on the fin	al report	Select Distributio	ct Distribution: 🗹 EMAIL 🗌 MAIL 🗌 FAX					^변 遺 2 day [P2-50%] 🗌 ^都					(Laboratory opening fees may apply) ]							
Street:	205 Nebo Road, Unit 3		Email 1 or Fax	henry@landtek.ca	1	-		Date and Time Required for all E&P TATs:						dd	-mmm-	yy hh	.mm				
City/Province:	Hamilton, ON		Email 2	kathy@landtek.ca			For te	sts that o	can not be pe	rformed ac	cording	to the	service le	vel sele	cted, you	will be c	ontacted.				
Postal Code:	L8W 2E1	. "	Email 3	engineering@land	tek.ca			Analysis Request													
Invoice To	Same as Report To	NO		Invoice Di	stribution		] ,_		Indic	ate Filtere	d (F), P	reserve	ed (P) or	Filtered	and Pres	erved (F	/P) below	v		0	
	Copy of Invoice with Report YES	NO	Select Invoice D	istribution: 🗹 EN		FAX	LSS SS													НОГР	SUSPECTED HAZARD (see Special Instructions)
Company:	Landtek Limited		Email 1 or Fax				] "													0	ğ
Contact:	Henry Erebor		Email 2				]													Ĩ	lust
	Project Information		Oil	and Gas Require	d Fields (client u	use)	CONTAINER									1				7	cial
ALS Account #	/ Quote #:		AFE/Cost Center:		PO#		]Z						ļ							NO	Se
Job #:	21260		Major/Minor Code:		Routing Code:		]ŏ														see
PO / AFE:			Requisitioner:				Ь	<u>a</u>												S Ш	l õ
LSD:			Location:					Oakville												5	N N
	rk Order # (lab use only): L-26	1-7115		MLP	6		NUMBER	Ö												<u> </u>	1 E
ALS Lab WO	rk Order # (lab use only): $\sum \sum 0$	6/195	ALS Contact:	MLP	Sampler:		B	Ston												AM	Ē
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample Type	13	Ontario												4	Ĕ
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	Ī	Ö												Ŝ	SUS
	NMW120D			29-Nov-21		Water	14	X										Ι			
	· · · · · ·							1										1			1
	*-*-							+	<u>+</u>	-								+			1
ļ							+	-									_				
							-										_	<u> </u>			_
				1			-									_		ļ			
	Note: No Field and I	Laboratory Filtration																			
																		1			
	1																				
					+	-			<u>}</u>						_						-
·									┠──┤──						_						+
							1												<b></b> ]		_
																			,		
Drinkin	g Water (DW) Samples ¹ (client use)	Special Instructions / S			cking on the drop	-down list below				SA					ECEIVI		b use o	only)			
			(elec	tronic COC only)			Froz					SIFC	)bserva	tions	Ye	s			No		
	ten from a Regulated DW System?						Ice F	Packs	ce کر	Cubes		Custo	ody sea	il intac	t Ye	s			No		
	YES KNO						Coo	ling In													
Are samples for	human consumption/ use?							I	NIITIAL COC	LER TEM	PERAT	URES	°C		~ ~			RTEM	ERATU	IRES °C	
	YES 🛃 NO														3.7				i		
	SHIPMENT RELEASE (client use	·		INITIAL SHIPMEN		lab use only)					F	INAL			RECEP	TION	(lab us	e only			
Released by:	BALL TOLAN Date: NOV. 30	121 Time:	Received by:		Date:		Time	e:	Receive	з by: (	FHI	١		Date:	2021	-11	-30		ſ	Time: 17:2	ð
REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPLIN		I	WH	I ITE - LABORATOR		LOW -	- ĈĹ IEN	IT COPY						~~~~	11	50		<u>i</u>		2018 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.



### CLIENT NAME: LANDTEK LTD. 205 NEBO ROAD, UNIT 3 HAMILTON, ON L8W2E1 (905) 383-3733 ATTENTION TO: Henry Erebor PROJECT: 21260 AGAT WORK ORDER: 23H012142 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer MISCELLANEOUS ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Nivine Basily, Inorganics Lab Technician WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Apr 25, 2023 PAGES (INCLUDING COVER): 43 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes		

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

#### **AGAT** Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 43



AGAT WORK ORDER: 23H012142

PROJECT: 21260

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

						E. Coli (M	l-Agar)	
DATE RECEIV	ED: 2023-04-05							DATE REPORTED: 2023-04-25
		SA	MPLE DES	CRIPTION:	MW106	MW4-23	MW111-20	
			SAM	PLE TYPE:	Water	Water	Water	
			DATE	SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Para	ameter	Unit	G/S	RDL	4900042	4900057	4900058	
Escherichia coli		CFU/100mL	100		0	0	4	
1900042		DL = 1 CFU/100m nents was observe		ipt.				
900057		DL = 10 CFU/100r dilutions of the sa		-				
	The sample was o	liluted prior to filtra	tion due to t	he presence	of sediments.			
900058	Escherichia coli R	DL = 1 CFU/100m	L.					
	Presence of sedin	nents was observe	d upon rece	ipt.				
	ed at AGAT Toronto	(unloss marked by	(*)					

Analysis performed at AGAT Toronto (unless marked by *)





AGAT WORK ORDER: 23H012142 PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

				Base N	leutrals and	Acids [wate	er]
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		SAMPLE DESCRI SAMPLE DATE SAM	TYPE:	MW106 Water 2023-04-05	MW4-23 Water 2023-04-05	MW111-20 Water 2023-04-05	
Parameter	Unit		RDL	4900042	4900057	4900058	
Naphthalene	µg/L		0.30	<0.30	<0.30	<0.30	
Acenaphthylene	µg/L		0.31	<0.31	<0.31	<0.31	
Acenaphthene	µg/L		0.30	<0.30	<0.30	<0.30	
Fluorene	µg/L	0.2	0.31	<0.31	<0.31	<0.31	
Phenanthrene	µg/L	0.03	0.32	<0.32	<0.32	<0.32	
Anthracene	µg/L	0.0008	0.30	<0.30	<0.30	<0.30	
Fluoranthene	µg/L	0.0008	0.27	<0.27	<0.27	<0.27	
Pyrene	µg/L		0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	µg/L	0.0004	0.20	<0.20	<0.20	<0.20	
Chrysene	µg/L	0.0001	0.27	<0.27	<0.27	<0.27	
Benzo(b)fluoranthene	µg/L		0.20	<0.20	<0.20	<0.20	
Benzo(k)fluoranthene	µg/L	0.0002	0.20	<0.20	<0.20	<0.20	
Benzo(a)pyrene	µg/L		0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	µg/L		0.20	<0.20	<0.20	<0.20	
Dibenzo(a,h)anthracene	µg/L	0.002	0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.00002	0.20	<0.20	<0.20	<0.20	
Phenol	µg/L		1.0	<1.0	<1.0	<1.0	
Bis(2-chloroethyl)ether	µg/L		0.5	<0.5	<0.5	<0.5	
2-Chlorophenol	µg/L		0.5	<0.5	<0.5	<0.5	
o-Cresol	µg/L	1	0.5	<0.5	<0.5	<0.5	
Bis(2-chloroisopropyl)ether	µg/L		0.5	<0.5	<0.5	<0.5	
m&p-Cresol	µg/L		0.5	<0.5	<0.5	<0.5	
Hexachloroethane	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dimethylphenol	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dichlorophenol	µg/L		0.3	<0.3	<0.3	<0.3	
1,2,4-Trichlorobenzene	µg/L		0.5	<0.5	<0.5	<0.5	
p-Chloroaniline	µg/L		1.0	<1.0	<1.0	<1.0	
Hexachlorobutadiene	µg/L		0.4	<0.4	<0.4	<0.4	
2-and 1-methyl Napthalene	µg/L	2	0.5	<0.5	<0.5	<0.5	
2,4,6-Trichlorophenol	µg/L	18	0.2	<0.2	<0.2	<0.2	

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
DATE RECEIVED. 2023-04-05							DATE REPORTED. 2023-04-25
		SAMPLE DESC	RIPTION:	MW106	MW4-23	MW111-20	
		SAMPI	E TYPE:	Water	Water	Water	
		DATE S/	AMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
2,4,5-Trichlorophenol	µg/L	18	0.2	<0.2	<0.2	<0.2	
1,1-Biphenyl	µg/L		0.5	<0.5	<0.5	<0.5	
Dimethyl phthalate	µg/L		0.5	<0.5	<0.5	<0.5	
2,6-Dinitrotoluene	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dinitrotoluene	µg/L		0.5	<0.5	<0.5	<0.5	
2,3,4,6-Tetrachlorophenol	µg/L	1	0.5	<0.5	<0.5	<0.5	
Diethyl phthalate	µg/L		0.5	<0.5	<0.5	<0.5	
Hexachlorobenzene	µg/L	0.0065	0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	µg/L		0.5	<0.5	<0.5	<0.5	
3,3'-dichlorobenzidine	µg/L		0.5	<0.5	<0.5	<0.5	
Bis(2-Ethylhexyl)phthalate	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dinitrophenol	µg/L		10	<10	<10	<10	
Sediment				NO	NO	NO	
Surrogate	Unit	Acceptable	Limits				
2-Fluorophenol	%	50-14	0	88	67	65	
phenol-d6 surrogate	%	50-14	0	97	84	84	
2,4,6-Tribromophenol	%	50-14	0	68	81	81	
Chrysene-d12	%	50-14	0	106	92	103	

Base Noutrals and Acids [water]

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4900042-4900058 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Julon Mants



AGAT WORK ORDER: 23H012142

PROJECT: 21260

Carbamate Pesticides (Water)

CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

				Carba			, , , , , , , , , , , , , , , , , , ,
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20	
	SAMPLE TYPE:		Water	Water	Water		
		DATES	SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Aldicarb	µg/L			<2.0	<2.0	<2.0	
Bendiocarb	µg/L		2	<2	<2	<2	
Carbofuran	µg/L		5	<5	<5	<5	
Carbaryl	µg/L		5	<5	<5	<5	
Diuron	µg/L		10	<10	<10	<10	
Triallate	µg/L		1	<1	<1	<1	
Temephos	µg/L		10	<10	<10	<10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Results relate only to the items tested.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Julon Mant

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

	Diquat/Paraquat											
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25					
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20						
		SAM	PLE TYPE:	Water	Water	Water						
		DATES	SAMPLED:	2023-04-05	2023-04-05	2023-04-05						
Parameter	Unit	G/S	RDL	4900042	4900057	4900058						
Diquat	µg/L		5	<5	<5	<5						
Paraquat	µg/L		1	<1	<1	<1						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Ethanolamines in Water by HPLC - Low Level											
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25				
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20					
		SAM	PLE TYPE:	Water	Water	Water					
		DATE	SAMPLED:	2023-04-05	2023-04-05	2023-04-05					
Parameter	Unit	G/S	RDL	4900042	4900057	4900058					
Diethanolamine (DEA)	mg/L		0.04	<0.04	<0.04	<0.04					
Ethanolamine (MEA)	mg/L		0.05	<0.05	<0.05	<0.05					
Diisopropanolamine (DIPA)	mg/L		0.1	<0.1	<0.1	<0.1					
Monoisopropanolamine (MIPA)	mg/L		0.1	<0.1	<0.1	<0.1					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142

PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

		Glycols Analysis in Water											
						DATE REPORTED: 2023-04-25							
;	SAMPLE DESCRIF	PTION:	MW106	MW4-23	MW111-20								
	SAMPLE	TYPE:	Water	Water	Water								
	DATE SAM	PLED:	2023-04-05	2023-04-05	2023-04-05								
Unit	G/S F	RDL	4900042	4900057	4900058								
mg/L		10	<10	<10	<10								
mg/L		8	<8	<8	<8								
mg/L		5	<5	<5	<5								
mg/L		8	<8	<8	<8								
mg/L		10	<10	<10	<10								
Unit	Acceptable Li	imits											
%	50-140		98	129	138								
	Unit mg/L mg/L mg/L mg/L mg/L Unit	SAMPLE DATE SAM Unit G / S F mg/L mg/L mg/L mg/L unit Acceptable L	mg/L10mg/L8mg/L5mg/L8mg/L10UnitAcceptable Limits	SAMPLE TYPE:         Water           DATE SAMPLED:         2023-04-05           Unit         G / S         RDL         4900042           mg/L         10         <10	SAMPLE TYPE:         Water         Water           DATE SAMPLED:         2023-04-05         2023-04-05           Unit         G / S         RDL         4900042         4900057           mg/L         10         <10	SAMPLE TYPE:         Water         Water         Water           DATE SAMPLED:         2023-04-05         2023-04-05         2023-04-05         2023-04-05           Unit         G / S         RDL         4900042         4900057         4900058           mg/L         10         <10							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Analysis by GC/FID.

Identification based on retention time relative to standards.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260

OC Pesticides + PCBs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

			OC Pe	esticides + i	CBS (Water)	
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
Gamma-Hexachlorocyclohexane	ug/L	0.01	<0.01	<0.01	<0.01	
Heptachlor	ug/L	0.01	<0.01	<0.01	<0.01	
Aldrin	ug/L	0.01	<0.01	<0.01	<0.01	
Heptachlor Epoxide	ug/L	0.01	<0.01	<0.01	<0.01	
Endosulfan I	µg/L	0.05	<0.05	<0.05	<0.05	
Endosulfan II	µg/L	0.05	<0.05	<0.05	<0.05	
Endosulfan	ug/L	0.05	<0.05	<0.05	<0.05	
alpha - chlordane	µg/L	0.1	<0.1	<0.1	<0.1	
gamma-Chlordane	µg/L	0.2	<0.2	<0.2	<0.2	
Chlordane	ug/L	0.04	<0.04	<0.04	<0.04	
op'-DDE	µg/L	0.01	<0.01	<0.01	<0.01	
pp'-DDE	µg/L	0.01	<0.01	<0.01	<0.01	
DDE	ug/L	0.01	<0.01	<0.01	<0.01	
op'-DDD	µg/L	0.05	<0.05	<0.05	<0.05	
pp'-DDD	µg/L	0.05	<0.05	<0.05	<0.05	
DDD	ug/L	0.05	<0.05	<0.05	<0.05	
op'-DDT	µg/L	0.04	<0.04	<0.04	<0.04	
pp'-DDT	µg/L	0.05	<0.05	<0.05	<0.05	
DDT	ug/L	0.04	<0.04	<0.04	<0.04	
Dieldrin	ug/L	0.02	<0.02	<0.02	<0.02	
Endrin	ug/L	0.05	<0.05	<0.05	<0.05	
Methoxychlor	ug/L	0.04	<0.04	<0.04	<0.04	
Hexachlorobenzene	ug/L	0.01	<0.01	<0.01	<0.01	
Hexachlorobutadiene	ug/L	0.01	<0.01	<0.01	<0.01	
Hexachloroethane	ug/L	0.01	<0.01	<0.01	<0.01	
Aroclor 1242	ug/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1248	ug/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1254	ug/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1260	ug/L	0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	ug/L	0.1	<0.1	<0.1	<0.1	

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

OC Pesticides + PCBs (Water)										
DATE RECEIVED: 2023-04-05					DATE REPORTED: 2023-04-25					
		SAMPLE DESCRIPTION:	MW106	MW4-23	MW111-20					
		SAMPLE TYPE:	Water	Water	Water					
		DATE SAMPLED:	2023-04-05	2023-04-05	2023-04-05					
Surrogate	Unit	Acceptable Limits	4900042	4900057	4900058					
СМХ	%	50-140	112	92	88					
Decachlorobiphenyl	%	50-140	116	113	103					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Certified By:

Julon Mants



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

	Oil and Grease (Total) in water											
DATE RECEIVED: 2023-04-05	E RECEIVED: 2023-04-05 DATE REPORTED: 2023-04-25											
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20						
		SAM	PLE TYPE:	Water	Water	Water						
		DATES	SAMPLED:	2023-04-05	2023-04-05	2023-04-05						
Parameter	Unit	G/S	RDL	4900042	4900057	4900058						
Total Oil and Grease in water	mg/L		0.5	1.20	<0.5	1.59						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Phenoxy Acid Herbicides (Water)										
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25				
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058					
2,4-D	µg/L	0.5	<0.5	<0.5	<0.5					
2,4,5-T	µg/L	0.5	<0.5	<0.5	<0.5					
2,4,5-TP	µg/L	0.5	<0.5	<0.5	<0.5					
Dicamba	µg/L	0.5	<0.5	<0.5	<0.5					
Dichlorprop	µg/L	0.5	<0.5	<0.5	<0.5					
Dinoseb	µg/L	0.5	<0.5	<0.5	<0.5					
Picloram	µg/L	0.5	<0.5	<0.5	<0.5					
Diclofop-methyl	µg/L	0.5	<0.5	<0.5	<0.5					
2,3,4,6-Tetrachlorophenol	µg/L	0.5	<0.5	<0.5	<0.5					
2,4-Dichlorophenol	µg/L	0.2	<0.2	<0.2	<0.2					
2,4,5-Trichlorophenol	µg/L	0.5	<0.5	<0.5	<0.5					
2,4,6-Trichlorophenol	µg/L	0.5	<0.5	<0.5	<0.5					
Bromoxynil	µg/L	0.3	<0.3	<0.3	<0.3					
MCPA	µg/L	5.0	<5.0	<5.0	<5.0					
MCPP	µg/L	5.0	<5.0	<5.0	<5.0					
Pentachlorophenol	µg/L	0.1	<0.1	<0.1	<0.1					
Surrogate	Unit	Acceptable Limits								
DCAA	%	50-140	90	80	92					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

### SAMPLED BY:LB

**ATTENTION TO: Henry Erebor** 

#### Polycyclic Aromatic Hydrocarbons in Water - Ultra-Low Level DATE RECEIVED: 2023-04-05 DATE REPORTED: 2023-04-25 SAMPLE DESCRIPTION: MW106 MW4-23 MW111-20 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2023-04-05 2023-04-05 2023-04-05 G/S RDL 4900042 4900057 4900058 Parameter Unit 1-Methylnaphthalene, Ultra-low µg/L 0.001 0.008 0.011 0.004 2-Methylnaphthalene, Ultra-low µg/L 0.001 0.016 0.018 0.006 Acenaphthene, Ultra-low µg/L 0.001 0.014 < 0.001 < 0.001 µg/L 0.001 < 0.001 < 0.001 Acenaphthylene, Ultra-low < 0.001 Acridine, Ultra-low µg/L 0.001 <0.001 < 0.001 < 0.001 Anthracene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Benzo(a)anthracene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Benzo(a)pyrene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Benzo(b)fluoranthene, Ultra-low µg/L 0.001 <0.001 < 0.001 <0.001 Benzo(j+k)fluoranthene µg/L 0.001 < 0.001 < 0.001 < 0.001 Benzo(e)pyrene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Benzo(ghi)perylene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Chrysene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 µg/L 0.001 < 0.001 < 0.001 < 0.001 Dibenzo(a,h)anthracene, Ultra-low Fluoranthene, Ultra-low µg/L 0.001 0.073 0.025 0.025 Fluorene, Ultra-low µg/L 0.001 0.023 0.007 0.008 Indeno(1,2,3-cd)pyrene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Naphthalene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Perylene, Ultra-low µg/L 0.001 < 0.001 < 0.001 < 0.001 Phenanthrene, Ultra-low µg/L 0.001 0.158 0.042 0.053 Pyrene, Ultra-low µg/L 0.001 <0.001 < 0.001 < 0.001 < 0.001 < 0.001 Quinoline, Ultra-low µg/L 0.001 < 0.001 Sediment YES YES TRACE PAH - Extraction (Ultra-low) Υ Υ Υ Surrogate Unit Acceptable Limits 57 65 Naphthalene-d8 % 50-140 68 % 45 44 52 Terphenyl-d14 50-140 Pyrene-d10 % 50-140 65 79 73

Julon Mants



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

### Polycyclic Aromatic Hydrocarbons in Water - Ultra-Low Level

DATE RECEIVED: 2023-04-05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900057 Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Surrogate not within acceptance limits due to matrix interference. Analysis was repeated with similar results.

4900058 Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Halifax (unless marked by *)

DBY:LB

DATE REPORTED: 2023-04-25

Certified By:

Julon Mants



AGAT WORK ORDER: 23H012142

PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

			Resi	n and Fatty	acid (water)	
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW106 Water 2023-04-05	MW4-23 Water 2023-04-05	MW111-20 Water 2023-04-05	
Parameter	Unit	G/S RDL	4900042	4900057	4900058	
Linoleic acid	µg/L	10	<10	<10	<10	
Linolenic acid	µg/L	10	<10	<10	<10	
Oleic acid	µg/L	10	<10	<10	<10	
9,10-Dichlorostearic acid	µg/L	10	<10	<10	<10	
Stearic acid	µg/L	10	<10	12	43	
Fatty acid total	µg/L	10	<10	12	43	
Pimaric acid	µg/L	10	<10	<10	<10	
Sandaracopimaric acid	µg/L	10	<10	<10	<10	
Isopimaric acid	µg/L	10	<10	<10	<10	
Palustric acid	µg/L	10	<10	<10	<10	
Levopimaric acid	µg/L	10	<10	<10	<10	
Dehydroabietic acid	µg/L	10	<10	<10	<10	
Abietic acid	µg/L	10	<10	<10	<10	
Neoabietic acid	µg/L	10	<10	<10	<10	
14-Chlorodehydroabietic acid	µg/L	10	<10	<10	<10	
12-Chlorodehydroabietic acid	µg/L	10	<10	<10	<10	
12,14-Dichlorodehydroabietic acid	µg/L	10	<10	<10	<10	
Resin acid total	µg/L	10	<10	<10	<10	
Resin and Fatty acid total	µg/L	10	<10	12	43	
Surrogate	Unit	Acceptable Limits				
O-methylpodocarpic	%	40-140	54	63	64	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range or reduce matrix interference. Sample was analyzed in Montreal.

Certified By:

Julon Mant



.

. .

AGAT WORK ORDER: 23H012142

PROJECT: 21260

.. . .

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

				des [water]	
					DATE REPORTED: 2023-04-25
	SAMPLE DESCRIPTION:	MW106	MW4-23	MW111-20	
	SAMPLE TYPE:	Water	Water	Water	
	DATE SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Unit	G/S RDL	4900042	4900057	4900058	
µg/L	1.0	<1.0	<1.0	<1.0	
μg/L	1.0	<1.0	<1.0	<1.0	
µg/L	0.5	<0.5	<0.5	<0.5	
µg/L	0.25	<0.25	<0.25	<0.25	
µg/L	0.25	<0.25	<0.25	<0.25	
μg/L	0.11	<0.11	<0.11	<0.11	
µg/L	0.5	<0.5	<0.5	<0.5	
µg/L	1.0	<1.0	<1.0	<1.0	
Unit	Acceptable Limits				
%	30-130	67	88	95	
	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	SAMPLE TYPE:           DATE SAMPLED:           Unit         G / S         RDL           µg/L         1.0           µg/L         0.5           µg/L         0.25           µg/L         0.25           µg/L         0.51           µg/L         0.51           µg/L         0.51           µg/L         0.5           µg/L         1.0           Unit         Acceptable Limits	SAMPLE TYPE:         Water           DATE SAMPLED:         2023-04-05           Unit         G / S         RDL         4900042           µg/L         1.0         <1.0	SAMPLE TYPE:         Water         Water           DATE SAMPLED:         2023-04-05         2023-04-05           Unit         G / S         RDL         4900042         4900057           µg/L         1.0         <1.0	SAMPLE TYPE:         Water         Water         Water           DATE SAMPLED:         2023-04-05         2023-04-05         2023-04-05         2023-04-05           Unit         G / S         RDL         4900042         4900057         4900058           µg/L         1.0         <1.0

#### Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ODWS - Table D

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4900042-4900058 Results relate only to the items tested.

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB Volatile Organic Compounds in Water (ug/L)

DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
		SAMPLE DESCRIPTION	MW106	MW4-23	MW111-20	
		SAMPLE TYPE	Water	Water	Water	
		DATE SAMPLED	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S RDL	4900042	4900057	4900058	
Dichlorodifluoromethane	µg/L	0.40	<0.40	<0.40	<0.40	
Chloromethane	µg/L	700 0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	µg/L	600 0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	0.9 0.20	<0.20	<0.20	<0.20	
Chloroethane	µg/L	0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	µg/L	0.40	<0.40	<0.40	<0.40	
Acetone	µg/L	1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L	0.2	<0.2	<0.2	<0.2	
Methylene Chloride	µg/L	100 0.30	<0.30	<0.30	<0.30	
trans- 1,2-dichloroethylene	µg/L	200 0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	200 0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	200 0.30	<0.30	<0.30	<0.30	
Methyl Ethyl Ketone	µg/L	400 1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	200 0.20	8.85	<0.20	<0.20	
Chloroform	µg/L	0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	µg/L	100 0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	10 0.30	<0.30	<0.30	<0.30	
Carbon Tetrachloride	µg/L	0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	100 0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	µg/L	0.7 0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	20 0.20	1.63	1.24	<0.20	
Bromodichloromethane	µg/L	200 0.20	<0.20	<0.20	<0.20	
cis-1,3-Dichloropropene	µg/L	0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	1.0	<1.0	<1.0	<1.0	
trans-1,3-Dichloropropene	µg/L	7 0.30	<0.30	<0.30	<0.30	
1,1,2-Trichloroethane	µg/L	800 0.20	<0.20	<0.20	<0.20	
Toluene	µg/L	0.8 0.20	<0.20	<0.20	<0.20	
2-Hexanone	µg/L	1.0	<1.0	<1.0	<1.0	
Dibromochloromethane	µg/L	40 0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	µg/L	5 0.10	<0.10	<0.10	<0.10	

Certified By:

Julon Mantz



AGAT WORK ORDER: 23H012142 PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

**ATTENTION TO: Henry Erebor** 

SAMPLED BY:LB

						DATE REPORTED: 2023-04-25
S	SAMF	LE TYPE:	MW106 Water 2023-04-05	MW4-23 Water 2023-04-05	MW111-20 Water 2023-04-05	
Unit	G/S	RDL	4900042	4900057	4900058	
µg/L	50	0.20	0.32	<0.20	<0.20	
µg/L	20	0.10	<0.10	<0.10	<0.10	
µg/L	15	0.10	<0.10	<0.10	<0.10	
µg/L	8	0.10	<0.10	<0.10	<0.10	
µg/L	32	0.20	<0.20	<0.20	<0.20	
µg/L	60	0.10	<0.10	<0.10	<0.10	
µg/L	4	0.10	<0.10	<0.10	<0.10	
µg/L	70	0.10	<0.10	<0.10	<0.10	
µg/L	40	0.10	<0.10	<0.10	<0.10	
µg/L	2.5	0.10	<0.10	<0.10	<0.10	
µg/L	4	0.10	<0.10	<0.10	<0.10	
µg/L	2.5	0.10	<0.10	<0.10	<0.10	
µg/L	0.5	0.30	<0.30	<0.30	<0.30	
µg/L		0.30	<0.30	<0.30	<0.30	
µg/L		0.20	<0.20	<0.20	<0.20	
µg/L		0.20	<0.20	<0.20	<0.20	
Unit	Acceptabl	e Limits				
% Recovery	50-1	40	100	87	101	
% Recovery	50-1	40	76	84	72	
	Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	SAMP           DATE S           Unit         G / S           µg/L         50           µg/L         20           µg/L         20           µg/L         15           µg/L         32           µg/L         60           µg/L         40           µg/L         2.5           µg/L         2.5           µg/L         0.5           µg/L         0.5      µg/L         0.5	μg/L         50         0.20           μg/L         20         0.10           μg/L         15         0.10           μg/L         8         0.10           μg/L         32         0.20           μg/L         32         0.20           μg/L         60         0.10           μg/L         4         0.10           μg/L         70         0.10           μg/L         2.5         0.10           μg/L         2.5         0.10           μg/L         0.5         0.30           μg/L         0.5         0.30           μg/L         0.25         0.10           μg/L         0.5         0.30           μg/L         0.5         0.30           μg/L         0.20         0.20           μg/L         0.20         0.20           % Recovery         50-140	SAMPLE TYPE:         Water           DATE SAMPLED:         2023-04-05           Unit         G / S         RDL         4900042           µg/L         50         0.20         0.32           µg/L         20         0.10         <0.10	SAMPLE TYPE:         Water         Water           DATE SAMPLED:         2023-04-05         2023-04-05           Unit         G/S         RDL         4900042         4900057           µg/L         50         0.20         0.32         <0.20	SAMPLE TYPE:         Water         Water         Water           DATE SAMPLED:         2023-04-05         2023-04-05         2023-04-05         2023-04-05           Unit         G/S         RDL         4900042         4900057         4900058           µg/L         50         0.20         0.32         <0.20

Volatile Organic Compounds in Water (ug/L)

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4900042-4900058 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Certified By:

Julon Mants



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Dissolved Oxygen in Water- mg/L											
DATE RECEIVED: 2023-04-05 DATE REPORTED: 2023-04-25											
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20					
	SAMPLE TYPE:			Water	Water	Water					
		DATE SAMPLED:			2023-04-05	2023-04-05					
Parameter	Unit	G / S	RDL	4900042	4900057	4900058					
Dissolved Oxygen	mg/L		0.05	9.13	4.60	7.16					
		DATE	SAMPLED: RDL	2023-04-05 4900042	2023-04-05 4900057	2023-04-05 4900058					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Dissolved Oxygen was measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

					PWQO Para	meters		
DATE RECEIVED: 2023-04-05								DATE REPORTED: 2023-04-25
	S	AMPLE DES		MW106	MW4-23		MW111-20	
			PLE TYPE:	Water	Water		Water	
			SAMPLED:	2023-04-05	2023-04-05		2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	RDL	4900058	
рН	pH Units	6.5-8.5	NA	7.70	7.74	NA	7.79	
Alkalinity (as CaCO3)	mg/L		5	635	551	5	63	
Ammonia as N	mg/L		0.02	<0.02	<0.02	0.02	4.14	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	<0.00002	<0.00002	0.000002	0.166	
Total Phosphorus	mg/L	*	0.02	0.47	1.26	0.02	1.34	
Turbidity	NTU		0.5	1140	1140	0.5	50.0	
Cyanide, WAD	mg/L	0.005	0.002	<0.002	<0.002	0.002	<0.002	
Sulphide	mg/L		0.01	<0.01	<0.01	0.01	<0.01	
Phenols	mg/L	0.001	0.002	0.017	0.013	0.001	0.002	
Aluminum-dissolved	mg/L	*	0.004	< 0.004	< 0.004	0.004	<0.004	
Total Antimony	mg/L	0.020	0.002	<0.002	<0.002	0.001	0.001	
Total Arsenic	mg/L	0.1	0.006	0.009	0.010	0.003	0.004	
Total Beryllium	mg/L	*	0.002	<0.002	<0.002	0.001	<0.001	
Total Boron	mg/L	0.2	0.020	0.133	1.17	0.010	6.52	
Total Cadmium	mg/L	0.0002	0.0002	<0.0002	<0.0002	0.0001	<0.0001	
Total Chromium	mg/L		0.006	0.030	0.026	0.003	0.003	
Total Cobalt	mg/L	0.0009	0.0010	0.0077	0.0126	0.0005	0.0009	
Total Copper	mg/L	0.005	0.002	0.028	0.015	0.001	0.004	
Total Iron	mg/L	0.3	0.020	20.2	23.3	0.010	2.83	
Total Lead	mg/L	*	0.002	0.014	0.012	0.001	0.003	
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001	<0.0001	0.0001	<0.0001	
Total Molybdenum	mg/L	0.040	0.004	< 0.004	0.007	0.002	0.030	
Total Nickel	mg/L	0.025	0.006	0.026	0.034	0.003	0.005	
Total Selenium	mg/L	0.1	0.004	<0.004	< 0.004	0.002	0.007	
Total Silver	mg/L	0.0001	0.0002	<0.0002	<0.0002	0.0001	<0.0001	
Total Thallium	mg/L	0.0003	0.0006	<0.0006	<0.0006	0.0003	<0.0003	
Total Tungsten	mg/L	0.030	0.020	<0.020	<0.020	0.010	<0.010	
Total Uranium	mg/L	0.005	0.004	0.027	0.015	0.002	<0.002	
Total Vanadium	mg/L	0.006	0.004	0.035	0.036	0.002	0.003	
Total Zinc	mg/L	0.030	0.040	0.059	0.078	0.020	0.028	

Certified By:

Iris Verastegui



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

					i woo i uiu	motoro		
DATE RECEIVED: 2023-04-05								DATE REPORTED: 2023-04-25
		SAMPLE DES	CRIPTION:	MW106	MW4-23		MW111-20	
	SAMPLE TYPE:		Water	Water	Water W			
		DATE SAMPLED:		2023-04-05	2023-04-05		2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	RDL	4900058	
Total Zirconium	mg/L	0.004	0.008	<0.008	0.010	0.004	<0.004	
Lab Filtration Aluminum Dissolved				2023/04/11	2023/04/11		2023/04/11	
Lab Filtration mercury				2023/04/11	2023/04/11		2023/04/11	

**PWQO** Parameters

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4900042-4900057 Dilution required, RDL has been increased accordingly.

Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as calculated.

4900058 Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as calculated.

Analysis performed at AGAT Toronto (unless marked by *)

Iris Verastegui



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

					Residual C	hlorine	
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20	
		SAM	PLE TYPE:	Water	Water	Water	
		DATES	SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Total Residual Chlorine	mg/L		0.01	0.27	0.11	0.17	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Due to the instability of chlorine in aqueous solutions, the results reported may be biased low and should be reviewed with discretion.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:



## **Exceedance Summary**

AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4900042	MW106	ON PWQO	PWQO Parameters	Phenols	mg/L	0.001	0.017
4900042	MW106	ON PWQO	PWQO Parameters	Total Cobalt	mg/L	0.0009	0.0077
4900042	MW106	ON PWQO	PWQO Parameters	Total Copper	mg/L	0.005	0.028
4900042	MW106	ON PWQO	PWQO Parameters	Total Iron	mg/L	0.3	20.2
4900042	MW106	ON PWQO	PWQO Parameters	Total Nickel	mg/L	0.025	0.026
4900042	MW106	ON PWQO	PWQO Parameters	Total Uranium	mg/L	0.005	0.027
4900042	MW106	ON PWQO	PWQO Parameters	Total Vanadium	mg/L	0.006	0.035
4900042	MW106	ON PWQO	PWQO Parameters	Total Zinc	mg/L	0.030	0.059
4900057	MW4-23	ON PWQO	PWQO Parameters	Phenols	mg/L	0.001	0.013
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Boron	mg/L	0.2	1.17
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Cobalt	mg/L	0.0009	0.0126
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Copper	mg/L	0.005	0.015
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Iron	mg/L	0.3	23.3
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Nickel	mg/L	0.025	0.034
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Uranium	mg/L	0.005	0.015
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Vanadium	mg/L	0.006	0.036
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Zinc	mg/L	0.030	0.078
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Zirconium	mg/L	0.004	0.010
4900058	MW111-20	ON PWQO	PWQO Parameters	Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.166
4900058	MW111-20	ON PWQO	PWQO Parameters	Phenols	mg/L	0.001	0.002
4900058	MW111-20	ON PWQO	PWQO Parameters	Total Boron	mg/L	0.2	6.52
4900058	MW111-20	ON PWQO	PWQO Parameters	Total Iron	mg/L	0.3	2.83



4900042 4900042

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

# **Quality Assurance**

#### CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Microbiology Analysis

L						5,		,								
	RPT Date: Apr 25, 2023			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
	PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable nits
			ld	-				Value	Lower	Upper		Lower	Upper		Lower	Upper

NA

E. Coli (MI-Agar) Escherichia coli

0

0

Comments: NA - % RPD Not Applicable.





AGAT QUALITY ASSURANCE REPORT (V1)

Page 24 of 43



## **Quality Assurance**

#### CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

e SAMPLED BY:LB

		Irac	ce Or	gani	cs Ar	nalys	IS							
RPT Date: Apr 25, 2023		[	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	( SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery		eptable nits	Recovery		ptable nits
						Value	Lower	Upper		Lower	Upper		Lower	Upper
Oil and Grease (Total) in water														
Total Oil and Grease in water	4883505	< 0.5	< 0.5	NA	< 0.5	99%	70%	130%	97%	70%	130%	94%	70%	130%
OC Pesticides + PCBs (Water)														
Gamma-Hexachlorocyclohexane	4903389	< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	103%	50%	140%	97%	50%	140%
Heptachlor	4903389	< 0.01	< 0.01	NA	< 0.01	112%	50%	140%	109%	50%	140%	107%	50%	140%
Aldrin	4903389	< 0.01	< 0.01	NA	< 0.01	101%	50%	140%	105%	50%	140%	103%	50%	140%
Heptachlor Epoxide	4903389	< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	116%	50%	140%	101%	50%	140%
Endosulfan I	4903389	< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	97%	50%	140%	89%	50%	140%
Endosulfan II	4903389	< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	109%	50%	140%	113%	50%	140%
alpha - chlordane	4903389	< 0.1	< 0.1	NA	< 0.1	102%	50%	140%	105%	50%	140%	102%	50%	140%
gamma-Chlordane	4903389	< 0.2	< 0.2	NA	< 0.2	105%	50%	140%	103%	50%	140%	108%	50%	140%
op'-DDE	4903389	< 0.01	< 0.01	NA	< 0.01	114%	50%	140%	114%	50%	140%	108%	50%	140%
pp'-DDE	4903389	< 0.01	< 0.01	NA	< 0.01	100%	50%	140%	105%	50%	140%	102%	50%	140%
op'-DDD	4903389	< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	106%	50%	140%	111%	50%	140%
pp'-DDD	4903389	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	93%	50%	140%	100%	50%	140%
op'-DDT	4903389	< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	105%	50%	140%	109%	50%	140%
pp'-DDT	4903389	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	110%	50%	140%	104%	50%	140%
Dieldrin	4903389	< 0.02	< 0.02	NA	< 0.02	100%	50%	140%	103%	50%	140%	109%	50%	140%
Endrin	4903389	< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	104%	50%	140%	112%	50%	140%
Methoxychlor	4903389	< 0.04	< 0.04	NA	< 0.04	113%	50%	140%	103%	50%	140%	106%	50%	140%
Hexachlorobenzene	4903389	< 0.01	< 0.01	NA	< 0.01	109%	50%	140%	97%	50%	140%	108%	50%	140%
Hexachlorobutadiene	4903389	< 0.01	< 0.01	NA	< 0.01	107%	50%	140%	86%	50%	140%	83%	50%	140%
Hexachloroethane	4903389	< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	99%	50%	140%	98%	50%	140%
Aroclor 1242	4903389	< 0.1	< 0.1	NA	< 0.1	102%	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	4903389	< 0.1	< 0.1	NA	< 0.1	103%	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	4903389	< 0.1	< 0.1	NA	< 0.1	98%	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	4903389	< 0.1	< 0.1	NA	< 0.1	106%	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	4903389	< 0.1	< 0.1	NA	< 0.1	102%	60%	140%	107%	60%	140%	108%	60%	140%
Volatile Organic Compounds in	Water (ug/L)													
Dichlorodifluoromethane	4900057 4900057	< 0.40	< 0.40	NA	< 0.40	114%	50%	140%	100%	50%	140%	71%	50%	140%
Chloromethane	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	117%	50%	140%	89%	50%	140%
Vinyl Chloride	4900057 4900057	< 0.17	< 0.17	NA	< 0.17	100%	50%	140%	119%	50%	140%	105%	50%	140%
Bromomethane	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	111%	50%	140%	83%	50%	140%
Chloroethane	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	112%	50%	140%	96%	50%	140%
Trichlorofluoromethane	4900057 4900057	< 0.40	< 0.40	NA	< 0.40	92%	50%	140%	88%	50%	140%	99%	50%	140%
Acetone	4900057 4900057	< 1.0	< 1.0	NA	< 1.0	98%		140%	89%		140%	90%	50%	140%
1,1-Dichloroethylene	4900057 4900057	< 0.2	< 0.2	NA	< 0.2	94%		140%	90%		130%	88%	50%	
Methylene Chloride	4900057 4900057	< 0.30	< 0.30	NA	< 0.30	88%		140%	100%		130%	109%	50%	140%
trans- 1,2-dichloroethylene	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	101%		140%	89%		130%	82%		140%

### AGAT QUALITY ASSURANCE REPORT (V1)

Page 25 of 43



## **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

### AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor SAMPLED BY:LB

## Trace Organics Analysis (Continued)

PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	ptable nits	Recovery	Lin	ptable nits	Recovery	Lir	eptabl nits
								Lower	Upper		Lower	Upper		Lower	Upp
Methyl tert-butyl ether	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	92%	50%	140%	81%	60%	130%	90%	50%	140
1,1-Dichloroethane	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	91%	50%	140%	93%	60%	130%	105%	50%	140
Methyl Ethyl Ketone	4900057	4900057	< 1.0	< 1.0	NA	< 1.0	89%	50%	140%	113%	50%	140%	93%	50%	140
cis- 1,2-Dichloroethylene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	77%	60%	130%	109%	50%	14(
Chloroform	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	86%	60%	130%	114%	50%	14(
,2-Dichloroethane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	118%	50%	140%	99%	60%	130%	116%	50%	14(
,1,1-Trichloroethane	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	111%	50%	140%	92%	60%	130%	96%	50%	14
Carbon Tetrachloride	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	82%	60%	130%	108%	50%	14
Benzene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	97%	60%	130%	92%	50%	14(
1,2-Dichloropropane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	108%	60%	130%	111%	50%	140
Frichloroethylene	4900057	4900057	1.24	1.43	14.2%	< 0.20	90%	50%	140%	77%	60%	130%	114%	50%	14(
Bromodichloromethane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	96%	60%	130%	117%	50%	14
cis-1,3-Dichloropropene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	103%	60%	130%	84%	50%	14
Methyl Isobutyl Ketone	4900057	4900057	< 1.0	< 1.0	NA	< 1.0	104%	50%	140%	109%	50%	140%	100%	50%	14
rans-1,3-Dichloropropene	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	93%	50%	140%	80%	60%	130%	78%	50%	14
,1,2-Trichloroethane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	106%	60%	130%	116%	50%	14
oluene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	90%	60%	130%	111%	50%	14
-Hexanone	4900057	4900057	< 1.0	< 1.0	NA	< 1.0	100%	50%	140%	78%	50%	140%	95%	50%	14
Dibromochloromethane	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	82%	60%	130%	85%	50%	14
thylene Dibromide	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	118%	50%	140%	95%	60%	130%	98%	50%	14
etrachloroethylene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	101%	60%	130%	90%	50%	14
,1,1,2-Tetrachloroethane	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	79%	60%	130%	92%	50%	14
Chlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	86%	60%	130%	110%	50%	14
Ethylbenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	79%	60%	130%	109%	50%	14
n & p-Xylene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	87%	60%	130%	117%	50%	14
Bromoform	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	78%	50%	140%	78%	60%	130%	79%	50%	14
Styrene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	81%	60%	130%	84%	50%	14
,1,2,2-Tetrachloroethane	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	110%	60%	130%	104%	50%	14
o-Xylene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	90%	60%	130%	117%	50%	14
,3-Dichlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	113%	50%	140%	80%	60%	130%	100%	50%	14
,4-Dichlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	79%	60%	130%	93%	50%	14
,2-Dichlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	106%	50%	140%	76%	60%	130%	90%	50%	14
,2,4-Trichlorobenzene	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	91%	50%	140%	99%	60%	130%	97%	50%	14
-Hexane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	115%	60%	130%	120%	50%	14
Diquat/Paraquat															
Diquat			< 5	< 5	NA	< 5	101%	50%	140%	86%	50%	140%	86%	50%	14
Paraquat			< 1	< 1	NA	< 1	109%		140%	92%		140%	93%	50%	
Carbamate Pesticides (Water)															
Aldicarb			< 2.0	< 2.0	NA	< 2.0	103%	50%	140%	90%	50%	140%	101%	50%	14



## **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor SAMPLED BY:LB

## Trace Organics Analysis (Continued)

RPT Date: Apr 25, 2023			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Acce Lir	eptab nits
	Daton	ld	5 dp // 1	5 ap2			Value	Lower	Upper		Lower	Upper		Lower	Upp
Bendiocarb			< 2	< 2	NA	< 2	85%	50%	140%	94%	50%	140%	95%	50%	140
Carbofuran			< 5	< 5	NA	< 5	85%	50%	140%	94%	50%	140%	95%	50%	14
Carbaryl			< 5	< 5	NA	< 5	75%	50%	140%	111%	50%	140%	110%	50%	14
Diuron			< 10	< 10	NA	< 10	94%	50%	140%	101%	50%	140%	101%	50%	14
riallate			< 1	< 1	NA	< 1	99%	50%	140%	82%	50%	140%	90%	50%	14
emephos			< 10	< 10	NA	< 10	102%	60%	130%	103%	60%	130%	104%	60%	13
riazine Pesticides [water]															
rifluralin	4900042		<0.2	<0.2	NA	< 1.0	89%	50%	140%	111%	50%	140%	113%	50%	14
Simazine	4900042		<0.5	<0.5	NA	< 1.0	85%	50%	140%	92%	50%	140%	79%	50%	14
Atrazine	4900042		<0.5	<0.5	NA	< 0.5	84%	50%	140%	92%	50%	140%	112%	50%	14
Metribuzin	4900042		<0.25	<0.25	NA	< 0.25	79%	50%	140%	111%	50%	140%	104%	50%	14
Prometryne	4900042		<0.25	<0.25	NA	< 0.25	82%	50%	140%	83%	50%	140%	110%	50%	14
Metolachlor	4900042		<0.11	<0.11	NA	< 0.11	105%	50%	140%	91%	50%	140%	112%	50%	14
Alachlor	4900042		<0.5	<0.5	NA	< 0.5	79%	50%	140%	80%	50%	140%	88%	50%	14
Cyanazine	4900042		<0.5	<0.5	NA	< 1.0	85%	50%	140%	81%	50%	140%	73%	50%	14
ase Neutrals and Acids [water]															
laphthalene	4867188		< 0.30	< 0.30	NA	< 0.30	92%	50%	140%	96%	50%	140%	87%	50%	14
cenaphthylene	4867188		< 0.31	< 0.31	NA	< 0.31	91%	50%	140%	105%	50%	140%	82%	50%	14
cenaphthene	4867188		< 0.30	< 0.30	NA	< 0.30	87%	50%	140%	93%	50%	140%	82%	50%	14
luorene	4867188		< 0.31	< 0.31	NA	< 0.31	69%	50%	140%	87%	50%	140%	89%	50%	14
Phenanthrene	4867188		< 0.32	< 0.32	NA	< 0.32	78%	50%	140%	103%	50%	140%	92%	50%	14
Anthracene	4867188		< 0.30	< 0.30	NA	< 0.30	93%	50%	140%	94%	50%	140%	91%	50%	14
luoranthene	4867188		< 0.27	< 0.27	NA	< 0.27	107%	50%	140%	103%	50%	140%	101%	50%	14
Pyrene	4867188		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	72%	50%	140%	78%	50%	14
Benzo(a)anthracene	4867188		< 0.20	< 0.20	NA	< 0.20	65%	50%	140%	75%	50%	140%	76%	50%	14
Chrysene	4867188		< 0.27	< 0.27	NA	< 0.27	94%	50%	140%	88%	50%	140%	76%	50%	14
Benzo(b)fluoranthene	4867188		< 0.20	< 0.20	NA	< 0.20	75%	50%	140%	89%	50%	140%	97%	50%	14
Benzo(k)fluoranthene	4867188		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	81%	50%	140%	74%	50%	14
Benzo(a)pyrene	4867188		< 0.01	< 0.01	NA	< 0.01	75%	50%	140%	79%	50%	140%	65%	50%	14
ndeno(1,2,3-cd)pyrene	4867188		< 0.20	< 0.20	NA	< 0.20	111%	50%	140%	92%	50%	140%	98%	50%	14
Dibenzo(a,h)anthracene	4867188		< 0.20	< 0.20	NA	< 0.20	104%	50%	140%	84%	50%	140%	90%	50%	14
3enzo(g,h,i)perylene	4867188		< 0.20	< 0.20	NA	< 0.20	87%		140%	97%		140%	101%	50%	14
Phenol	4867188		< 1.0	< 1.0	NA	< 1.0	71%		140%	64%	50%	140%	67%	50%	14
Bis(2-chloroethyl)ether	4867188		< 0.5	< 0.5	NA	< 0.5	68%	50%	140%	80%	50%	140%	89%	50%	14
2-Chlorophenol	4867188		< 0.5	< 0.5	NA	< 0.5	65%	50%	140%	73%	50%	140%	78%	50%	14
o-Cresol	4867188		< 0.5	< 0.5	NA	< 0.5	72%	50%	140%	66%	50%	140%	77%	50%	14
Bis(2-chloroisopropyl)ether	4867188		< 0.5	< 0.5	NA	< 0.5	87%		140%	80%	50%	140%	102%	50%	14
m&p-Cresol	4867188		< 0.5	< 0.5	NA	< 0.5	95%		140%	79%	50%	140%	68%	50%	14
lexachloroethane	4867188		< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	116%	50%	140%	107%	50%	14

AGAT QUALITY ASSURANCE REPORT (V1)

Page 27 of 43



## **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

### AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor SAMPLED BY:LB

## Trace Organics Analysis (Continued)

RPT Date: Apr 25, 2023				DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery		eptable nits
							value	Lower	Upper		Lower	Upper		Lower	Uppe
2,4-Dimethylphenol	4867188		< 0.5	< 0.5	NA	< 0.5	66%	30%	130%	88%	30%	130%	81%	30%	130%
2,4-Dichlorophenol	4867188		< 0.3	< 0.3	NA	< 0.3	82%	50%	140%	73%	50%	140%	98%	50%	140%
1,2,4-Trichlorobenzene	4867188		< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	70%	50%	140%	65%	50%	140%
p-Chloroaniline	4867188		< 1.0	< 1.0	NA	< 1.0	66%	50%	140%	89%	50%	140%	74%	50%	140%
2,4,6-Trichlorophenol	4867188		< 0.2	< 0.2	NA	< 0.2	76%	50%	140%	80%	50%	140%	97%	50%	140%
2,4,5-Trichlorophenol	4867188		< 0.2	< 0.2	NA	< 0.2	80%	50%	140%	73%	50%	140%	67%	50%	140%
1,1-Biphenyl	4867188		< 0.5	< 0.5	NA	< 0.5	73%	50%	140%	65%	50%	140%	89%	50%	140%
Dimethyl phthalate	4867188		< 0.5	< 0.5	NA	< 0.5	68%	50%	140%	86%	50%	140%	105%	50%	140%
2,6-Dinitrotoluene	4867188		< 0.5	< 0.5	NA	< 0.5	75%	50%	140%	98%	50%	140%	70%	50%	140%
2,4-Dinitrotoluene	4867188		< 0.5	< 0.5	NA	< 0.5	74%	50%	140%	76%	50%	140%	65%	50%	140%
2,3,4,6-Tetrachlorophenol	4867188		< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	96%	50%	140%	88%	50%	140%
Diethyl phthalate	4867188		< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	65%	50%	140%	77%	50%	140%
Hexachlorobenzene	4867188		< 0.5	< 0.5	NA	< 0.5	98%	50%	140%	87%	50%	140%	81%	50%	140%
Pentachlorophenol	4867188		< 0.5	< 0.5	NA	< 0.5	65%	50%	140%	98%	50%	140%	73%	50%	140%
3,3'-dichlorobenzidine	4867188		< 0.5	< 0.5	NA	< 0.5	72%	30%	130%	73%	30%	130%	108%	30%	130%
Bis(2-Ethylhexyl)phthalate	4867188		< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	105%	50%	140%	67%	50%	140%
2,4-Dinitrophenol	4867188		< 10	< 10	NA	< 10	75%	30%	130%	116%	30%	130%	89%	30%	130%
Phenoxy Acid Herbicides (Wate	r)														
2,4-D		TW	< 0.5	< 0.5	NA	< 0.5	98%	50%	140%	92%	50%	140%	82%	50%	140%
2,4,5-T		TW	< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	85%	50%	140%	82%	50%	140%
2,4,5-TP		TW	< 0.5	< 0.5	NA	< 0.5	92%	50%	140%	84%	50%	140%	80%	50%	140%
Dicamba		TW	< 0.5	< 0.5	NA	< 0.5	96%	50%	140%	72%	50%	140%	75%	50%	140%
Dichlorprop		TW	< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	78%	50%	140%	70%	50%	140%
Dinoseb		τw	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	82%	50%	140%	70%	50%	140%
Picloram		TW	< 0.5	< 0.5	NA	< 0.5	92%	50%	140%	80%	50%	140%	71%	50%	140%
Diclofop-methyl		TW	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	76%	50%	140%	75%	50%	140%
2,3,4,6-Tetrachlorophenol		TW	< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	70%	50%	140%	NA	50%	140%
2,4-Dichlorophenol		TW	< 0.2	< 0.2	NA	< 0.2	90%	50%	140%	81%	50%	140%	NA	50%	140%
2,4,5-Trichlorophenol		TW	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	84%	50%	140%	NA	50%	140%
2,4,6-Trichlorophenol		TW	< 0.5	< 0.5	NA	< 0.5	92%	50%	140%	76%	50%	140%	NA	50%	140%
Bromoxynil		TW	< 0.3	< 0.3	NA	< 0.3	99%	50%	140%	91%	50%	140%	NA	50%	140%
MCPA		TW	< 5.0	< 5.0	NA	< 5.0	86%	50%	140%	82%	50%	140%	72%	50%	140%
MCPP		TW	< 5.0	< 5.0	NA	< 5.0	98%	50%	140%	75%	50%	140%	78%	50%	140%
Pentachlorophenol		TW	< 0.1	< 0.1	NA	< 0.1	100%	50%	140%	95%	50%	140%	NA	50%	140%
Polycyclic Aromatic Hydrocarbo	ons in Wate	r - Ultra-Lo	ow Level												
1-Methylnaphthalene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	92%	50%	140%	107%	50%	140%	122%	50%	140%
2-Methylnaphthalene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	84%	50%	140%	95%	50%	140%	109%	50%	140%
Acenaphthene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	84%	50%	140%	109%	50%	140%	122%	50%	140%
Acenaphthylene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	79%	50%	140%	102%	50%	140%	112%	50%	140%



Page 29 of 43

# **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

#### AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

### SAMPLED BY:LB

## Trace Organics Analysis (Continued)

			- 3		_	· )	<b>\</b>	-		/					
RPT Date: Apr 25, 2023			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.10	ptable nits	Recovery	1.10	ptable nits
		iu					value	Lower	Upper		Lower	Upper		Lower	Upper
Acridine, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	80%	50%	140%	124%	50%	140%	123%	50%	140%
Anthracene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	81%	50%	140%	113%	50%	140%	122%	50%	140%
Benzo(a)anthracene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	80%	50%	140%	115%	50%	140%	120%	50%	140%
Benzo(a)pyrene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	74%	50%	140%	109%	50%	140%	112%	50%	140%
Benzo(b)fluoranthene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	88%	50%	140%	92%	50%	140%	114%	50%	140%
Benzo(j+k)fluoranthene	1	4906036	< 0.001	< 0.001	NA	< 0.001	89%	50%	140%	117%	50%	140%	120%	50%	140%
Benzo(e)pyrene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	81%	50%	140%	125%	50%	140%	125%	50%	140%
Benzo(ghi)perylene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	80%	50%	140%	120%	50%	140%	115%	50%	140%
Chrysene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	86%	50%	140%	129%	50%	140%	137%	50%	140%
Dibenzo(a,h)anthracene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	74%	50%	140%	109%	50%	140%	106%	50%	140%
Fluoranthene, Ultra-low	1	4906036	0.174	< 0.001	NA	< 0.001	86%	50%	140%	128%	50%	140%	137%	50%	140%
Fluorene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	82%	50%	140%	113%	50%	140%	127%	50%	140%
Indeno(1,2,3-cd)pyrene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	71%	50%	140%	98%	50%	140%	103%	50%	140%
Naphthalene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	86%	50%	140%	103%	50%	140%	114%	50%	140%
Perylene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	81%	50%	140%	121%	50%	140%	116%	50%	140%
Phenanthrene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	86%	50%	140%	126%	50%	140%	137%	50%	140%
Pyrene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	90%	50%	140%	136%	50%	140%	139%	50%	140%
Quinoline, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	85%	50%	140%	125%	50%	140%	130%	50%	140%
Sediment	1	4906036	<	<	NA	<									

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Duplicate: More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits.

#### Resin and Fatty acid (water)

Fatty acid total	4900042	NA	NA	NA	0.0%	< 10	NA	70%	130%	71%	70%	130%	NA	70%	130%
Resin acid total	4900042	NA	NA	NA	0.0%	< 10	NA	70%	130%	86%	70%	130%	NA	70%	130%
Resin and Fatty acid total	4900042	NA	NA	NA	0.0%	< 10	NA	70%	130%	79%	70%	130%	NA	70%	130%
O-methylpodocarpic	4900042	NA	NA	NA	0.0%	57	NA	40%	140%	70%	40%	140%	NA	40%	140%

Comments: The QC criteria are only applicable to the total resins and total fatty acids.

#### NA : Non applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

NA in the spike blank or CRM indicates that it is not required by the procedure.

Glycols Analysis in Water															
Propylene Glycol	671	4900042	<10	<10	NA	< 10	106%	50%	140%	87%	50%	140%	104%	50%	140%
Monoethylene Glycol	671	4900042	<8	<8	NA	< 8	107%	50%	140%	87%	50%	140%	106%	50%	140%
Diethylene Glycol	671	4900042	<5	<5	NA	< 5	103%	50%	140%	92%	50%	140%	105%	50%	140%
Triethylene Glycol	671	4900042	<8	<8	NA	< 8	99%	50%	140%	96%	50%	140%	106%	50%	140%

### AGAT QUALITY ASSURANCE REPORT (V1)



## **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

## Trace Organics Analysis (Continued)

				-												
RPT Date: A	pr 25, 2023			C	UPLICAT	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
Р	ARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recoverv		ptable nits	Recoverv	Lin	ptable nits
			ld	-				Value	Lower	Upper	,	Lower	Upper		Lower	Upper
Tetraethylen	e Glycol	671	4900042	<10	<10	NA	< 10	90%	50%	140%	88%	50%	140%	89%	50%	140%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated. The sample spikes and dups are not from the same sample ID.

Ethanolamines in Water by HPLC - Low Level

Diethanolamine (DEA)	1137	4896467	<0.04	<0.04	NA	< 0.04	98%	80%	120%	100%	70%	130%	104%	60%	140%
Ethanolamine (MEA)	1137	4896467	<0.05	<0.05	NA	< 0.05	103%	80%	120%	104%	70%	130%	103%	60%	140%
Diisopropanolamine (DIPA)	1137	4896467	<0.1	<0.1	NA	< 0.1	107%	80%	120%	110%	70%	130%	100%	60%	140%
Monoisopropanolamine (MIPA)	1137	4896467	<0.1	<0.1	NA	< 0.1	95%	80%	120%	97%	70%	130%	94%	60%	140%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

The sample spikes and dups are not from the same sample ID.

Certified By:

Julon Mant

**AGAT** QUALITY ASSURANCE REPORT (V1)

Page 30 of 43



# **Quality Assurance**

#### CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

# SAMPLED BY:LB

BPT Date: Apr 25, 2023         DUPLICATE         Method         REFERENCE MATERUL         METROD BLANK SPIKE         MATRIX SPIKE         Acceptable Acceptable Limits         MATRIX SPIKE           PARAMETER         Batch         Sample ull         Dup #1         Dup #2         RPD         Binon         Acceptable Limits         Recovery         Acceptable Limits         Recovery         Acceptable Limits           Residual Chlorine         4900964         7.96         8.06         1.2%         NA         100%         90%         110%         80%         120%           PWQO Parameters         PH         4900964         7.96         8.06         1.2%         NA         100%         90%         10%         80%         120%         97%         70%         130%           PH         4900964         7.96         8.06         1.2%         NA         0.02         100%         70%         10%         80%         120%         97%         70%         130%           PH         4900964         0.02         0.47         0.47         0.02         100%         70%         130%         100%         80%         120%         97%         70%         130%           Total Prosphorus         4900960         -0.002				vvate	er Ar	larys	S									
PARAMETER         Batch         Sample Id         Dup #1         Dup #2         RPD         Plank         Measured Value         Limits Value         Recovery Limits         Limits Recovery         Recovery Limits         Limits Limits         Recovery         Limits         Recovery         Recovery         Limits         Recovery         Recovery         Limits         Recovery         Limits         Recovery </th <th>RPT Date: Apr 25, 2023</th> <th></th> <th>[</th> <th>DUPLICATE</th> <th>Ξ</th> <th></th> <th>REFEREN</th> <th>NCE MA</th> <th>TERIAL</th> <th>METHOD</th> <th>BLANK</th> <th>SPIKE</th> <th>MAT</th> <th>RIX SPI</th> <th colspan="2">SPIKE</th>	RPT Date: Apr 25, 2023		[	DUPLICATE	Ξ		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	SPIKE	
Normality         Na         Na         Value         Lower         Upper         Lower         Upper         Lower         Upper           Residual Chlorine         4900996         0.03         0.04         NA         < 0.01         92%         80%         120%         95%         90%         110%         96%         80%         120%           PWQO Parameters         PH         4900964         7.96         8.06         1.2%         NA         100%         90%         10%         80%         120%         95%         97%         10%         80%         120%         95%         97%         10%         80%         120%         95%         97%         10%         80%         120%         97%         70%         130%           Turbidity         490042         490044         1.2         1.8         NA         < 0.02         101%         80%         120%         97%         70%         130%           Cyanade, WAD         4900360         < 0.002         0.001         NA         < 0.001         102%         99%         10%         10%         99%         10%         10%         99%         10%         10%         99%         10%         10%         10%	PARAMETER		e Dup #1	Dup #2	RPD					Recovery			Recovery			
Total Residual Chlorine         900996         0.03         0.04         NA         < 0.01		Id	Dup "1	Dup "2			Value	Lower	Upper		Lower	Upper	recovery	Lower	Upper	
PWQO Parameters         pH         4900964         7.96         8.06         1.2%         NA         100%         90%         110%           Alkalinity (as CaCO3)         4900964         68         70         2.9%         < 5         55%         60%         120%           Armonia as N         4806044         <0.02         0.04         <0.02         100%         70%         130%         101%         80%         120%         95%         70%         130%           Chall Phosphorus         4900964         1.2         1.8         NA         <0.5         101%         80%         120%         95%         70%         130%           Cyanide, WAD         4900851         <0.002         0.002         0.002         90%         10%         99%         90%         110%         99%         90%         110%         80%         120%         70%         130%           Cyanide         4904851         <0.004         NA         <0.001         102%         90%         100%         80%         120%         90%         10%         80%         120%         70%         130%           Calal Arsinic         490087         <0.003         <0.003         NA         <0.001 <t< td=""><td>Residual Chlorine</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Residual Chlorine															
pH       4900964       7.96       8.06       1.2%       NA       100%       90%       110%       NA       100%       90%       10%         Alkalinity (as CaCO3)       4900964       68       70       2.9%       <5	Total Residual Chlorine	4900996	0.03	0.04	NA	< 0.01	92%	80%	120%	95%	90%	110%	96%	80%	120%	
Akalinity (as CaCO3)         4900964         68         70         2.9%         < 5         95%         80%         120%         Na         130%           Ammonia as N         4980634         -0.02         0.02         NA         < 0.02	PWQO Parameters															
Ammonia as N         4898634         <0.02         <0.02         NA         <0.02         100%         70%         130%         101%         80%         120%         97%         70%         130%           Total Phosphorus         4900042 4900042         0.47         0.47         NA         <0.02	рН	4900964	7.96	8.06	1.2%	NA	100%	90%	110%							
Total Phosphorus         4900042 4900042         0.47         0.47         0.80         <0.02         102%         70%         130%         120%         70%         120%         70%         130%           Cyanide, WAD         4900360         <0.002	Alkalinity (as CaCO3)	4900964	68	70	2.9%	< 5	95%	80%	120%							
Turbidity         4900964         1.2         1.8         NA         < 0.5         101%         80%         120%           Cyanide, WAD         4900360         <0.002	Ammonia as N	4898634	<0.02	<0.02	NA	< 0.02	100%	70%	130%	101%	80%	120%	95%	70%	130%	
Cyanide, WAD         4900360         <0.002         <0.002         NA         <0.002         91%         70%         130%         95%         80%         120%         93%         70%         130%           Sulphide         4904651         <0.01	Total Phosphorus	4900042 4900042	0.47	0.47	0.0%	< 0.02	102%	70%	130%	100%	80%	120%	97%	70%	130%	
Sulphide         4904651         <0.01         <0.01         NA         < 0.01         102%         90%         110%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         10%         90%         10%         10%         10%         90%         10%         10%         10%         90%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%         10%	Turbidity	4900964	1.2	1.8	NA	< 0.5	101%	80%	120%							
Phenols48986430.0020.001NA< 0.00199%90%110%99%90%100%101%80%120%Aluminum-dissolved4900987<0.001	Cyanide, WAD	4900360	<0.002	<0.002	NA	< 0.002	91%	70%	130%	95%	80%	120%	93%	70%	130%	
Aluminum-dissolved       4906489       <0.004       <0.004       NA       <0.001       NA       <0.001       103%       70%       130%       102%       80%       120%       97%       70%       130%         Total Antimony       4900987       <0.001	Sulphide	4904651	<0.01	<0.01	NA	< 0.01	102%	90%	110%	102%	90%	110%	99%	80%	120%	
Total Antimony       4900987       <0.001       <0.001       NA       <0.001       103%       70%       130%       110%       80%       120%       103%       70%       130%         Total Arsenic       4900987       <0.003	Phenols	4898643	0.002	0.001	NA	< 0.001	99%	90%	110%	99%	90%	110%	101%	80%	120%	
Total Arsenic         4900987         <0.003         <0.003         NA         <0.003         97%         70%         130%         102%         80%         120%         99%         70%         130%           Total Beryllium         4900987         <0.001	Aluminum-dissolved	4906489	<0.004	< 0.004	NA	< 0.004	98%	70%	130%	102%	80%	120%	97%	70%	130%	
Total Beryllium       4900987       <0.001       <0.001       NA       <0.001       98%       70%       130%       100%       80%       120%       100%       70%       130%         Total Boron       4900987       0.017       0.020       NA       <0.001	Total Antimony	4900987	<0.001	<0.001	NA	< 0.001	103%	70%	130%	110%	80%	120%	103%	70%	130%	
Total Boron       4900987       0.017       0.020       NA       < 0.010       99%       70%       130%       103%       80%       120%       99%       70%       130%         Total Cadmium       4900987       <0.0001	Total Arsenic	4900987	<0.003	<0.003	NA	< 0.003	97%	70%	130%	102%	80%	120%	99%	70%	130%	
Total Cadmium       4900987       <0.0001	Total Beryllium	4900987	<0.001	<0.001	NA	< 0.001	98%	70%	130%	100%	80%	120%	100%	70%	130%	
Total Chromium       4900987       <0.003       NA       <0.003       99%       70%       130%       103%       80%       120%       103%       70%       130%         Total Cobalt       4900987       <0.005	Total Boron	4900987	0.017	0.020	NA	< 0.010	99%	70%	130%	103%	80%	120%	99%	70%	130%	
Total Cobalt       4900987       <0.0005       <0.0005       NA       <0.0005       103%       70%       130%       104%       80%       120%       103%       70%       130%         Total Copper       4900987       0.002       0.002       NA       <0.001	Total Cadmium	4900987	<0.0001	<0.0001	NA	< 0.0001	99%	70%	130%	101%	80%	120%	100%	70%	130%	
Total Copper49009870.0020.002NA< 0.001101%70%130%96%80%120%99%70%130%Total Iron49009870.0730.0764.0%< 0.001	Total Chromium	4900987	<0.003	<0.003	NA	< 0.003	99%	70%	130%	103%	80%	120%	103%	70%	130%	
Total Iron49009870.0730.0764.0%< 0.010106%70%130%104%80%120%101%70%130%Total Lead4900987<0.001	Total Cobalt	4900987	<0.0005	<0.0005	NA	< 0.0005	103%	70%	130%	104%	80%	120%	103%	70%	130%	
Total Lead4900987<0.001<0.001NA<0.001106%70%130%102%80%120%94%70%130%Dissolved Mercury49000424900042<0.0001	Total Copper	4900987	0.002	0.002	NA	< 0.001	101%	70%	130%	96%	80%	120%	99%	70%	130%	
Dissolved Mercury       4900042 4900042       <0.0001       NA       < 0.0001       100%       70%       130%       97%       80%       120%       87%       70%       130%         Total Molybdenum       4900987       0.003       <0.002	Total Iron	4900987	0.073	0.076	4.0%	< 0.010	106%	70%	130%	104%	80%	120%	101%	70%	130%	
Total Molybdenum       4900987       0.003       <0.002       NA       < 0.002       104%       70%       130%       111%       80%       120%       102%       70%       130%         Total Nickel       4900987       <0.003	Total Lead	4900987	<0.001	<0.001	NA	< 0.001	106%	70%	130%	102%	80%	120%	94%	70%	130%	
Total Nickel       4900987       <0.003       <0.003       NA       < 0.003       100%       70%       130%       101%       80%       120%       102%       70%       130%         Total Selenium       4900987       <0.002	Dissolved Mercury	4900042 4900042	<0.0001	<0.0001	NA	< 0.0001	100%	70%	130%	97%	80%	120%	87%	70%	130%	
Total Selenium       4900987       <0.002       <0.002       NA       < 0.002       96%       70%       130%       102%       80%       120%       93%       70%       130%         Total Silver       4900987       0.0001       <0.0001	Total Molybdenum	4900987	0.003	<0.002	NA	< 0.002	104%	70%	130%	111%	80%	120%	102%	70%	130%	
Total Silver       4900987       0.0001       <0.0001       NA       < 0.0001       108%       70%       130%       101%       80%       120%       93%       70%       130%         Total Thallium       4900987       <0.0003	Total Nickel	4900987	<0.003	< 0.003	NA	< 0.003	100%	70%	130%	101%	80%	120%	102%	70%	130%	
Total Thallium       4900987       <0.0003       <0.0003       NA       < 0.0003       105%       70%       130%       105%       80%       120%       97%       70%       130%         Total Tungsten       4900987       <0.010	Total Selenium	4900987	<0.002	<0.002	NA	< 0.002	96%	70%	130%	102%	80%	120%	93%	70%	130%	
Total Tungsten       4900987       <0.010       <0.010       NA       < 0.010       99%       70%       130%       95%       80%       120%       95%       70%       130%         Total Uranium       4900987       <0.002	Total Silver	4900987	0.0001	<0.0001	NA	< 0.0001	108%	70%	130%	101%	80%	120%	93%	70%	130%	
Total Uranium         4900987         <0.002         <0.002         NA         < 0.002         107%         70%         130%         97%         80%         120%         95%         70%         130%           Total Vanadium         4900987         <0.002	Total Thallium	4900987	<0.0003	<0.0003	NA	< 0.0003	105%	70%	130%	105%	80%	120%	97%	70%	130%	
Total Vanadium         4900987         <0.002         <0.002         NA         < 0.002         97%         70%         130%         103%         80%         120%         103%         70%         130%           Total Zinc         4900987         <0.020	Total Tungsten	4900987	<0.010	<0.010	NA	< 0.010	99%	70%	130%	95%	80%	120%	95%	70%	130%	
Total Zinc         4900987         <0.020         0.030         NA         < 0.020         108%         70%         130%         117%         80%         120%         106%         70%         130%	Total Uranium	4900987	<0.002	<0.002	NA	< 0.002	107%	70%	130%	97%	80%	120%	95%	70%	130%	
	Total Vanadium	4900987	<0.002	<0.002	NA	< 0.002	97%	70%	130%	103%	80%	120%	103%	70%	130%	
Total Zirconium 4900987 <0.004 <0.004 NA < 0.004 117% 70% 130% 112% 80% 120% 106% 70% 130%	Total Zinc	4900987	<0.020	0.030	NA	< 0.020	108%	70%	130%	117%	80%	120%	106%	70%	130%	
	Total Zirconium	4900987	<0.004	<0.004	NA	< 0.004	117%	70%	130%	112%	80%	120%	106%	70%	130%	

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Inis Verastegui

Page 31 of 43

#### AGAT QUALITY ASSURANCE REPORT (V1)

AGA1	Laboratories	5	5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com
	Method S	Summary	http://www.agailabs.com
CLIENT NAME: LANDTEK LTD.		AGAT WORK ORE	DER: 23H012142
PROJECT: 21260		ATTENTION TO: H	lenry Erebor
SAMPLING SITE: 3275/3201 Trafalgar Rd,	Oakville	SAMPLED BY:LB	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis			·
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration



# Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 23H012142

SAMPLING SITE:3275/3201 Trafalg	ar Rd, Oakville	SAMPLED BY:LB					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Hexachloroethane	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				



# Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 23H012142

SAMPLING SITE: 3275/3201 Trafalg	ar Rd, Oakville	SAMPLED BY:LB							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Hexachlorobutadiene	ORG-91-5114	modified from EPA 3510C, 8270E &	GC/MS						
2-and 1-methyl Napthalene	ORG-91-5114	ON MOECC E3265 modified from EPA 3510C, 8270E &	GC/MS						
2,4,6-Trichlorophenol	ORG-91-5114	ON MOECC E3265 modified from EPA 3510C, 8270E &	GC/MS						
2,4,5-Trichlorophenol	ORG-91-5114	ON MOECC E3265 modified from EPA 3510C, 8270E &	GC/MS						
1,1-Biphenyl	ORG-91-5114	ON MOECC E3265 modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,4-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,3,4,6-Tetrachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Hexachlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Sediment			N/A						
Aldicarb	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Bendiocarb	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Carbofuran	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Carbaryl	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Diuron	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Triallate	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Temephos	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC						
Diquat	ORG-91-5102	EPA 549.1	HPLC						
Paraquat	ORG-91-5102	EPA 549.1	HPLC						
Diethanolamine (DEA)	TO-2240	"In house" developed method	HPLC/UV						
Ethanolamine (MEA)	TO-2240	"In house" developed method	HPLC/UV						
Diisopropanolamine (DIPA)	TO-2240	"In house" developed method	HPLC/UV						
Monoisopropanolamine (MIPA)	TO-2240	"In house" developed method	HPLC/UV						
Propylene Glycol	TO-1410	EPA SW-846 8015	GC/FID						
Monoethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID						



# Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 23H012142

1100201.21200		ATTENTION TO. Homy Erebor							
SAMPLING SITE: 3275/3201 Trafalga	r Rd, Oakville	SAMPLED BY:LB							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Diethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID						
Triethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID						
Tetraethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID						
Heptanol	TO-1410	EPA SW-846 8015	GC/FID						
Gamma-Hexachlorocyclohexane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Heptachlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Aldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Heptachlor Epoxide	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Endosulfan I	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Endosulfan II	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Endosulfan	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION						
alpha - chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
gamma-Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION						
op'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
pp'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION						
op'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
pp'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION						
op'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
pp'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION						
Dieldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Endrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Methoxychlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Hexachlorobenzene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Hexachlorobutadiene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Hexachloroethane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD						
Aroclor 1242	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD						



# Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 23H012142

FROJECT. 21200		ATTENTION TO. I								
SAMPLING SITE: 3275/3201 Trafalga	r Rd, Oakville	SAMPLED BY:LB								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Aroclor 1248	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD							
Aroclor 1254	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD							
Aroclor 1260	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD							
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD							
ТСМХ	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD							
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD							
Total Oil and Grease in water	VOL-91-5011	SM 5520 & EPA SW846 3510C & EPA 1664								
2,4-D	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
2,4,5-T	ORG-91-5510	EPA SW846 8151A	GC/ECD							
2,4,5-TP	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Dicamba	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Dichlorprop	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Dinoseb	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Picloram	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Diclofop-methyl	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
2,3,4,6-Tetrachlorophenol	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
2,4-Dichlorophenol	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
2,4,5-Trichlorophenol	ORG-91-5100	EPA SW-846 8151A	GC/ECD							
2,4,6-Trichlorophenol	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Bromoxynil	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
МСРА	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
MCPP	ORG-91-5110	EPA SW-846 8151A	GC/ECD							
Pentachlorophenol	ORG-91-5110	EPA SW-846 3510 & 8151	GC/ECD							
DCAA	ORG-91-5110	EPA SW-846 8151	GC/ECD							
1-Methylnaphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
2-Methylnaphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Acenaphthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Acenaphthylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Acridine, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Anthracene, Ultra-Iow	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Benzo(a)anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Benzo(a)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Benzo(b)fluoranthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Benzo(j+k)fluoranthene	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Benzo(e)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Benzo(ghi)perylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Chrysene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Dibenzo(a,h)anthracene, Ultra-low	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS							
Fluoranthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Fluorene, Ultra-low	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS GC/MS							
	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS GC/MS							
Indeno(1,2,3-cd)pyrene, Ultra-low Naphthalene, Ultra-low			GC/MS GC/MS							
•	ORG-120-5119	EPA 3510C/8270E								
Perylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							
Phenanthrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS							



# Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLING SITE: 3275/3201 Trafalgar		SAMPLED BY:LE						
PARAMETER	PARAMETER AGAT S.O.P		ANALYTICAL TECHNIQUE					
Pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Quinoline, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Sediment			GC/MS/FID					
Naphthalene-d8	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Terphenyl-d14	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Pyrene-d10	ORG-120-5119	EPA 3510C/8270E	GC/MS					
PAH - Extraction (Ultra-low)			GC/MS					
Linoleic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Linolenic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Oleic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
9,10-Dichlorostearic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Stearic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Fatty acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Pimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Sandaracopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Isopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Palustric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Levopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Dehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Abietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Neoabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
14-Chlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
12-Chlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
12,14-Dichlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Resin acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Resin and Fatty acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
O-methylpodocarpic	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS					
Trifluralin	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Simazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Atrazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Metribuzin	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Prometryne	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Metolachlor	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Alachlor	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Cyanazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Triphenyl phosphate (surr)	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS					
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Chloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					



# Method Summary

CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

1100201.21200		ATTENTION TO.								
SAMPLING SITE: 3275/3201 Trafalg	gar Rd, Oakville	SAMPLED BY:LB								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Chloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
trans- 1,2-dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
cis-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
trans-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
2-Hexanone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							



# Method Summary

CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLING SITE: 3275/3201 Trafalga	r Rd, Oakville	SAMPLED BY:LI	3
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2,4-Trichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS



# Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLED BY:LB

SAMPLING SITE: 3275/3201 Trafalgar Rd		SAMPLED BY:LB						
PARAMETER	PARAMETER AGAT S.O.P		ANALYTICAL TECHNIQUE					
Water Analysis								
Dissolved Oxygen	INOR-93-6006	Modified from SM 4500-O G	DO METER					
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE					
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PCTITRATE					
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA					
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION					
Total Phosphorus	INOR-93-6057	modified from LACHAT 10-115-01-3A						
Turbidity	INOR-93-6000	modified from SM 2130 B modified from ON MOECC E3015,SM	PC TITRATE					
Cyanide, WAD	INOR-93-6052	4500-CN- I, G-387	TECHNICON AUTO ANALYZER					
Sulphide	INOR-93-6054	modified from SM 4500 S2- D	SPECTROPHOTOMETER					
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA					
Aluminum-dissolved	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS					
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					



# Method Summary

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

## SAMPLED BY:LB

	- ,		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Lab Filtration Aluminum Dissolved	SR-78-9001		FILTRATION
Lab Filtration mercury	SR-78-9001		FILTRATION
Total Residual Chlorine	INOR-93-6060	modified from SM 4500-CL- G	SPECTROPHOTOMETER

Chain of Custody Record		1	-	877.00	Ring Water Chain of		-	ssissau 2.5100 we	ga, On Fax: 9 bearth	-	Avenue 4Z 1Y2 2.5122 bs.con	e 2 2	Worł Cool	orator Order #: er Quanti al Tempe	ty:	0	23H	LG	14-2 (00)	ters
Report Information:         Company: <u>ANDTEK LIMITED</u> Contact: <u>AENRY EREBOR</u> Address:       205 NEBD ROAD HAMMITON, ON LEW 2EI         Phone:       289-880-3992         Reports to be sent to: <u>Manye Landtek cg</u> 1. Email: <u>Manye Landtek cg</u> 2. Email: <u>21260</u> Site Location: <u>3275/3201 TRAFMGAR_RA, OAKVUE</u>			(Please Tal Soil Ta Soil Ta Soil Ta Soil Ta Soil Ta	Regulatory Requirements:         (Please check all applicable baxes)         Regulation 153/04         Table       Excess Soils R406         Indicate One         Is this submission for a         Record of Site Condition?         Indicate One         Indicate One         Is Yes       No							Custody Seal Intact: Yes No N/A Notes: No CIAT) Required: Regular TAT S 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Day OR Date Required (Rush Surcharges May Apply): Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays							ly): T lidays		
Sampled By: AGAT Quote #: AGAT Quote #: S 5 4 14 8 Plense note: If quotation number Plense note: If quotation number Company: Contact: Address: Email: Email: Law Carpeload	B LIMITED (STOI) -2, (tA MUTON	ill To Same: Yes		Sam B GW O P S SD SW	nple Matrix Leg Biota Ground Water Oil Paint Soil Sediment Surface Water	gend	Field Fittered - Metals, Hg, CNI, DOC	& Inorganics		FI-F4 PHCS			Disposal Characterization TCLP:	M&I DVOCS DABNS DE(a)PDPCB8	tels LI VOCS LI SVOCS au S Characterization Package 900 Metals RTFX F1-F4 90	Include Moisture Sulphide	0 SM		your AGA	Potentially Hazardous or High Concentration (Y/N)
Sample Identification MW106 MW1-23 MW111-20	Date Sampled April 5 April 5 April 6	AM AM AM PM AM PM AM PM AM PM AM PM AM PM	Containers	Sample Matrix G-W GW	and the second se	ments/ nstructions	× × ×	Metals	Metals	PAHS PAHS	PCBS	A COLORED A COLO	Arcdors		Excess Soils	Corros	Z ×× ×× ×			Potenti
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Document IO: DIV-78-1511.022	8h	AM Date AQ(,5/2) Date APP_5/2 Date	3 Time 3 Time 3 Jime 1 Time	FM PM	Samples Received By (P Samples Received By (P Samples Received By (P	Int Name and Sign):	C E	34	R Pir	nk Copy	Dat DA Dat	pr pr	23 S	Time Time Time Time	30 PN 	N°: e Copy	Pag T -	14	of 0 6 9	

Laboratories Sample Temperature Log LANDIEK. Work Order #: Client: Anival Temperatures - Laboratory Arrivál Temperatures - Branch/Driver : 100 pe 10 Cooler 11: 6.2 16.0.18.8 Cooler #1: 9-2 1 9.1 1 9.0 Conter 12: 6-6 1 6.0 1 6:5 Cooler #2: 10.0 1 10.2.1 10.5 Caoler #3: 2.3 1 2.9 1 3.0. Cooler #: 9.9. 1 9.7 1 9.5 Cooler #4: 4.4, 4.0., 4.7. Cooler 14: 8.7.1.8.8-1 B.2 Cooler 115: <u>6.216.016.3</u> Capter #5: 10.1 1.0.7 1.10.6 Cooler 116: 7.4 17.0 16.9 Cooler 116: 9. [ 1 8.9 1.8.7 / / Cooler #7: 1____1 Cooler 17: 1 8 Cooler #8 1 .ľ Cooler NB Cooler #9: Cooler (19: Cooler #10: Cooler #10: R Can D: IR Gun ID: Takan Dr: Rhiche Talan By: Date Town Average Document ID: SR-78-951 Doube Issued: February 24.



### CLIENT NAME: LANDTEK LTD. 205 NEBO ROAD, UNIT 3 HAMILTON, ON L8W2E1 (905) 383-3733 ATTENTION TO: Henry Erebor PROJECT: 21260 AGAT WORK ORDER: 23H012142 MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer MISCELLANEOUS ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Nivine Basily, Inorganics Lab Technician WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer DATE REPORTED: Apr 25, 2023 PAGES (INCLUDING COVER): 43 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

**AGAT** Laboratories (V1)

lember of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 43



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

						E. Coli (M	l-Agar)	
	ED: 2023-04-05							DATE REPORTED: 2023-04-25
Para	meter	SA Unit	SAM	CRIPTION: PLE TYPE: SAMPLED: RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
scherichia coli		CFU/100mL	100		0	0	4	
Comments: 1900042	Guideline values a		erence only.					eference document development development of the applicable standard for regulatory interpretation.
900057	Escherichia coli R	nents was observe DL = 10 CFU/100r dilutions of the sa	mL.	eipt.				
900058	•	diluted prior to filtra		the presence	of sediments.			

Analysis performed at AGAT Toronto (unless marked by *)





AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

				Base N	leutrals and	Acids [wate	r]
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
Parameter	Unit		RIPTION: LE TYPE: AMPLED: RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
Naphthalene	µg/L	7	0.30	<0.30	<0.30	<0.30	
Acenaphthylene	µg/L		0.31	<0.31	<0.31	<0.31	
Acenaphthene	µg/L		0.30	<0.30	<0.30	<0.30	
Fluorene	µg/L	0.2	0.31	<0.31	<0.31	<0.31	
Phenanthrene	µg/L	0.03	0.32	<0.32	<0.32	<0.32	
Anthracene	µg/L	0.0008	0.30	<0.30	<0.30	<0.30	
Fluoranthene	μg/L	0.0008	0.27	<0.27	<0.27	<0.27	
Pyrene	µg/L		0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	0.0004	0.20	<0.20	<0.20	<0.20	
Chrysene	µg/L	0.0001	0.27	<0.27	<0.27	<0.27	
Benzo(b)fluoranthene	µg/L		0.20	<0.20	<0.20	<0.20	
Benzo(k)fluoranthene	µg/L	0.0002	0.20	<0.20	<0.20	<0.20	
Benzo(a)pyrene	µg/L		0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	µg/L		0.20	<0.20	<0.20	<0.20	
Dibenzo(a,h)anthracene	µg/L	0.002	0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.00002	0.20	<0.20	<0.20	<0.20	
Phenol	µg/L		1.0	<1.0	<1.0	<1.0	
Bis(2-chloroethyl)ether	µg/L		0.5	<0.5	<0.5	<0.5	
2-Chlorophenol	µg/L		0.5	<0.5	<0.5	<0.5	
o-Cresol	µg/L	1	0.5	<0.5	<0.5	<0.5	
Bis(2-chloroisopropyl)ether	µg/L		0.5	<0.5	<0.5	<0.5	
m&p-Cresol	µg/L		0.5	<0.5	<0.5	<0.5	
Hexachloroethane	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dimethylphenol	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dichlorophenol	µg/L		0.3	<0.3	<0.3	<0.3	
1,2,4-Trichlorobenzene	µg/L		0.5	<0.5	<0.5	<0.5	
p-Chloroaniline	µg/L		1.0	<1.0	<1.0	<1.0	
Hexachlorobutadiene	µg/L		0.4	<0.4	<0.4	<0.4	
2-and 1-methyl Napthalene	µg/L	2	0.5	<0.5	<0.5	<0.5	
2,4,6-Trichlorophenol	µg/L	18	0.2	<0.2	<0.2	<0.2	

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

				Base N	leutrals and	l Acids [wat	ter]
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
Parameter	Unit	-	CRIPTION: PLE TYPE: CAMPLED: RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
2,4,5-Trichlorophenol	µg/L	18	0.2	<0.2	<0.2	<0.2	
1,1-Biphenyl	µg/L		0.5	<0.5	<0.5	<0.5	
Dimethyl phthalate	µg/L		0.5	<0.5	<0.5	<0.5	
2,6-Dinitrotoluene	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dinitrotoluene	µg/L		0.5	<0.5	<0.5	<0.5	
2,3,4,6-Tetrachlorophenol	µg/L	1	0.5	<0.5	<0.5	<0.5	
Diethyl phthalate	µg/L		0.5	<0.5	<0.5	<0.5	
Hexachlorobenzene	µg/L	0.0065	0.5	<0.5	<0.5	<0.5	
Pentachlorophenol	µg/L		0.5	<0.5	<0.5	<0.5	
3,3'-dichlorobenzidine	µg/L		0.5	<0.5	<0.5	<0.5	
Bis(2-Ethylhexyl)phthalate	µg/L		0.5	<0.5	<0.5	<0.5	
2,4-Dinitrophenol	μg/L		10	<10	<10	<10	
Sediment				NO	NO	NO	
Surrogate	Unit	Acceptabl	e Limits				
2-Fluorophenol	%	50-1	40	88	67	65	
phenol-d6 surrogate	%	50-1	40	97	84	84	
2,4,6-Tribromophenol	%	50-1	40	68	81	81	
Chrysene-d12	%	50-1	40	106	92	103	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4900042-4900058 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

DATE	RECEIVED:	2023-04-05

	5	SAMPLE DESCRIPTION	MW106	MW4-23	MW111-20	
		SAMPLE TYPE:	Water	Water	Water	
		DATE SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S RDL	4900042	4900057	4900058	
Aldicarb	µg/L		<2.0	<2.0	<2.0	
Bendiocarb	μg/L	2	<2	<2	<2	
Carbofuran	µg/L	5	<5	<5	<5	
Carbaryl	µg/L	5	<5	<5	<5	
Diuron	µg/L	10	<10	<10	<10	
riallate	µg/L	1	<1	<1	<1	
Femephos	µg/L	10	<10	<10	<10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Results relate only to the items tested.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Julon Mant

**DATE REPORTED: 2023-04-25** 



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

					Diquat/Pa	raquat	
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20	
		SAM	PLE TYPE:	Water	Water	Water	
		DATE	SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Diquat	µg/L		5	<5	<5	<5	
Paraquat	µg/L		1	<1	<1	<1	

**Comments:** RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

## Ethanolamines in Water by HPLC - Low Level

DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		-	CRIPTION: PLE TYPE: SAMPLED:	MW106 Water 2023-04-05	MW4-23 Water 2023-04-05	MW111-20 Water 2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Diethanolamine (DEA)	mg/L		0.04	<0.04	<0.04	<0.04	
Ethanolamine (MEA)	mg/L		0.05	<0.05	<0.05	<0.05	
Diisopropanolamine (DIPA)	mg/L		0.1	<0.1	<0.1	<0.1	
Monoisopropanolamine (MIPA)	mg/L		0.1	<0.1	<0.1	<0.1	
Monoisopropanolamine (MIPA)	-						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

			Gly	cols Analys	sis in Water	
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
		SAMPLE DESCRIPTION:	MW106	MW4-23	MW111-20	
		SAMPLE TYPE:	Water	Water	Water	
		DATE SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S RDL	4900042	4900057	4900058	
Propylene Glycol	mg/L	10	<10	<10	<10	
Monoethylene Glycol	mg/L	8	<8	<8	<8	
Diethylene Glycol	mg/L	5	<5	<5	<5	
Triethylene Glycol	mg/L	8	<8	<8	<8	
Tetraethylene Glycol	mg/L	10	<10	<10	<10	
Surrogate	Unit	Acceptable Limits				
Heptanol	%	50-140	98	129	138	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Analysis by GC/FID.

Identification based on retention time relative to standards.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260

OC Pesticides + PCBs (Water)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

			0016			
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
Gamma-Hexachlorocyclohexane	ug/L	0.01	<0.01	<0.01	<0.01	
Heptachlor	ug/L	0.01	<0.01	<0.01	<0.01	
Aldrin	ug/L	0.01	<0.01	<0.01	<0.01	
Heptachlor Epoxide	ug/L	0.01	<0.01	<0.01	<0.01	
Endosulfan I	µg/L	0.05	<0.05	<0.05	<0.05	
Endosulfan II	µg/L	0.05	<0.05	<0.05	<0.05	
Endosulfan	ug/L	0.05	<0.05	<0.05	<0.05	
alpha - chlordane	µg/L	0.1	<0.1	<0.1	<0.1	
gamma-Chlordane	µg/L	0.2	<0.2	<0.2	<0.2	
Chlordane	ug/L	0.04	<0.04	<0.04	<0.04	
op'-DDE	µg/L	0.01	<0.01	<0.01	<0.01	
pp'-DDE	µg/L	0.01	<0.01	<0.01	<0.01	
DDE	ug/L	0.01	<0.01	<0.01	<0.01	
op'-DDD	µg/L	0.05	<0.05	<0.05	<0.05	
pp'-DDD	µg/L	0.05	<0.05	<0.05	<0.05	
DDD	ug/L	0.05	<0.05	<0.05	<0.05	
op'-DDT	µg/L	0.04	< 0.04	<0.04	<0.04	
pp'-DDT	µg/L	0.05	<0.05	<0.05	<0.05	
DDT	ug/L	0.04	<0.04	<0.04	<0.04	
Dieldrin	ug/L	0.02	<0.02	<0.02	<0.02	
Endrin	ug/L	0.05	<0.05	<0.05	<0.05	
Methoxychlor	ug/L	0.04	<0.04	<0.04	<0.04	
Hexachlorobenzene	ug/L	0.01	<0.01	<0.01	<0.01	
Hexachlorobutadiene	ug/L	0.01	<0.01	<0.01	<0.01	
Hexachloroethane	ug/L	0.01	<0.01	<0.01	<0.01	
Aroclor 1242	ug/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1248	ug/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1254	ug/L	0.1	<0.1	<0.1	<0.1	
Aroclor 1260	ug/L	0.1	<0.1	<0.1	<0.1	
Polychlorinated Biphenyls	ug/L	0.1	<0.1	<0.1	<0.1	

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

## OC Pesticides + PCBs (Water)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Julon Mants



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Oil and Grease (Total) in water								
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25	
	5	SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20		
	SAMPLE TYPE:			Water Water	Water			
	DATE SAMPLED:		2023-04-05	2023-04-05	2023-04-05			
Parameter	Unit	G/S	RDL	4900042	4900057	4900058		
Total Oil and Grease in water	mg/L		0.5	1.20	<0.5	1.59		

**Comments:** RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Phenoxy Acid Herbicides (Water)								
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25		
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058			
2,4-D	µg/L	0.5	<0.5	<0.5	<0.5			
2,4,5-T	µg/L	0.5	<0.5	<0.5	<0.5			
2,4,5-TP	µg/L	0.5	<0.5	<0.5	<0.5			
Dicamba	µg/L	0.5	<0.5	<0.5	<0.5			
Dichlorprop	µg/L	0.5	<0.5	<0.5	<0.5			
Dinoseb	µg/L	0.5	<0.5	<0.5	<0.5			
Picloram	µg/L	0.5	<0.5	<0.5	<0.5			
Diclofop-methyl	µg/L	0.5	<0.5	<0.5	<0.5			
2,3,4,6-Tetrachlorophenol	µg/L	0.5	<0.5	<0.5	<0.5			
2,4-Dichlorophenol	µg/L	0.2	<0.2	<0.2	<0.2			
2,4,5-Trichlorophenol	µg/L	0.5	<0.5	<0.5	<0.5			
2,4,6-Trichlorophenol	µg/L	0.5	<0.5	<0.5	<0.5			
Bromoxynil	µg/L	0.3	<0.3	<0.3	<0.3			
MCPA	µg/L	5.0	<5.0	<5.0	<5.0			
MCPP	µg/L	5.0	<5.0	<5.0	<5.0			
Pentachlorophenol	µg/L	0.1	<0.1	<0.1	<0.1			
Surrogate	Unit	Acceptable Limits						
DCAA	%	50-140	90	80	92			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

## SAMPLED BY:LB

**ATTENTION TO: Henry Erebor** 

## Polycyclic Aromatic Hydrocarbons in Water - Ultra-Low Level

#### DATE RECEIVED: 2023-04-05

DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
		SAMPLE DESCRIPTION:	MW106	MW4-23	MW111-20	
		SAMPLE TYPE:	Water	Water	Water	
		DATE SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S RDL	4900042	4900057	4900058	
1-Methylnaphthalene, Ultra-low	µg/L	0.001	0.008	0.011	0.004	
2-Methylnaphthalene, Ultra-low	µg/L	0.001	0.016	0.018	0.006	
Acenaphthene, Ultra-low	µg/L	0.001	0.014	<0.001	<0.001	
Acenaphthylene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Acridine, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Anthracene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Benzo(a)anthracene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Benzo(a)pyrene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Benzo(b)fluoranthene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Benzo(j+k)fluoranthene	µg/L	0.001	<0.001	<0.001	<0.001	
Benzo(e)pyrene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Benzo(ghi)perylene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Chrysene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Dibenzo(a,h)anthracene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Fluoranthene, Ultra-low	µg/L	0.001	0.073	0.025	0.025	
Fluorene, Ultra-low	µg/L	0.001	0.023	0.007	0.008	
Indeno(1,2,3-cd)pyrene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Naphthalene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Perylene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Phenanthrene, Ultra-low	µg/L	0.001	0.158	0.042	0.053	
Pyrene, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Quinoline, Ultra-low	µg/L	0.001	<0.001	<0.001	<0.001	
Sediment			YES	YES	TRACE	
PAH - Extraction (Ultra-low)			Y	Y	Y	
Surrogate	Unit	Acceptable Limits				
Naphthalene-d8	%	50-140	57	68	65	
Terphenyl-d14	%	50-140	45	44	52	
Pyrene-d10	%	50-140	65	79	73	

Certified By:

Julon Mant

**DATE REPORTED: 2023-04-25** 



AGAT WORK ORDER: 23H012142 **PROJECT: 21260** 

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

#### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### **ATTENTION TO: Henry Erebor**

SAMPLED BY:LB

## Polycyclic Aromatic Hydrocarbons in Water - Ultra-Low Level

#### DATE RECEIVED: 2023-04-05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900057 Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Surrogate not within acceptance limits due to matrix interference. Analysis was repeated with similar results.

4900058 Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Halifax (unless marked by *)

**DATE REPORTED: 2023-04-25** 

Certified By:

Julon Mants



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

## SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

			Resi	n and Fatty	acid (water)	
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
Linoleic acid	µg/L	10	<10	<10	<10	
Linolenic acid	µg/L	10	<10	<10	<10	
Oleic acid	µg/L	10	<10	<10	<10	
9,10-Dichlorostearic acid	µg/L	10	<10	<10	<10	
Stearic acid	µg/L	10	<10	12	43	
Fatty acid total	µg/L	10	<10	12	43	
Pimaric acid	µg/L	10	<10	<10	<10	
Sandaracopimaric acid	µg/L	10	<10	<10	<10	
Isopimaric acid	µg/L	10	<10	<10	<10	
Palustric acid	µg/L	10	<10	<10	<10	
Levopimaric acid	µg/L	10	<10	<10	<10	
Dehydroabietic acid	µg/L	10	<10	<10	<10	
Abietic acid	µg/L	10	<10	<10	<10	
Neoabietic acid	µg/L	10	<10	<10	<10	
14-Chlorodehydroabietic acid	µg/L	10	<10	<10	<10	
12-Chlorodehydroabietic acid	µg/L	10	<10	<10	<10	
12,14-Dichlorodehydroabietic acid	µg/L	10	<10	<10	<10	
Resin acid total	µg/L	10	<10	<10	<10	
Resin and Fatty acid total	µg/L	10	<10	12	43	
Surrogate	Unit	Acceptable Limits				
O-methylpodocarpic	%	40-140	54	63	64	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range or reduce matrix interference. Sample was analyzed in Montreal.

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## CLIENT NAME: LANDTEK LTD.

## SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

			Tria	zine Pestici	des [water]	
DATE RECEIVED: 2023-04-05						DATE REPORTED: 2023-04-25
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	MW111-20 Water 2023-04-05 4900058	
Trifluralin	µg/L	1.0	<1.0	<1.0	<1.0	
Simazine	µg/L	1.0	<1.0	<1.0	<1.0	
Atrazine	µg/L	0.5	<0.5	<0.5	<0.5	
Metribuzin	µg/L	0.25	<0.25	<0.25	<0.25	
Prometryne	µg/L	0.25	<0.25	<0.25	<0.25	
/letolachlor	µg/L	0.11	<0.11	<0.11	<0.11	
Alachlor	µg/L	0.5	<0.5	<0.5	<0.5	
Cyanazine	µg/L	1.0	<1.0	<1.0	<1.0	
Surrogate	Unit	Acceptable Limits				
Triphenyl phosphate (surr)	%	30-130	67	88	95	

#### Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ODWS - Table D

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4900042-4900058 Results relate only to the items tested.

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260

Volatile Organic Compounds in Water (ug/L)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

## ATTENTION TO: Henry Erebor

SAMPLED BY:LB

DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
			CRIPTION: PLE TYPE: SAMPLED:	MW106 Water 2023-04-05	MW4-23 Water 2023-04-05	MW111-20 Water 2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Dichlorodifluoromethane	µg/L		0.40	<0.40	<0.40	<0.40	
Chloromethane	µg/L	700	0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	µg/L	600	0.17	<0.17	<0.17	<0.17	
Bromomethane	µg/L	0.9	0.20	<0.20	<0.20	<0.20	
Chloroethane	µg/L		0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L		0.40	<0.40	<0.40	<0.40	
Acetone	µg/L		1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	µg/L		0.2	<0.2	<0.2	<0.2	
Methylene Chloride	µg/L	100	0.30	<0.30	<0.30	<0.30	
trans- 1,2-dichloroethylene	µg/L	200	0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	µg/L	200	0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	µg/L	200	0.30	<0.30	<0.30	< 0.30	
Methyl Ethyl Ketone	µg/L	400	1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	200	0.20	8.85	<0.20	<0.20	
Chloroform	µg/L		0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	µg/L	100	0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	µg/L	10	0.30	<0.30	<0.30	< 0.30	
Carbon Tetrachloride	µg/L		0.20	<0.20	<0.20	<0.20	
Benzene	µg/L	100	0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	µg/L	0.7	0.20	<0.20	<0.20	<0.20	
Trichloroethylene	µg/L	20	0.20	1.63	1.24	<0.20	
Bromodichloromethane	µg/L	200	0.20	<0.20	<0.20	<0.20	
cis-1,3-Dichloropropene	μg/L		0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	µg/L		1.0	<1.0	<1.0	<1.0	
trans-1,3-Dichloropropene	µg/L	7	0.30	<0.30	<0.30	<0.30	
1,1,2-Trichloroethane	μg/L	800	0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	0.8	0.20	<0.20	<0.20	<0.20	
2-Hexanone	µg/L		1.0	<1.0	<1.0	<1.0	
Dibromochloromethane	μg/L	40	0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	5	0.10	<0.10	<0.10	<0.10	

Certified By:

Julon Mant



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

Volatile Organic Compounds in Water (ug/L)

DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
	S	-	RIPTION: LE TYPE: AMPLED:	MW106 Water 2023-04-05	MW4-23 Water 2023-04-05	MW111-20 Water 2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Tetrachloroethylene	μg/L	50	0.20	0.32	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	20	0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	15	0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	8	0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L	32	0.20	<0.20	<0.20	<0.20	
Bromoform	µg/L	60	0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	4	0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	70	0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L	40	0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	2.5	0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	4	0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	2.5	0.10	<0.10	<0.10	<0.10	
1,2,4-Trichlorobenzene	μg/L	0.5	0.30	<0.30	<0.30	<0.30	
1,3-Dichloropropene (Cis + Trans)	μg/L		0.30	<0.30	<0.30	<0.30	
Xylenes (Total)	μg/L		0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L		0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptable	e Limits				
Toluene-d8	% Recovery	50-14	40	100	87	101	
4-Bromofluorobenzene	% Recovery	50-14	40	76	84	72	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4900042-4900058 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Certified By:

Julon Mants



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

## CLIENT NAME: LANDTEK LTD.

## SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

				Dissolv	ed Oxygen	in Water- n	ng/L
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20	
		SAM	PLE TYPE:	Water	Water	Water	
		DATES	SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Dissolved Oxygen	mg/L		0.05	9.13	4.60	7.16	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

**4900042-4900058** Dissolved Oxygen was measured on as received sample. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured results. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Inis Verastegui



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

**ATTENTION TO: Henry Erebor** 

SAMPLED BY:LB

					PWQO Para	meters		
DATE RECEIVED: 2023-04-05								DATE REPORTED: 2023-04-25
Parameter	Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	MW106 Water 2023-04-05 4900042	MW4-23 Water 2023-04-05 4900057	RDL	MW111-20 Water 2023-04-05 4900058	
pН	pH Units	6.5-8.5	NA	7.70	7.74	NA	7.79	
Alkalinity (as CaCO3)	mg/L		5	635	551	5	63	
Ammonia as N	mg/L		0.02	<0.02	<0.02	0.02	4.14	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	<0.00002	<0.00002	0.000002	0.166	
Total Phosphorus	mg/L	*	0.02	0.47	1.26	0.02	1.34	
Turbidity	NTU		0.5	1140	1140	0.5	50.0	
Cyanide, WAD	mg/L	0.005	0.002	<0.002	<0.002	0.002	<0.002	
Sulphide	mg/L		0.01	<0.01	<0.01	0.01	<0.01	
Phenols	mg/L	0.001	0.002	0.017	0.013	0.001	0.002	
Aluminum-dissolved	mg/L	*	0.004	<0.004	<0.004	0.004	<0.004	
Total Antimony	mg/L	0.020	0.002	<0.002	<0.002	0.001	0.001	
Total Arsenic	mg/L	0.1	0.006	0.009	0.010	0.003	0.004	
Total Beryllium	mg/L	*	0.002	<0.002	<0.002	0.001	<0.001	
Total Boron	mg/L	0.2	0.020	0.133	1.17	0.010	6.52	
Total Cadmium	mg/L	0.0002	0.0002	<0.0002	<0.0002	0.0001	<0.0001	
Total Chromium	mg/L		0.006	0.030	0.026	0.003	0.003	
Total Cobalt	mg/L	0.0009	0.0010	0.0077	0.0126	0.0005	0.0009	
Total Copper	mg/L	0.005	0.002	0.028	0.015	0.001	0.004	
Total Iron	mg/L	0.3	0.020	20.2	23.3	0.010	2.83	
Total Lead	mg/L	*	0.002	0.014	0.012	0.001	0.003	
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001	<0.0001	0.0001	<0.0001	
Total Molybdenum	mg/L	0.040	0.004	< 0.004	0.007	0.002	0.030	
Total Nickel	mg/L	0.025	0.006	0.026	0.034	0.003	0.005	
Total Selenium	mg/L	0.1	0.004	< 0.004	< 0.004	0.002	0.007	
Total Silver	mg/L	0.0001	0.0002	<0.0002	<0.0002	0.0001	<0.0001	
Total Thallium	mg/L	0.0003	0.0006	<0.0006	<0.0006	0.0003	<0.0003	
Total Tungsten	mg/L	0.030	0.020	<0.020	<0.020	0.010	<0.010	
Total Uranium	mg/L	0.005	0.004	0.027	0.015	0.002	<0.002	
Total Vanadium	mg/L	0.006	0.004	0.035	0.036	0.002	0.003	
Total Zinc	mg/L	0.030	0.040	0.059	0.078	0.020	0.028	

Certified By:

Irús Verástegui



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

### CLIENT NAME: LANDTEK LTD.

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

#### ATTENTION TO: Henry Erebor

SAMPLED BY:LB

## **PWQO Parameters**

DATE RECEIVED: 2023-04-05								DATE REPORTED: 2023-04-25
	;	SAMPLE DES	CRIPTION:	MW106	MW4-23		MW111-20	
		SAM	PLE TYPE:	Water	Water		Water	
		DATE	SAMPLED:	2023-04-05	2023-04-05		2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	RDL	4900058	
Total Zirconium	mg/L	0.004	0.008	<0.008	0.010	0.004	<0.004	
Lab Filtration Aluminum Dissolved				2023/04/11	2023/04/11		2023/04/11	
Lab Filtration mercury				2023/04/11	2023/04/11		2023/04/11	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4900042-4900057 Dilution required, RDL has been increased accordingly.

Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as calculated.

4900058 Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as calculated.

Certified By:

Iris Verastegui



AGAT WORK ORDER: 23H012142 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## CLIENT NAME: LANDTEK LTD.

## SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

					Residual C	hlorine	
DATE RECEIVED: 2023-04-05							DATE REPORTED: 2023-04-25
		SAMPLE DES	CRIPTION:	MW106	MW4-23	MW111-20	
		SAM	PLE TYPE:	Water	Water	Water	
		DATES	SAMPLED:	2023-04-05	2023-04-05	2023-04-05	
Parameter	Unit	G/S	RDL	4900042	4900057	4900058	
Total Residual Chlorine	mg/L		0.01	0.27	0.11	0.17	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4900042-4900058 Due to the instability of chlorine in aqueous solutions, the results reported may be biased low and should be reviewed with discretion.

Certified By:

Inis Verastegui



# **Exceedance Summary**

## AGAT WORK ORDER: 23H012142 PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

### ATTENTION TO: Henry Erebor

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4900042	MW106	ON PWQO	PWQO Parameters	Phenols	mg/L	0.001	0.017
4900042	MW106	ON PWQO	PWQO Parameters	Total Cobalt	mg/L	0.0009	0.0077
4900042	MW106	ON PWQO	PWQO Parameters	Total Copper	mg/L	0.005	0.028
4900042	MW106	ON PWQO	PWQO Parameters	Total Iron	mg/L	0.3	20.2
4900042	MW106	ON PWQO	PWQO Parameters	Total Nickel	mg/L	0.025	0.026
4900042	MW106	ON PWQO	PWQO Parameters	Total Uranium	mg/L	0.005	0.027
4900042	MW106	ON PWQO	PWQO Parameters	Total Vanadium	mg/L	0.006	0.035
4900042	MW106	ON PWQO	PWQO Parameters	Total Zinc	mg/L	0.030	0.059
4900057	MW4-23	ON PWQO	PWQO Parameters	Phenols	mg/L	0.001	0.013
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Boron	mg/L	0.2	1.17
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Cobalt	mg/L	0.0009	0.0126
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Copper	mg/L	0.005	0.015
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Iron	mg/L	0.3	23.3
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Nickel	mg/L	0.025	0.034
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Uranium	mg/L	0.005	0.015
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Vanadium	mg/L	0.006	0.036
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Zinc	mg/L	0.030	0.078
4900057	MW4-23	ON PWQO	PWQO Parameters	Total Zirconium	mg/L	0.004	0.010
4900058	MW111-20	ON PWQO	PWQO Parameters	Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.166
4900058	MW111-20	ON PWQO	PWQO Parameters	Phenols	mg/L	0.001	0.002
4900058	MW111-20	ON PWQO	PWQO Parameters	Total Boron	mg/L	0.2	6.52
4900058	MW111-20	ON PWQO	PWQO Parameters	Total Iron	mg/L	0.3	2.83



# **Quality Assurance**

### CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

4900042 4900042

AGAT WORK ORDER: 23H012142

**ATTENTION TO: Henry Erebor** 

SAMPLED BY:LB

	Microbiology Analysis														
RPT Date: Apr 25, 2023			[	OUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable nits
		ld					Value	Lower	Upper	],	Lower	Upper		Lower	Upper
E. Coli (MI-Agar)															

Escherichia coli

0 NA

0

Comments: NA - % RPD Not Applicable.





### **AGAT** QUALITY ASSURANCE REPORT (V1)

Page 24 of 43



# **Quality Assurance**

### CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

## AGAT WORK ORDER: 23H012142

## **ATTENTION TO: Henry Erebor**

### SAMPLED BY:LB

		Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Apr 25, 2023			DUPLICAT	E		REFERE		TERIAL	METHOD	BLANK		MATRIX SPIK		KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim		Recovery		eptable nits	Recovery		ptable nits
PARAMETER	ld	Dup #1	Dup #2	RFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
Oil and Grease (Total) in water														
Total Oil and Grease in water	4883505	< 0.5	< 0.5	NA	< 0.5	99%	70%	130%	97%	70%	130%	94%	70%	130%
OC Pesticides + PCBs (Water)														
Gamma-Hexachlorocyclohexane	4903389	< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	103%	50%	140%	97%	50%	140%
Heptachlor	4903389	< 0.01	< 0.01	NA	< 0.01	112%	50%	140%	109%	50%	140%	107%	50%	140%
Aldrin	4903389	< 0.01	< 0.01	NA	< 0.01	101%	50%	140%	105%	50%	140%	103%	50%	140%
Heptachlor Epoxide	4903389	< 0.01	< 0.01	NA	< 0.01	103%	50%	140%	116%	50%	140%	101%	50%	140%
Endosulfan I	4903389	< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	97%	50%	140%	89%	50%	140%
Endosulfan II	4903389	< 0.05	< 0.05	NA	< 0.05	103%	50%	140%	109%	50%	140%	113%	50%	140%
alpha - chlordane	4903389	< 0.1	< 0.1	NA	< 0.1	102%	50%	140%	105%	50%	140%	102%	50%	140%
gamma-Chlordane	4903389	< 0.2	< 0.2	NA	< 0.2	105%	50%	140%	103%	50%	140%	108%	50%	140%
op'-DDE	4903389	< 0.01	< 0.01	NA	< 0.01	114%	50%	140%	114%	50%	140%	108%	50%	140%
pp'-DDE	4903389	< 0.01	< 0.01	NA	< 0.01	100%	50%	140%	105%	50%	140%	102%	50%	140%
op'-DDD	4903389	< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	106%	50%	140%	111%	50%	140%
pp'-DDD	4903389	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	93%	50%	140%	100%	50%	140%
op'-DDT	4903389	< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	105%	50%	140%	109%	50%	140%
pp'-DDT	4903389	< 0.05	< 0.05	NA	< 0.05	86%		140%	110%	50%	140%	104%	50%	140%
Dieldrin	4903389	< 0.02	< 0.02	NA	< 0.02	100%		140%	103%	50%	140%	109%	50%	140%
Endrin	4903389	< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	104%	50%	140%	112%	50%	140%
Methoxychlor	4903389	< 0.04	< 0.04	NA	< 0.04	113%	50%	140%	103%	50%	140%	106%	50%	140%
Hexachlorobenzene	4903389	< 0.01	< 0.01	NA	< 0.01	109%	50%	140%	97%	50%	140%	108%	50%	140%
Hexachlorobutadiene	4903389	< 0.01	< 0.01	NA	< 0.01	107%	50%	140%	86%	50%	140%	83%	50%	140%
Hexachloroethane	4903389	< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	99%	50%	140%	98%	50%	140%
Aroclor 1242	4903389	< 0.1	< 0.1	NA	< 0.1	102%	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1248	4903389	< 0.1	< 0.1	NA	< 0.1	103%	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1254	4903389	< 0.1	< 0.1	NA	< 0.1	98%	60%	140%	NA	60%	140%	NA	60%	140%
Aroclor 1260	4903389	< 0.1	< 0.1	NA	< 0.1	106%	60%	140%	NA	60%	140%	NA	60%	140%
Polychlorinated Biphenyls	4903389	< 0.1	< 0.1	NA	< 0.1	102%	60%	140%	107%	60%	140%	108%	60%	140%
Volatile Organic Compounds in V	Water (ug/L)													
Dichlorodifluoromethane	4900057 4900057	< 0.40	< 0.40	NA	< 0.40	114%	50%	140%	100%	50%	140%	71%	50%	140%
Chloromethane	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	117%	50%	140%	89%	50%	140%
Vinyl Chloride	4900057 4900057	< 0.17	< 0.17	NA	< 0.17	100%		140%	119%		140%	105%	50%	140%
Bromomethane	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	91%		140%	111%	50%		83%		140%
Chloroethane	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	98%	50%		112%		140%	96%		140%
Trichlorofluoromethane	4900057 4900057	< 0.40	< 0.40	NA	< 0.40	92%	50%	140%	88%	50%	140%	99%	50%	140%
Acetone	4900057 4900057	< 1.0	< 1.0	NA	< 1.0	98%	50%		89%		140%	90%		140%
1,1-Dichloroethylene	4900057 4900057	< 0.2	< 0.2	NA	< 0.2	94%	50%		90%		130%	88%		140%
Methylene Chloride	4900057 4900057	< 0.30	< 0.30	NA	< 0.30	88%	50%		100%		130%	109%	50%	140%
trans- 1,2-dichloroethylene	4900057 4900057	< 0.20	< 0.20	NA	< 0.20	101%	50%		89%		130%	82%		140%

## AGAT QUALITY ASSURANCE REPORT (V1)

Page 25 of 43



# **Quality Assurance**

### CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

## AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor SAMPLED BY:LB

# Trace Organics Analysis (Continued)

Methyl tert-butyl ether         4900057         <0.20	RPT Date: Apr 25, 2023			DUPLICATE					ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMELER         Banch         bit         Dupp         Dupp         Value         Lower         Upper         Network	DADAMETED	Batab	Sample	Due #4	Dur #2			Measured			Baacham	Lin		Pagerage		
1.1Dichlorozenhane       4300057       400057       < 1.0       NA       < 0.20       1%       50%       140%       11%       50%       140%       13%       50%       140%       13%       50%       140%       13%       50%       140%       13%       50%       140%       13%       50%       140%       13%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       50%       140%       10%       50%       140%       10%       50%       140%       10%       10%       50%       140%       111%       50%       140%       111%       50%       140%       111%       50%       140% <th>PARAMETER</th> <th>Batch</th> <th>ld</th> <th>Dup #1</th> <th>Dup #2</th> <th>RPD</th> <th></th> <th>Value</th> <th>Lower</th> <th>Upper</th> <th>Recovery</th> <th></th> <th>Upper</th> <th>Recovery</th> <th>Lower</th> <th>Uppe</th>	PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery		Upper	Recovery	Lower	Uppe
Methyl Endiv Kenne         4900057 4000057         < 1.0         < 1.0         NA         < 1.0         95%         50%         10%         13%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%         10%         50%	Methyl tert-butyl ether	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	92%	50%	140%	81%	60%	130%	90%	50%	1409
six       12-Dicklarocethylene       490057       490057       <0.20	1,1-Dichloroethane	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	91%	50%	140%	93%	60%	130%	105%	50%	1409
Chloroform       4900057       40.20       <0.20       NA       <0.20       87%       50%       140%       86%       60%       130%       114%       50%       140%         1,2-Dichloroethane       4900057       400057       <0.20	Methyl Ethyl Ketone	4900057	4900057	< 1.0	< 1.0	NA	< 1.0	89%	50%	140%	113%	50%	140%	93%	50%	140
1.2-Dichloroethane       4900057       40.20       NA       <0.20	cis- 1,2-Dichloroethylene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	77%	60%	130%	109%	50%	140
1,1-Trichbrorethane       4900057       <0.30	Chloroform	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	86%	60%	130%	114%	50%	1409
Carbon Tetrachloride       4900057 4900057       < 0.20	1,2-Dichloroethane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	118%	50%	140%	99%	60%	130%	116%	50%	140
Banzene       4900057 4900057       < 0.20	1,1,1-Trichloroethane	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	111%	50%	140%	92%	60%	130%	96%	50%	140
1,2-Dichloropropane       4900057       < 0.00	Carbon Tetrachloride	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	82%	60%	130%	108%	50%	140
Trichioresthane         4900057         4900057         0.20         0.20         NA         <0.20         88%         50%         140%         77%         60%         130%         114%         50%         140%           Bromodichioromethane         4900057         4900057         <0.20	Benzene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	97%	60%	130%	92%	50%	140
Bromodichloromethane       4900057       4900057       < 0.20	1,2-Dichloropropane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	108%	60%	130%	111%	50%	140
cis-1.3-Dichloropropene       4900057 4900057       < 0.20	Frichloroethylene	4900057	4900057	1.24	1.43	14.2%	< 0.20	90%	50%	140%	77%	60%	130%	114%	50%	140
Wethyl Isobutyl Keione       4900057 4900057       < 1.0	3romodichloromethane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	96%	60%	130%	117%	50%	140
rans-1,3-Dichloropropene       4900057 4900057       < 0.30       < 0.30       NA       < 0.30       93%       50%       140%       80%       60%       130%       78%       50%       140         L1,1,2-Trichloroethane       4900057 4900057       < 0.20	sis-1,3-Dichloropropene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	103%	60%	130%	84%	50%	140
1,1,2-trichloroethane       4900057 4900057       <0.20	Methyl Isobutyl Ketone	4900057	4900057	< 1.0	< 1.0	NA	< 1.0	104%	50%	140%	109%	50%	140%	100%	50%	140
Toluene         4900057         90.0057         < 0.20         < 0.20         NA         < 0.20         94%         50%         140%         90%         60%         130%         111%         50%         140%           2Hexanone         4900057         4900057         < 0.10	rans-1,3-Dichloropropene	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	93%	50%	140%	80%	60%	130%	78%	50%	140
22-Hexanone       4900057 4900057       <1.0	1,1,2-Trichloroethane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	106%	60%	130%	116%	50%	140
Dibromochloromethane       4900057       4000057       < 0.10       < 0.10       NA       < 0.10       107%       50%       140%       82%       60%       130%       85%       50%       140         Ethylene Dibromide       4900057       4900057       < 0.20	Toluene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	90%	60%	130%	111%	50%	140
Ethylene Dibromide       4900057 4900057       < 0.10       < 0.10       NA       < 0.10       118%       50%       140%       95%       60%       130%       98%       50%       140         Fetrachloroethylene       4900057 4900057       < 0.20	2-Hexanone	4900057	4900057	< 1.0	< 1.0	NA	< 1.0	100%	50%	140%	78%	50%	140%	95%	50%	140
Tetrachloroethylene       4900057 4900057 < 0.20	Dibromochloromethane	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	82%	60%	130%	85%	50%	140
1,1,2-Tetrachloroethane       4900057 4900057       < 0.10	Ethylene Dibromide	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	118%	50%	140%	95%	60%	130%	98%	50%	140
Chlorobenzene       4900057 4900057       < 0.10	Tetrachloroethylene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	101%	60%	130%	90%	50%	140
Ethylbenzene       4900057 4900057       < 0.10	1,1,1,2-Tetrachloroethane	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	79%	60%	130%	92%	50%	140
m & p-Xylene       4900057       4900057       < 0.20       < 0.20       NA       < 0.20       116%       50%       140%       87%       60%       130%       117%       50%       140%         Bromoform       4900057       4900057       < 0.10	Chlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	86%	60%	130%	110%	50%	140
Bromoform       4900057 4900057 < 0.10	Ethylbenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	79%		130%	109%	50%	140
Styrene       4900057 4900057       < 0.10	n & p-Xylene	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	116%	50%	140%	87%	60%	130%	117%	50%	140
1,1,2,2-Tetrachloroethane       4900057 4900057       < 0.10	Bromoform	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	78%	50%	140%	78%	60%	130%	79%	50%	140
->Xylene       4900057 4900057       < 0.10	Styrene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	81%	60%	130%	84%	50%	140
1,3-Dichlorobenzene       4900057 4900057       < 0.10	1,1,2,2-Tetrachloroethane	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	110%	60%	130%	104%	50%	140
1,4-Dichlorobenzene       4900057 4900057 < 0.10	o-Xylene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	90%	60%	130%	117%	50%	140
1/2-Dichlorobenzene       4900057 4900057 < 0.10	I,3-Dichlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	113%	50%	140%	80%	60%	130%	100%	50%	140
1,2,4-Trichlorobenzene       4900057 4900057 < 0.30	I,4-Dichlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	110%	50%	140%	79%	60%	130%	93%		140
An-Hexane       4900057 4900057 < 0.20       < 0.20       NA       < 0.20       102%       50%       140%       115%       60%       130%       120%       50%       140%         Diquat/Paraquat       Ciquat       < 5       < 5       NA       < 5       101%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       86%       50%       140%       93%       50%       140%       92%       50%       140%       93%       50%       140%         Paraquat       < 1       NA       < 1       109%       50%       140%       93%       50%       140%         Carbamate Pesticides (Water)       Carbamate Pesticides (Water)       Carbamate Pasticides (Water)	1,2-Dichlorobenzene	4900057	4900057	< 0.10	< 0.10	NA	< 0.10	106%	50%	140%	76%	60%	130%	90%	50%	140
Diquat/Paraquat           Diquat         < 5	1,2,4-Trichlorobenzene	4900057	4900057	< 0.30	< 0.30	NA	< 0.30	91%		140%	99%	60%	130%		50%	140
Diquat         < 5         < 5         NA         < 5         101%         50%         140%         86%         50%         140%         86%         50%         140%         86%         50%         140%         86%         50%         140%         86%         50%         140%         86%         50%         140%         86%         50%         140%         93%         50%         140%         92%         50%         140%         93%         50%         140%         93%         50%         140%         92%         50%         140%         93%         50%         140%         92%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%         93%         50%         140%	1-Hexane	4900057	4900057	< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	115%	60%	130%	120%	50%	140
Paraquat         < 1         < 1         NA         < 1         109%         50%         140%         93%         50%         140           Carbamate Pesticides (Water)         Carbamate Piscolary (Carbara)         Carbamate Piscolary (Carbara)         Carbamate Piscolary (Carbara)         Carbara)         Carbara) <t< td=""><td>Diquat/Paraquat</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Diquat/Paraquat															
Carbamate Pesticides (Water)	Diquat			< 5	< 5	NA	< 5	101%	50%	140%	86%	50%	140%	86%	50%	140
	Paraquat			< 1	< 1	NA	< 1	109%	50%	140%	92%	50%	140%	93%	50%	140
	Carbamate Pesticides (Water)															
	Aldicarb			< 2.0	< 2.0	NA	< 2.0	103%	50%	140%	90%	50%	140%	101%	50%	140'



# **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor SAMPLED BY:LB

# **Trace Organics Analysis (Continued)**

RPT Date: Apr 25, 2023			C	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
DADAMETED		Sample	B #4	5		Method Blank	Measured		ptable nits			ptable nits			ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower		Recovery	Lower	Uppe
Bendiocarb			< 2	< 2	NA	< 2	85%	50%	140%	94%	50%	140%	95%	50%	1409
Carbofuran			< 5	< 5	NA	< 5	85%	50%	140%	94%	50%	140%	95%	50%	1409
Carbaryl			< 5	< 5	NA	< 5	75%	50%	140%	111%	50%	140%	110%	50%	1409
Diuron			< 10	< 10	NA	< 10	94%	50%	140%	101%	50%	140%	101%	50%	140%
riallate			< 1	< 1	NA	< 1	99%	50%	140%	82%	50%	140%	90%	50%	1409
Temephos			< 10	< 10	NA	< 10	102%	60%	130%	103%	60%	130%	104%	60%	1309
riazine Pesticides [water]															
Frifluralin	4900042		<0.2	<0.2	NA	< 1.0	89%	50%	140%	111%	50%	140%	113%	50%	1409
Simazine	4900042		<0.5	<0.5	NA	< 1.0	85%	50%	140%	92%	50%	140%	79%	50%	1409
Atrazine	4900042		<0.5	<0.5	NA	< 0.5	84%	50%	140%	92%	50%	140%	112%	50%	1409
<i>l</i> etribuzin	4900042		<0.25	<0.25	NA	< 0.25	79%	50%	140%	111%	50%	140%	104%	50%	140
Prometryne	4900042		<0.25	<0.25	NA	< 0.25	82%	50%	140%	83%	50%	140%	110%	50%	140%
Metolachlor	4900042		<0.11	<0.11	NA	< 0.11	105%	50%	140%	91%	50%	140%	112%	50%	1409
Alachlor	4900042		<0.5	<0.5	NA	< 0.5	79%	50%	140%	80%	50%	140%	88%	50%	1409
Cyanazine	4900042		<0.5	<0.5	NA	< 1.0	85%	50%	140%	81%	50%	140%	73%	50%	1409
Base Neutrals and Acids [water]															
laphthalene	4867188		< 0.30	< 0.30	NA	< 0.30	92%	50%	140%	96%	50%	140%	87%	50%	140
cenaphthylene	4867188		< 0.31	< 0.31	NA	< 0.31	91%	50%	140%	105%	50%	140%	82%	50%	140
cenaphthene	4867188		< 0.30	< 0.30	NA	< 0.30	87%	50%	140%	93%	50%	140%	82%	50%	140
luorene	4867188		< 0.31	< 0.31	NA	< 0.31	69%	50%	140%	87%	50%	140%	89%	50%	140
Phenanthrene	4867188		< 0.32	< 0.32	NA	< 0.32	78%	50%	140%	103%	50%	140%	92%	50%	140
Anthracene	4867188		< 0.30	< 0.30	NA	< 0.30	93%	50%	140%	94%	50%	140%	91%	50%	1409
luoranthene	4867188		< 0.27	< 0.27	NA	< 0.27	107%	50%	140%	103%	50%	140%	101%	50%	140
Pyrene	4867188		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	72%	50%	140%	78%	50%	140
Benzo(a)anthracene	4867188		< 0.20	< 0.20	NA	< 0.20	65%	50%	140%	75%	50%	140%	76%	50%	140
Chrysene	4867188		< 0.27	< 0.27	NA	< 0.27	94%	50%	140%	88%	50%	140%	76%	50%	140
enzo(b)fluoranthene	4867188		< 0.20	< 0.20	NA	< 0.20	75%	50%	140%	89%	50%	140%	97%	50%	140
enzo(k)fluoranthene	4867188		< 0.20	< 0.20	NA	< 0.20	73%	50%	140%	81%	50%	140%	74%	50%	140
Benzo(a)pyrene	4867188		< 0.01	< 0.01	NA	< 0.01	75%	50%	140%	79%	50%	140%	65%	50%	140
ndeno(1,2,3-cd)pyrene	4867188		< 0.20	< 0.20	NA	< 0.20	111%	50%	140%	92%	50%	140%	98%	50%	140
Dibenzo(a,h)anthracene	4867188		< 0.20	< 0.20	NA	< 0.20	104%	50%	140%	84%	50%	140%	90%	50%	140
enzo(g,h,i)perylene	4867188		< 0.20	< 0.20	NA	< 0.20	87%		140%	97%		140%	101%	50%	
Phenol	4867188		< 1.0	< 1.0	NA	< 1.0	71%		140%	64%		140%	67%	50%	
is(2-chloroethyl)ether	4867188		< 0.5	< 0.5	NA	< 0.5	68%		140%	80%		140%	89%	50%	
e-Chlorophenol	4867188		< 0.5	< 0.5	NA	< 0.5	65%	50%	140%	73%	50%	140%	78%	50%	1409
o-Cresol	4867188		< 0.5	< 0.5	NA	< 0.5	72%	50%	140%	66%	50%	140%	77%	50%	1409
Bis(2-chloroisopropyl)ether	4867188		< 0.5	< 0.5	NA	< 0.5	87%		140%	80%		140%	102%	50%	1409
n&p-Cresol	4867188		< 0.5	< 0.5	NA	< 0.5	95%		140%	79%		140%	68%	50%	
Hexachloroethane	4867188		< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	116%	50%	140%	107%	50%	140

## AGAT QUALITY ASSURANCE REPORT (V1)

Page 27 of 43



# **Quality Assurance**

### CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

Acenaphthene, Ultra-low

Acenaphthylene, Ultra-low

### S

# AGAT WORK ORDER: 23H012142 **ATTENTION TO: Henry Erebor**

SAMPLING SITE:3275/3201	Trafalgar	Rd, Oakvi	lle						LED B	TO: Her Y:LB	-				
		Trace	Org	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Apr 25, 2023			[	UPLICATE	E		REFERE		TERIAL	METHOD	BLAN	( SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 1	eptable nits	Recovery	1.11	eptable mits
		ld	- up				Value	Lower	Upper		Lower	Upper	,	Lower	Upper
2,4-Dimethylphenol	4867188		< 0.5	< 0.5	NA	< 0.5	66%	30%	130%	88%	30%	130%	81%	30%	130%
2,4-Dichlorophenol	4867188	ł	< 0.3	< 0.3	NA	< 0.3	82%	50%	140%	73%	50%	140%	98%	50%	140%
1,2,4-Trichlorobenzene	4867188	ł	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	70%	50%	140%	65%	50%	140%
p-Chloroaniline	4867188		< 1.0	< 1.0	NA	< 1.0	66%	50%	140%	89%	50%	140%	74%	50%	140%
2,4,6-Trichlorophenol	4867188		< 0.2	< 0.2	NA	< 0.2	76%	50%	140%	80%	50%	140%	97%	50%	140%
2,4,5-Trichlorophenol	4867188	1	< 0.2	< 0.2	NA	< 0.2	80%	50%	140%	73%	50%	140%	67%	50%	140%
1,1-Biphenyl	4867188	ł	< 0.5	< 0.5	NA	< 0.5	73%	50%	140%	65%	50%	140%	89%	50%	140%
Dimethyl phthalate	4867188		< 0.5	< 0.5	NA	< 0.5	68%	50%	140%	86%	50%	140%	105%	50%	140%
2,6-Dinitrotoluene	4867188		< 0.5	< 0.5	NA	< 0.5	75%	50%	140%	98%	50%	140%	70%	50%	140%
2,4-Dinitrotoluene	4867188		< 0.5	< 0.5	NA	< 0.5	74%	50%	140%	76%	50%	140%	65%	50%	140%
2,3,4,6-Tetrachlorophenol	4867188		< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	96%	50%	140%	88%	50%	140%
Diethyl phthalate	4867188		< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	65%	50%	140%	77%	50%	140%
Hexachlorobenzene	4867188		< 0.5	< 0.5	NA	< 0.5	98%	50%	140%	87%	50%	140%	81%	50%	140%
Pentachlorophenol	4867188		< 0.5	< 0.5	NA	< 0.5	65%	50%	140%	98%	50%	140%	73%	50%	140%
3,3'-dichlorobenzidine	4867188		< 0.5	< 0.5	NA	< 0.5	72%	30%	130%	73%	30%	130%	108%	30%	130%
Bis(2-Ethylhexyl)phthalate	4867188		< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	105%	50%	140%	67%	50%	140%
2,4-Dinitrophenol	4867188	ł	< 10	< 10	NA	< 10	75%	30%	130%	116%	30%	130%	89%	30%	130%
Phenoxy Acid Herbicides (Wate	r)														
2,4-D		TW	< 0.5	< 0.5	NA	< 0.5	98%	50%	140%	92%	50%	140%	82%	50%	140%
2,4,5-T		TW	< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	85%	50%	140%	82%	50%	140%
2,4,5-TP		TW	< 0.5	< 0.5	NA	< 0.5	92%	50%	140%	84%	50%	140%	80%	50%	140%
Dicamba		TW	< 0.5	< 0.5	NA	< 0.5	96%	50%	140%	72%	50%	140%	75%	50%	140%
Dichlorprop		TW	< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	78%	50%	140%	70%	50%	140%
Dinoseb		TW	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	82%	50%	140%	70%	50%	140%
Picloram		TW	< 0.5	< 0.5	NA	< 0.5	92%	50%	140%	80%	50%	140%	71%	50%	140%
Diclofop-methyl		TW	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	76%	50%	140%	75%	50%	140%
2,3,4,6-Tetrachlorophenol		TW	< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	70%	50%	140%	NA	50%	140%
2,4-Dichlorophenol		TW	< 0.2	< 0.2	NA	< 0.2	90%	50%	140%	81%	50%	140%	NA	50%	140%
2,4,5-Trichlorophenol		TW	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	84%	50%	140%	NA	50%	140%
2,4,6-Trichlorophenol		TW	< 0.5	< 0.5	NA	< 0.5	92%	50%	140%	76%	50%	140%	NA	50%	140%
Bromoxynil		TW	< 0.3	< 0.3	NA	< 0.3	99%	50%	140%	91%	50%	140%	NA	50%	140%
MCPA		TW	< 5.0	< 5.0	NA	< 5.0	86%	50%	140%	82%	50%	140%	72%	50%	140%
MCPP		TW	< 5.0	< 5.0	NA	< 5.0	98%	50%	140%	75%	50%	140%	78%	50%	140%
Pentachlorophenol		TW	< 0.1	< 0.1	NA	< 0.1	100%	50%	140%	95%	50%	140%	NA	50%	140%
Polycyclic Aromatic Hydrocarbo	ons in Wate	er - Ultra-Lo	w Level												
1-Methylnaphthalene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	92%	50%	140%	107%	50%	140%	122%	50%	140%
2-Methylnaphthalene, Ultra-low	1	4906036	< 0.001	< 0.001	NA	< 0.001	84%	50%	140%	95%	50%	140%	109%	50%	140%

### **AGAT** QUALITY ASSURANCE REPORT (V1)

1

1

4906036 < 0.001

4906036 < 0.001

Page 28 of 43

50% 140%

50% 140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

NA

NA

< 0.001

< 0.001

84%

79%

50% 140%

50% 140%

109%

102%

50%

140%

50% 140%

122%

112%

< 0.001

< 0.001



Page 29 of 43

# **Quality Assurance**

#### CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

## AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor SAMPLED BY:LB

# **Trace Organics Analysis (Continued)**

UPLICAT	DI	-										
	DUPLICATE			REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	ATRIX SPIKE	
		RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
				value	Lower	Upper	-	Lower	Upper	-	Lower	Upper
< 0.001	< 0.001	NA	< 0.001	80%	50%	140%	124%	50%	140%	123%	50%	140%
< 0.001	< 0.001	NA	< 0.001	81%	50%	140%	113%	50%	140%	122%	50%	140%
< 0.001	< 0.001	NA	< 0.001	80%	50%	140%	115%	50%	140%	120%	50%	140%
< 0.001	< 0.001	NA	< 0.001	74%	50%	140%	109%	50%	140%	112%	50%	140%
< 0.001	< 0.001	NA	< 0.001	88%	50%	140%	92%	50%	140%	114%	50%	140%
< 0.001	< 0.001	NA	< 0.001	89%	50%	140%	117%	50%	140%	120%	50%	140%
< 0.001	< 0.001	NA	< 0.001	81%	50%	140%	125%	50%	140%	125%	50%	140%
< 0.001	< 0.001	NA	< 0.001	80%	50%	140%	120%	50%	140%	115%	50%	140%
< 0.001	< 0.001	NA	< 0.001	86%	50%	140%	129%	50%	140%	137%	50%	140%
< 0.001	< 0.001	NA	< 0.001	74%	50%	140%	109%	50%	140%	106%	50%	140%
< 0.001	0.174	NA	< 0.001	86%	50%	140%	128%	50%	140%	137%	50%	140%
< 0.001	< 0.001	NA	< 0.001	82%	50%	140%	113%	50%	140%	127%	50%	140%
< 0.001	< 0.001	NA	< 0.001	71%	50%	140%	98%	50%	140%	103%	50%	140%
< 0.001	< 0.001	NA	< 0.001	86%	50%	140%	103%	50%	140%	114%	50%	140%
< 0.001	< 0.001	NA	< 0.001	81%	50%	140%	121%	50%	140%	116%	50%	140%
< 0.001	< 0.001	NA	< 0.001	86%	50%	140%	126%	50%	140%	137%	50%	140%
< 0.001	< 0.001	NA	< 0.001	90%	50%	140%	136%	50%	140%	139%	50%	140%
< 0.001	< 0.001	NA	< 0.001	85%	50%	140%	125%	50%	140%	130%	50%	140%
<	<	NA	<									
	< 0.001	< 0.001	< 0.001 NA	< 0.001 NA < 0.001	< 0.001 NA < 0.001 85%	< 0.001 NA < 0.001 85% 50%	< 0.001 NA < 0.001 85% 50% 140%	< 0.001 NA < 0.001 85% 50% 140% 125%	< 0.001 NA < 0.001 85% 50% 140% 125% 50%	< 0.001 NA < 0.001 85% 50% 140% 125% 50% 140%	< 0.001 NA < 0.001 85% 50% 140% 125% 50% 140% 130%	< 0.001 NA < 0.001 85% 50% 140% 125% 50% 140% 130% 50%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Duplicate: More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits.

#### Resin and Fatty acid (water)

Fatty acid total	4900042	NA	NA	NA	0.0%	< 10	NA	70%	130%	71%	70%	130%	NA	70%	130%
Resin acid total	4900042	NA	NA	NA	0.0%	< 10	NA	70%	130%	86%	70%	130%	NA	70%	130%
Resin and Fatty acid total	4900042	NA	NA	NA	0.0%	< 10	NA	70%	130%	79%	70%	130%	NA	70%	130%
O-methylpodocarpic	4900042	NA	NA	NA	0.0%	57	NA	40%	140%	70%	40%	140%	NA	40%	140%

Comments: The QC criteria are only applicable to the total resins and total fatty acids.

#### NA : Non applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

NA in the spike blank or CRM indicates that it is not required by the procedure.

Glycols Analysis in Water															
Propylene Glycol	671	4900042	<10	<10	NA	< 10	106%	50%	140%	87%	50%	140%	104%	50%	140%
Monoethylene Glycol	671	4900042	<8	<8	NA	< 8	107%	50%	140%	87%	50%	140%	106%	50%	140%
Diethylene Glycol	671	4900042	<5	<5	NA	< 5	103%	50%	140%	92%	50%	140%	105%	50%	140%
Triethylene Glycol	671	4900042	<8	<8	NA	< 8	99%	50%	140%	96%	50%	140%	106%	50%	140%

### AGAT QUALITY ASSURANCE REPORT (V1)



# **Quality Assurance**

### CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

#### SAMPLING SITE: 3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

SAMPLED BY:LB

# **Trace Organics Analysis (Continued)**

RPT Date: Apr 25, 2023			0	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Tetraethylene Glycol	671	4900042	<10	<10	NA	< 10	90%	50%	140%	88%	50%	140%	89%	50%	140%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated. The sample spikes and dups are not from the same sample ID.

#### Ethanolamines in Water by HPLC - Low Level

Diethanolamine (DEA)	1137	4896467	<0.04	<0.04	NA	< 0.04	98%	80%	120%	100%	70%	130%	104%	60%	140%
Ethanolamine (MEA)	1137	4896467	<0.05	<0.05	NA	< 0.05	103%	80%	120%	104%	70%	130%	103%	60%	140%
Diisopropanolamine (DIPA)	1137	4896467	<0.1	<0.1	NA	< 0.1	107%	80%	120%	110%	70%	130%	100%	60%	140%
Monoisopropanolamine (MIPA)	1137	4896467	<0.1	<0.1	NA	< 0.1	95%	80%	120%	97%	70%	130%	94%	60%	140%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated. The sample spikes and dups are not from the same sample ID.

Certified By:

Julon Mant

### **AGAT** QUALITY ASSURANCE REPORT (V1)

Page 30 of 43



# **Quality Assurance**

### CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

#### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

### SAMPLED BY:LB

PARAMETER         Batch         Sample II         Dup #1         Dup #2         RPD         Blank Wessure Value         Messure Lower         Limits Upper         Recovery Lower         Limits Lower         Recovery Upper         Limits Lower         Recovery Lower         Limits Lowe	Water Analysis														
$ \  \  \  \  \  \  \  \  \  \  \  \  \ $	PT Date: Apr 25, 2023			DUPLICATE	1		REFERE	NCE MAT	FERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	KE
Lower         Lower         Lower         Upper         Lower         Lower         Upper         Lower <th< th=""><th>PARAMETER</th><th></th><th>Dup #1</th><th>Dup #2</th><th>RPD</th><th></th><th></th><th></th><th></th><th>Recovery</th><th></th><th></th><th>Recovery</th><th></th><th>eptable nits</th></th<>	PARAMETER		Dup #1	Dup #2	RPD					Recovery			Recovery		eptable nits
Total Residual Chlorine         4900996         0.03         0.04         NA         < 0.01							value	Lower	Upper		Lower	Upper		Lower	Upper
PWQO Parameters         pH         4900964         7.96         8.06         1.2%         NA         100%         90%         110%           Alkalinity (as CaCO3)         4900964         68         70         2.9%         <5	esidual Chlorine														
pH       4900964       7.96       8.06       1.2%       NA       100%       90%       110%       8.86       120%         Alkalinity (as CaCO3)       4900964       68       70       2.9%       < 5       95%       80%       120%       80%       120%       95%       70%         Chall Phosphorus       4900042       400042       0.47       0.07       0.00       6.0.02       70%       1.0%       80%       120%       95%       70%         Cyanide, WAD       4900360       <0.002       co.002       NA       <0.001       102%       99%       10%       102%       99%       10%       99%       90%       110%       99%       90%       110%       99%       90%       110%       99%       90%       110%       99%       90%       110%       99%       90%       110%       99%       90%       110%       99%       90%       110%       90%       90%       110%       90%       90%       110%       90%       90%       110%       90%       90%       110%       100%       80%       120%       90%       70%       100%       100%       100%       100%       100%       100%       100%       100%	otal Residual Chlorine	4900996	0.03	0.04	NA	< 0.01	92%	80%	120%	95%	90%	110%	96%	80%	120%
Alkalinity (as CaCO3)490096468702.9%<595%80%120%80%120%Ammonia as N489654<0.02	NQO Parameters														
Ammonia as N         4898634         <0.02         <0.02         NA         <0.02         100%         70%         130%         101%         80%         120%         95%         70%           Total Phosphorus         4900042         0.47         0.47         0.47         0.0%         <0.02	4	4900964	7.96	8.06	1.2%	NA	100%	90%	110%						
Total Phosphorus         4900042 4900042         0.47         1.8         NA         < 0.02         102%         10%         80%         120%         97%         70%           Cyanide, WAD         4900964         1.2         1.8         NA         < 0.002	kalinity (as CaCO3)	4900964	68	70	2.9%	< 5	95%	80%	120%						
Turbidity         4900964         1.2         1.8         NA         < 0.5         101%         80%         120%           Cyanide, WAD         4900360         <0.002	nmonia as N	4898634	<0.02	<0.02	NA	< 0.02	100%	70%	130%	101%	80%	120%	95%	70%	130%
Cyanice, WAD         4900360         <0.002         0.001         NA         <0.002         91%         70%         130%         95%         80%         120%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         110%         90%         110%         90%         110%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         90%         10%         10%         80%           Aluminum-dissolved         4906489         <0.001         <0.001         NA         <0.001         90%         10%         10%         80%         120%         90%         10%         10%         400         80%         120%         90%         70%           Total Arsenic         4900987         <0.017         0.020         NA         <0.001         98%         70%         130%         100%         80%         120%         90%         70%           Total Boron         4900987         <0.001         <0.001         N	otal Phosphorus	4900042 4900042	0.47	0.47	0.0%	< 0.02	102%	70%	130%	100%	80%	120%	97%	70%	130%
Sulphide4904651<0.01<0.01<0.01NA<0.01102%90%110%102%90%110%90%10%90%10%90%110%90%80%Phenols48986430.0020.001NA<0.001	urbidity	4900964	1.2	1.8	NA	< 0.5	101%	80%	120%						
Phenols48986430.0020.001NA Aluminum-dissolved<0.00199%90%110%99%90%110%101%80%Aluminum-dissolved4906489<0.004	yanide, WAD	4900360	<0.002	<0.002	NA	< 0.002	91%	70%	130%	95%	80%	120%	93%	70%	130%
Aluminum-dissolved       4906489       <0.004	ulphide	4904651	<0.01	<0.01	NA	< 0.01	102%	90%	110%	102%	90%	110%	99%	80%	120%
Total Antimony4900987<0.001<0.001NA<0.001103%70%130%110%80%120%103%70%Total Arsenic4900987<0.003	nenols	4898643	0.002	0.001	NA	< 0.001	99%	90%	110%	99%	90%	110%	101%	80%	120%
Total Arsenic         4900987         <0.003         <0.003         NA         <0.003         97%         70%         130%         102%         80%         120%         99%         70%           Total Beryllium         4900987         <0.001	uminum-dissolved	4906489	<0.004	<0.004	NA	< 0.004	98%	70%	130%	102%	80%	120%	97%	70%	130%
Total Beryllium4900987<0.001<0.001NA<0.00198%70%130%100%80%120%99%70%Total Boron49009870.0170.020NA<0.010	otal Antimony	4900987	<0.001	<0.001	NA	< 0.001	103%	70%	130%	110%	80%	120%	103%	70%	130%
Total Boron4909870.0170.020NA< 0.01099%70%130%103%80%120%99%70%Total Cadmium4900987<0.001	otal Arsenic	4900987	<0.003	<0.003	NA	< 0.003	97%	70%	130%	102%	80%	120%	99%	70%	130%
Total Cadmium       4900987       <0.0001       <0.0001       NA       <0.0001       99%       70%       130%       101%       80%       120%       100%       70%         Total Chromium       4900987       <0.003	otal Beryllium	4900987	<0.001	<0.001	NA	< 0.001	98%	70%	130%	100%	80%	120%	100%	70%	130%
Total Chromium       4900987       <0.003       <0.003       NA       <0.003       99%       70%       130%       103%       80%       120%       103%       70%         Total Cobalt       4900987       <0.005	otal Boron	4900987	0.017	0.020	NA	< 0.010	99%	70%	130%	103%	80%	120%	99%	70%	130%
Total Cobalt       4900987       <0.0005       <0.0005       NA       <0.0005       103%       70%       130%       104%       80%       120%       103%       70%         Total Copper       4900987       0.002       0.002       NA       <0.001	otal Cadmium	4900987	<0.0001	<0.0001	NA	< 0.0001	99%	70%	130%	101%	80%	120%	100%	70%	130%
Total Copper49009870.0020.002NA< 0.001101%70%130%96%80%120%99%70%Total Iron49009870.0730.0764.0%< 0.010	otal Chromium	4900987	<0.003	<0.003	NA	< 0.003	99%	70%	130%	103%	80%	120%	103%	70%	130%
Total Iron       4900987       0.073       0.076       4.0%       < 0.010       106%       70%       130%       104%       80%       120%       101%       70%         Total Lead       4900987       <0.001	otal Cobalt	4900987	<0.0005	<0.0005	NA	< 0.0005	103%	70%	130%	104%	80%	120%	103%	70%	130%
Total Lead       4900987       <0.001       <0.001       NA       < 0.001       106%       70%       130%       102%       80%       120%       94%       70%         Dissolved Mercury       4900942       4900042       <0.0001	otal Copper	4900987	0.002	0.002	NA	< 0.001	101%	70%	130%	96%	80%	120%	99%	70%	130%
Dissolved Mercury       4900042       4900042       <0.001       <0.001       NA       < 0.001       100%       70%       130%       97%       80%       120%       87%       70%         Total Molybdenum       4900987       0.003       <0.002	otal Iron	4900987	0.073	0.076	4.0%	< 0.010	106%	70%	130%	104%	80%	120%	101%	70%	130%
Total Molybdenum       4900987       0.003       <0.002       NA       < 0.002       104%       70%       130%       111%       80%       120%       102%       70%         Total Nickel       4900987       <0.003	otal Lead	4900987	<0.001	<0.001	NA	< 0.001	106%	70%	130%	102%	80%	120%	94%	70%	130%
Total Nickel       4900987       <0.003       <0.003       NA       < 0.003       100%       70%       130%       101%       80%       120%       102%       70%         Total Selenium       4900987       <0.002	ssolved Mercury	4900042 4900042	<0.0001	<0.0001	NA	< 0.0001	100%	70%	130%	97%	80%	120%	87%	70%	130%
Total Selenium         4900987         <0.002         <0.002         NA         < 0.002         96%         70%         130%         102%         80%         120%         93%         70%           Total Silver         4900987         0.0001         <0.0001	otal Molybdenum	4900987	0.003	<0.002	NA	< 0.002	104%	70%	130%	111%	80%	120%	102%	70%	130%
Total Silver         4900987         0.0001         <0.0001         NA         < 0.0001         108%         70%         130%         101%         80%         120%         93%         70%	otal Nickel	4900987	< 0.003	< 0.003	NA	< 0.003	100%	70%	130%	101%	80%	120%	102%	70%	130%
	otal Selenium	4900987	<0.002	<0.002	NA	< 0.002	96%	70%	130%	102%	80%	120%	93%	70%	130%
Total Thallium         4900987         <0.0003         <0.0003         NA         < 0.0003         105%         80%         120%         97%         70%	otal Silver	4900987	0.0001	<0.0001	NA	< 0.0001	108%	70%	130%	101%	80%	120%	93%	70%	130%
	otal Thallium	4900987	<0.0003	<0.0003	NA	< 0.0003	105%	70%	130%	105%	80%	120%	97%	70%	130%
Total Tungsten 4900987 <0.010 <0.010 NA < 0.010 99% 70% 130% 95% 80% 120% 95% 70%	otal Tungsten	4900987	<0.010	<0.010	NA	< 0.010	99%	70%	130%	95%	80%	120%	95%	70%	130%
Total Uranium 4900987 <0.002 <0.002 NA < 0.002 107% 70% 130% 97% 80% 120% 95% 70%	otal Uranium	4900987	<0.002	<0.002	NA	< 0.002	107%	70%	130%	97%	80%	120%	95%	70%	130%
Total Vanadium 4900987 <0.002 <0.002 NA < 0.002 97% 70% 130% 103% 80% 120% 103% 70%	otal Vanadium	4900987	<0.002	<0.002	NA	< 0.002	97%	70%	130%	103%	80%	120%	103%	70%	130%
Total Zinc 4900987 <0.020 0.030 NA < 0.020 108% 70% 130% 117% 80% 120% 106% 70%	otal Zinc	4900987	<0.020	0.030	NA	< 0.020	108%	70%	130%	117%	80%	120%	106%	70%	130%
	otal Zirconium	4900987	<0.004		NA	< 0.004	117%	70%	130%	112%	80%	120%	106%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Inis Verastegui

### AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 31 of 43



# **Method Summary**

Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration					
Microbiology Analysis	·	·	·					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
SAMPLING SITE:3275/3201 Trafalg	gar Rd, Oakville	SAMPLED BY:LB						
PROJECT: 21260		ATTENTION TO:	Henry Erebor					
CLIENT NAME: LANDTEK LTD.		AGAT WORK ORDER: 23H012142						



# **Method Summary**

CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

AGAT WORK ORDER: 23H012142

ATTENTION TO: Henry Erebor

		SAMPLED BY:LB							
SAMPLING SITE:3275/3201 Trafalo	-								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
ndeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS						
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
Hexachloroethane	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS						
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265 modified from EPA 3510C, 8270E &	GC/MS						
o-Chloroaniline	ORG-91-5114	GC/MS							



# **Method Summary**

### CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

## AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLED BY:LB

SAMPLING SITE:3275/3201 Trataigar Ro		SAMPLED BT:LB	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Hexachlorobutadiene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-and 1-methyl Napthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,3,4,6-Tetrachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Hexachlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Sediment			N/A
Aldicarb	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Bendiocarb	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Carbofuran	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Carbaryl	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Diuron	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Triallate	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Temephos	ORG-91-5101	EPA 632 531.1 & MOE E3158	HPLC
Diquat	ORG-91-5102	EPA 549.1	HPLC
Paraquat	ORG-91-5102	EPA 549.1	HPLC
Diethanolamine (DEA)	TO-2240	"In house" developed method	HPLC/UV
Ethanolamine (MEA)	TO-2240	"In house" developed method	HPLC/UV
Diisopropanolamine (DIPA)	TO-2240	"In house" developed method	HPLC/UV
Monoisopropanolamine (MIPA)	TO-2240	"In house" developed method	HPLC/UV
Propylene Glycol	TO-1410	EPA SW-846 8015	GC/FID
Monoethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID



# **Method Summary**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

### AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

ATTENTION TO: Henry Erebor SAMPLED BY:LB

SAMPLING SITE:3275/3201 Trafalgar Rd,	Oakville	SAMPLED BY:LB	1
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Diethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID
Triethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID
Tetraethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID
Heptanol	TO-1410	EPA SW-846 8015	GC/FID
Gamma-Hexachlorocyclohexane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Heptachlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Aldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Heptachlor Epoxide	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan I	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan II	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
alpha - chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
gamma-Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
Dieldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Methoxychlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachlorobenzene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachlorobutadiene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachloroethane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Aroclor 1242	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD



# **Method Summary**

### CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

AGAT WORK ORDER: 23H012142

SAMPLING SITE:3275/3201 Trafalgar Rd. Oakville

### ATTENTION TO: Henry Erebor SAMPLED BY:LB

SAMPLING SITE:3275/3201 Trafalga	r Rd, Oakville	SAMPLED BY:LB						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Aroclor 1248	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD					
Aroclor 1254	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD					
Aroclor 1260	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD					
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD					
ТСМХ	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD					
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD					
Total Oil and Grease in water	VOL-91-5011	SM 5520 & EPA SW846 3510C & EP/ 1664	^A BALANCE					
2,4-D	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
2,4,5-T	ORG-91-5510	EPA SW846 8151A	GC/ECD					
2,4,5-TP	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Dicamba	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Dichlorprop	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Dinoseb	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Picloram	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Diclofop-methyl	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
2,3,4,6-Tetrachlorophenol	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
2,4-Dichlorophenol	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
2,4,5-Trichlorophenol	ORG-91-5100	EPA SW-846 8151A	GC/ECD					
2,4,6-Trichlorophenol	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Bromoxynil	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
MCPA	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
MCPP	ORG-91-5110	EPA SW-846 8151A	GC/ECD					
Pentachlorophenol	ORG-91-5110	EPA SW-846 3510 & 8151	GC/ECD					
DCAA	ORG-91-5110	EPA SW-846 8151	GC/ECD					
1-Methylnaphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
2-Methylnaphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Acenaphthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Acenaphthylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Acridine, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Benzo(a)anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Benzo(a)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Benzo(b)fluoranthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Benzo(j+k)fluoranthene	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Benzo(e)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Benzo(ghi)perylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Chrysene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Dibenzo(a,h)anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					
Fluoranthene, Ultra-low	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS GC/MS					
Fluorene, Ultra-low	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS					
Indeno(1,2,3-cd)pyrene, Ultra-low	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS					
Naphthalene, Ultra-low	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS GC/MS					
-	ORG-120-5119 ORG-120-5119	EPA 3510C/8270E	GC/MS GC/MS					
Perylene, Ultra-low								
Phenanthrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS					



# **Method Summary**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

## AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLING SITE:3275/3201 Trafalgar	[·] Rd, Oakville	SAMPLED BY:LB							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS						
Quinoline, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS						
Sediment			GC/MS/FID						
Naphthalene-d8	ORG-120-5119	EPA 3510C/8270E	GC/MS						
Terphenyl-d14	ORG-120-5119	EPA 3510C/8270E	GC/MS						
Pyrene-d10	ORG-120-5119	EPA 3510C/8270E	GC/MS						
PAH - Extraction (Ultra-low)			GC/MS						
Linoleic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Linolenic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Oleic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
9,10-Dichlorostearic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Stearic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Fatty acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Pimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Sandaracopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Isopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Palustric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Levopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Dehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Abietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Neoabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
14-Chlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
12-Chlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
12,14-Dichlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Resin acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Resin and Fatty acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
O-methylpodocarpic	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS						
Trifluralin	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Simazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Atrazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Metribuzin	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Prometryne	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Metolachlor	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Alachlor	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Cyanazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Triphenyl phosphate (surr)	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS						
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						



# **Method Summary**

## CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

# AGAT WORK ORDER: 23H012142

SAMDI INC SITE-3275/3201	Trafalgar Pd	Oakvilla
SAMPLING SITE:3275/3201	Tratalgar Ru,	Oakville

## **ATTENTION TO: Henry Erebor** SAMPLED BY:LB

SAMPLING SITE:3275/3201 Trafalg	gar Rd, Oakville	SAMPLED BY:L	В
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
2-Hexanone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS



# **Method Summary**

## CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

# AGAT WORK ORDER: 23H012142

SAMPLING SITE: 3275/3201 Trafalgar Rd. Oakville

## **ATTENTION TO: Henry Erebor**

SAMPLING SITE:3275/3201 Trafalgar Rd	Oakville	SAMPLED BY:LB						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,2,4-Trichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
1,3-Dichloropropene (Cis + Trans)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS					



# **Method Summary**

CLIENT NAME: LANDTEK LTD.

### PROJECT: 21260

## SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

## AGAT WORK ORDER: 23H012142 ATTENTION TO: Henry Erebor

SAMPLED BY:LB

PARAMETER	AGAT S.O.P	ANALYTICAL TECHNIQUE						
Water Analysis			I					
Dissolved Oxygen	INOR-93-6006	Modified from SM 4500-O G	DO METER					
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE					
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE					
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA					
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION					
Total Phosphorus	INOR-93-6057	modified from LACHAT 10-115-01-3A	LACHAT FIA					
Turbidity	INOR-93-6000	modified from SM 2130 B	PC TITRATE					
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015,SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER					
Sulphide	INOR-93-6054	modified from SM 4500 S2- D	SPECTROPHOTOMETER					
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA					
Aluminum-dissolved	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS					
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS					
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS					



# **Method Summary**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

### AGAT WORK ORDER: 23H012142

**ATTENTION TO: Henry Erebor** 

### SAMPLING SITE:3275/3201 Trafalgar Rd, Oakville

# SAMPLED BY:LB

er ann Einte en Eier er er er anarga	rta, ealtrine		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Lab Filtration Aluminum Dissolved	SR-78-9001		FILTRATION
Lab Filtration mercury	SR-78-9001		FILTRATION
Total Residual Chlorine	INOR-93-6060	modified from SM 4500-CL- G	SPECTROPHOTOMETER

Chain of Custody Record		1	-	877.00	Ring Water Chain of		-	ssissau 2.5100 we	ga, On Fax: 9 bearth	-	Avenue 4Z 1Y2 2.5122 bs.con	e 2 2	Worł Cool	orator order #: er Quanti al Tempe	ty:	0	23H	LG	14-2 (00)	tops
Report Information:         Company:       LANDTEK LIMM         Contact:       ANDTEK LIMM         Contact:       ANDTEK LIMM         Contact:       ANDTEK LIMM         Address:       2 87-880 -3982         Phone:       287-880 -3982         Reports to be sent to:       1. Email:         2. Email:       Damy@Landte         Project Information:       Project:         Site Location:       32.75/3201 TR	769 юк D HAMUTON Fax: ch.cq			(Please Tal Soil Ta Soil Ta Soil Ta Soil Ta Soil Ta	gulatory Requires the submission of Site Coord of Site Coo	) Table Indicate or Regulation 55 CCME	e 8 [ Cer	Prov. Obje	Region Water ctives r Indicate ( Guide te of a	PWQO	on sis		Note Turn Regu Rush	aroun Ilar TAT TAT (Rus ) 3 Busi Days OR Da Ple *TAT is	d Time h Surcharg ness te Requ ase prov	e (TA ges Apply ired (Fi vide pr e of we	5 to 7 2 Busi Days Rush Su rior noti eekend	equire Business ness rcharges fication fo s and sta	Days	T lidays
Sampled By: AGAT Quote #: AGAT Quote #: S 5 4 14 8 Plense note: If quotation number Plense note: If quotation number Company: Contact: Address: Email: Email: Law Carpeload	B LIMITED (STOI) -2, (tA marco)	ill To Same: Yes		Sam B GW O P S SD SW	nple Matrix Leg Biota Ground Water Oil Paint Soil Sediment Surface Water	gend	Field Fittered - Metals, Hg, CNI, DOC	& Inorganics		FI-F4 PHCS			Disposal Characterization TCLP:	M&I DVOCS DABNS DE(a)PDPCB8	tels LI VOCS LI SVOCS au S Characterization Package 900 Metals RTFX F1-F4 90	Include Moisture Sulphide	0 SM			Potentially Hazardous or High Concentration (Y/N)
Sample Identification MW106 MW1-23 MW111-20	Date Sampled April 5 April 5 April 6	AM AM AM PM AM PM AM PM AM PM AM PM AM PM	Containers	Sample Matrix GrW GW	and the second se	ments/ nstructions	× × ×	Metals	Metals	PAHS PAHS	PCBS	A COLORED A COLO	Arcdors		Excess Soils	Corros	Z ×× × ×			Potenti
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Document IO: DIV-78-1511.022	8h	AM Date AQ(,5/2) Date APP_5/2 Date	3 Time 3 Time 3 Jime 1 Time	FM PM	Samples Received By (P Samples Received By (P Samples Received By (P	Int Name and Sign):	C E	34	R Pir	nk Copy	Dat DA Dat	pr nt   Y	23 S	Time Time Time Time	30 PN 	N°: e Copy	Pag T -	14	of 0 6 9	

Laboratories Sample Temperature Log LANDIEK. Work Order #: Client: Anival Temperatures - Laboratory Arrivál Temperatures - Branch/Driver : 100 pe 10 Cooler 11: 6.2 16.0.18.8 Cooler #1: 9-2 1 9.1 1 9.0 Conter 12: 6-6 1 6.0 1 6:5 Cooler #2: 10.0 1 10.2.1 10.5 Caoler #3: 2.3 1 2.9 1 3.0. Cooler #: 9.9. 1 9.7 1 9.5 Cooler #4: 4.4, 4.0., 4.7. Cooler 14: 8.7.1.8.8-1 B.2 Cooler 115: <u>6.216.016.3</u> Capter #5: 10.1 1.0.7 1.10.6 Cooler 116: 7.4 17.0 16.9 Cooler 116: 9. [ 1 8.9 1.8.7 / / Cooler #7: 1____1 Cooler 17: 1 8 Cooler #8 1 .ľ Cooler NB Cooler #9: Cooler (19: Cooler #10: Cooler #10: R Can D: IR Gun ID: Takan Dr: Rhiche Talan By: Date Town ANTS Document ID: SR-78-951 Doube Issued: February 24.



## CLIENT NAME: LANDTEK LTD. 205 NEBO ROAD, UNIT 3 HAMILTON, ON L8W2E1 (905) 383-3733 ATTENTION TO: Henry Erebor PROJECT: 21260 AGAT WORK ORDER: 24H183156 MICROBIOLOGY ANALYSIS REVIEWED BY: Sheetal Koul, Laboratory Team Lead MISCELLANEOUS ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Nivine Basily, Inorganic Team Lead TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead DATE REPORTED: Aug 19, 2024 PAGES (INCLUDING COVER): 41 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes		

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

**AGAT** Laboratories (V1)

Member of: A	ssociation of Professional Engineers and Geoscientists of Alberta
(/	APEGA)
Ŵ	Vestern Enviro-Agricultural Laboratory Association (WEALA)
E	nvironmental Services Association of Alberta (ESAA)

Page 1 of 41



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

SAMPLED BY:

						E.Coli (MI-Agar)
DATE RECEIV	ED: 2024-08-08					DATE REPORTED: 2024-08-19
		SA	MPLE DES	CRIPTION:	MW101-20	
			SAM	PLE TYPE:	Water	
			DATE	SAMPLED:	2024-08-08 13:30	
Para	ameter	Unit	G/S	RDL	6061042	
Escherichia coli		CFU/100mL	100		0	
Comments:						QO * Variable - refer to guideline reference document or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
6061042		Total Coliforms RD dilutions of the sa		/100mL.		

The sample was diluted prior to filtration due to the presence of sediments.

Certified By:



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				Base Neu	trals and Acids [Water]
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
		-	CRIPTION: PLE TYPE: CAMPLED:	MW101-20 Water 2024-08-08 13:30	
Parameter	Unit	G/S	RDL	6061042	
Naphthalene	µg/L	7	0.30	<0.30	
Acenaphthylene	µg/L		0.31	<0.31	
Acenaphthene	µg/L		0.30	<0.30	
Fluorene	µg/L	0.2	0.31	<0.31	
Phenanthrene	µg/L	0.03	0.32	<0.32	
Anthracene	µg/L	0.0008	0.30	<0.30	
Fluoranthene	µg/L	0.0008	0.27	<0.27	
Pyrene	µg/L		0.20	<0.20	
Benzo(a)anthracene	µg/L	0.0004	0.20	<0.20	
Chrysene	µg/L	0.0001	0.27	<0.27	
Benzo(b)fluoranthene	µg/L		0.20	<0.20	
Benzo(k)fluoranthene	µg/L	0.0002	0.20	<0.20	
Benzo(a)pyrene	µg/L		0.01	<0.01	
Indeno(1,2,3-cd)pyrene	µg/L		0.20	<0.20	
Dibenzo(a,h)anthracene	µg/L	0.002	0.20	<0.20	
Benzo(g,h,i)perylene	µg/L	0.00002	0.20	<0.20	
Phenol	µg/L		1.0	<1.0	
Bis(2-chloroethyl)ether	µg/L		0.5	<0.5	
2-Chlorophenol	µg/L		0.5	<0.5	
o-Cresol	µg/L	1	0.5	<0.5	
Bis(2-chloroisopropyl)ether	µg/L		0.5	<0.5	
m&p-Cresol	µg/L		0.5	<0.5	
Hexachloroethane	µg/L		0.5	<0.5	
2,4-Dimethylphenol	µg/L		0.5	<0.5	
2,4-Dichlorophenol	µg/L		0.3	<0.3	
1,2,4-Trichlorobenzene	µg/L		0.5	<0.5	
p-Chloroaniline	µg/L		1.0	<1.0	
Hexachlorobutadiene	µg/L		0.4	<0.4	
2-and 1-methyl Napthalene	µg/L	2	0.5	<0.5	

Certified By:

teus



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				Base Neu	trals and Acids [Water]
DATE RECEIVED: 2024-08-08	5				DATE REPORTED: 2024-08-19
	5	SAMPLE DESC	RIPTION:	MW101-20	
		SAMF	LE TYPE:	Water	
		DATE S	AMPLED:	2024-08-08 13:30	
Parameter	Unit	G/S	RDL	6061042	
2,4,6-Trichlorophenol	µg/L	18	0.2	<0.2	
2,4,5-Trichlorophenol	μg/L	18	0.2	<0.2	
1,1-Biphenyl	µg/L		0.5	<0.5	
Dimethyl phthalate	µg/L		0.5	<0.5	
2,6-Dinitrotoluene	µg/L		0.5	<0.5	
2,4-Dinitrotoluene	µg/L		0.5	<0.5	
2,3,4,6-Tetrachlorophenol	µg/L	1	0.5	<0.5	
Diethyl phthalate	µg/L		0.5	<0.5	
Hexachlorobenzene	µg/L	0.0065	0.5	<0.5	
Pentachlorophenol	µg/L		0.5	<0.5	
3,3'-dichlorobenzidine	µg/L		0.5	<0.5	
Bis(2-Ethylhexyl)phthalate	µg/L		0.5	<0.5	
2,4-Dinitrophenol	μg/L		10	<10	
Sediment				1	
Surrogate	Unit	Acceptabl	e Limits		
2-Fluorophenol	%	50-1	40	77	
phenol-d6 surrogate	%	50-1	40	70	
2,4,6-Tribromophenol	%	50-1	40	62	
Chrysene-d12	%	50-1	40	70	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6061042

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test. Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Certified By:



AGAT WORK ORDER: 24H183156

PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

			(	Carbamate Pestic	ides (Water)		
DATE RECEIVED: 2024-08-0	8					DATE REPORTED: 2024	-08-19
	S	SAMPLE DESCRIP	TION: MW10	1-20			
		SAMPLE T	ГҮРЕ: Wa	er			
		DATE SAMF	PLED: 2024- 13:				
Parameter	Unit	G/S R	DL 6061	)42			
Aldicarb	µg/L	2	2.0 <2	0			
Bendiocarb	µg/L		2 <				
Carbofuran	µg/L		5 <				
Carbaryl	μg/L		5 <				
Diuron	µg/L	1	10 <1	)			
Triallate	µg/L		1 <				
Temephos	µg/L	1	10 <1	)			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6061042 Results relate only to the items tested.

Certified By:

teus



AGAT WORK ORDER: 24H183156

PROJECT: 21260

## CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

Diquat/Paraquat							
DATE RECEI\	/ED: 2024-08-08					DATE REPORTED: 2024-08-19	
SAMPLE DESCRIPTION: SAMPLE TYPE:					MW101-20 Water		
			-	SAMPLED:	2024-08-08 13:30		
Par	rameter	Unit	Unit G/S		6061042		
Diquat		µg/L		5	<5		
Paraquat		µg/L		1	<1		
6061042	Gravimetric Heavy Hy The chromatogram ha Total C6 - C50 results	s calculated u ad parameter. TEX) is a calc C34, and C3 C34, and C3 cas returned to as returned to as returned to as are correcter with the Ref hase factors ar 4 response fa s within 70% 6. g times were ntified with th	using Toluene The calculate ulated param 4 - C50 fractio the not include baseline by t d for BTEX co erence Metho e within 30% of ctors are with of nC10 + nC met for this sa e contribution	ed value is th eter. The cal ons are calcu- ed in the Tota d in the Tota he retention nutribution. d for the CW of Toluene re in 10% of the 16 + nC34 ar ample.	e sum of m&p-X culated value is ilated using the a il C16-C50 and a time of nC50. S PHC and is va esponse factor. eir average.		

Analysis performed at AGAT Toronto (unless marked by *)

	/
Cours	
9 5	
Q	

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122



AGAT WORK ORDER: 24H183156 PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

# Ethanolamines in Water by HPLC - Low Level

### DATE RECEIVED: 2024-08-08

DATE RECEIVED: 2024-08-08				
	S	AMPLE DES	SCRIPTION:	MW101-20
		SAM	IPLE TYPE:	Water
		DATE	SAMPLED:	2024-08-08 13:30
Parameter	Unit	G/S	RDL	6061042
Diethanolamine (DEA)	mg/L		0.040	<0.04
Ethanolamine (MEA)	mg/L		0.05	<0.05
Diisopropanolamine (DIPA)	mg/L		0.1	<0.1
Monoisopropanolamine (MIPA)	mg/L		0.1	<0.1

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

teus



AGAT WORK ORDER: 24H183156 PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

Glycols Analysis in Water							
DATE RECEIVED: 2024-08-08				DATE REPORTED: 2024-08-19			
		SAMPLE DESCRIPTION	: MW101-20				
		SAMPLE TYPE	: Water				
	DATE SAMPLED:		: 2024-08-08 13:30				
Parameter	Unit	G/S RDL	6061042				
Propylene Glycol	mg/L	10	<10				
Monoethylene Glycol	mg/L	8	<8				
Diethylene Glycol	mg/L	5.0	<5				
Friethylene Glycol	mg/L	8	<8				
Fetraethylene Glycol	mg/L	10	<10				
Surrogate	Unit	Acceptable Limits					
Heptanol	%	50-140	95				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard Analysis by GC/FID.

6061042

Identification based on retention time relative to standards.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

teus



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				OC Pes	ticides + PCBs (Water)
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	S		RIPTION: LE TYPE: AMPLED:	MW101-20 Water 2024-08-08 13:30	
Parameter	Unit	G/S	RDL	6061042	
Gamma-Hexachlorocyclohexane	ug/L		0.01	<0.01	
Heptachlor	ug/L		0.01	<0.01	
Aldrin	ug/L		0.01	<0.01	
Heptachlor Epoxide	ug/L		0.01	<0.01	
Endosulfan I	µg/L		0.05	<0.05	
Endosulfan II	µg/L		0.05	<0.05	
Endosulfan	ug/L		0.05	<0.05	
alpha - chlordane	µg/L		0.1	<0.1	
gamma-Chlordane	µg/L		0.2	<0.2	
Chlordane	ug/L		0.04	<0.04	
op'-DDE	µg/L		0.01	<0.01	
pp'-DDE	µg/L		0.01	<0.01	
DDE	ug/L		0.01	<0.01	
op'-DDD	µg/L		0.05	<0.05	
pp'-DDD	µg/L		0.05	<0.05	
DDD	ug/L		0.05	<0.05	
op'-DDT	µg/L		0.04	<0.04	
pp'-DDT	µg/L		0.05	<0.05	
DDT	ug/L		0.04	<0.04	
Dieldrin	ug/L		0.02	<0.02	
Endrin	ug/L		0.05	<0.05	
Methoxychlor	ug/L		0.04	<0.04	
Hexachlorobenzene	ug/L	0.0065	0.01	<0.01	
Hexachlorobutadiene	ug/L		0.01	<0.01	
Hexachloroethane	ug/L		0.01	<0.01	
Aroclor 1242	ug/L		0.1	<0.1	
Aroclor 1248	ug/L		0.1	<0.1	
Aroclor 1254	ug/L		0.1	<0.1	
Aroclor 1260	ug/L		0.1	<0.1	

teus



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

#### OC Pesticides + PCBs (Water)

DATE RECEIVED: 2024-08-08
---------------------------

	S	SAMPLE DESC	CRIPTION:	MW101-20
		SAMPLE TYPE:		
		DATE S	SAMPLED:	2024-08-08 13:30
Parameter	Unit	G/S	RDL	6061042
Polychlorinated Biphenyls	ug/L	0.001	0.1	<0.1
Surrogate	Unit	Acceptab	Acceptable Limits	
тсмх	%	50-1	40	90
Decachlorobiphenyl	%	50-1	40	100

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6061042 DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

**DATE REPORTED: 2024-08-19** 



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				Oil and	d Grease (Total) in Water
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	SAMPLE DESCRIPTION:			MW101-20	
	SAMPLE TYPE:			Water	
	DATE SAMPLED:		2024-08-08 13:30		
Parameter	Unit	G/S	RDL	6061042	
Total Oil and Grease in water	mg/L		0.5	2.03	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

teus



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				Phenoxy	Acid Herbicides (Water)
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	:	SAMPLE DES	CRIPTION:	MW101-20	
		SAME	PLE TYPE:	Water	
		DATE S	SAMPLED:	2024-08-08 13:30	
Parameter	Unit	G/S	RDL	6061042	
2,4-D	µg/L		0.5	<0.5	
2,4,5-T	µg/L		0.5	<0.5	
2,4,5-TP	µg/L		0.5	<0.5	
Dicamba	µg/L		0.5	<0.5	
Dichlorprop	µg/L		0.5	<0.5	
Dinoseb	µg/L		0.5	<0.5	
Picloram	µg/L		0.5	<0.5	
Diclofop-methyl	µg/L		0.5	<0.5	
2,3,4,6-Tetrachlorophenol	µg/L	1	0.5	<0.5	
2,4-Dichlorophenol	µg/L		0.2	<0.2	
2,4,5-Trichlorophenol	µg/L	18	0.5	<0.5	
2,4,6-Trichlorophenol	µg/L	18	0.5	<0.5	
Bromoxynil	µg/L		0.3	<0.3	
МСРА	µg/L		5.0	<5.0	
MCPP	µg/L		5.0	<5.0	
Pentachlorophenol	µg/L		0.1	<0.1	
Surrogate	Unit	Acceptab	le Limits		
DCAA	%	50-1	40	100	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Toronto (unless marked by *)

Certified By:



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

#### Polycyclic Aromatic Hydrocarbons in Water - Ultra-Low Level DATE RECEIVED: 2024-08-08 **DATE REPORTED: 2024-08-19** SAMPLE DESCRIPTION: MW101-20 SAMPLE TYPE: Water 2024-08-08 DATE SAMPLED: 13:30 Parameter Unit G/S RDL 6061042 1-Methylnaphthalene, Ultra-low µg/L 0.001 0.035 0.001 0.067 2-Methylnaphthalene, Ultra-low µg/L µg/L 0.001 < 0.001 Acenaphthene, Ultra-low µg/L Acenaphthylene, Ultra-low 0.001 0.018 Acridine. Ultra-low µg/L 0.001 < 0.001 Anthracene, Ultra-low µg/L 0.001 < 0.001 µg/L Benzo(a)anthracene, Ultra-low 0.001 < 0.001 Benzo(a)pyrene, Ultra-low µg/L 0.001 < 0.001 Benzo(b)fluoranthene, Ultra-low µg/L 0.001 < 0.001 Benzo(j+k)fluoranthene 0.001 µg/L < 0.01 Benzo(e)pyrene, Ultra-low µg/L 0.001 < 0.001 0.001 Benzo(ghi)perylene, Ultra-low µg/L < 0.001 Chrysene, Ultra-low µg/L 0.001 < 0.001 µg/L Dibenzo(a,h)anthracene, Ultra-low 0.001 < 0.001 Fluoranthene, Ultra-low µg/L 0.001 < 0.001 Fluorene, Ultra-low µg/L 0.001 < 0.001 Indeno(1,2,3-cd)pyrene, Ultra-low µg/L 0.001 < 0.001 Naphthalene, Ultra-low µg/L 0.001 < 0.001 Perylene, Ultra-low µg/L 0.001 < 0.001 µg/L 0.001 Phenanthrene, Ultra-low < 0.001 Pyrene, Ultra-low µg/L 0.001 < 0.001 Quinoline, Ultra-low µg/L 0.001 < 0.001 Sediment No PAH - Extraction (Ultra-low) Υ Surrogate Unit Acceptable Limits Naphthalene-d8 % 50-140 131 Terphenyl-d14 % 50-140 120 % 50-140 99 Pyrene-d10

Certified By:

teus



AGAT WORK ORDER: 24H183156 PROJECT: 21260

CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

6061042

ATTENTION TO: Henry Erebor

SAMPLED BY:

Polycyclic Aromatic Hydrocarbons in Water - Ultra-Low Level

#### DATE RECEIVED: 2024-08-08

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Benzo(b)fluoranthene may include contributions from benzo(j)fluoranthene, if also present in the sample. Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Halifax (unless marked by *)

DATE REPORTED: 2024-08-19

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Certified By:



AGAT WORK ORDER: 24H183156

PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

			Resi	n and Fatty ac	id (water)
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	:	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW101-20 Water 2024-08-08 13:30	MW101-20 Water 2024-08-08 13:30	
Parameter	Unit	G/S RDL	6061042	6061042Zb	
Linoleic acid	µg/L	10		<10	
Linolenic acid	µg/L	10		<10	
Oleic acid	µg/L	10		<10	
9,10-Dichlorostearic acid	µg/L	10		<10	
Stearic acid	µg/L	10		<10	
Fatty acid total	µg/L	10		<10	
Pimaric acid	µg/L	10		<10	
Sandaracopimaric acid	µg/L	10		<10	
Isopimaric acid	µg/L	10		<10	
Palustric acid	µg/L	10		<10	
Levopimaric acid	µg/L	10		<10	
Dehydroabietic acid	µg/L	10		<10	
Abietic acid	µg/L	10		<10	
Neoabietic acid	µg/L	10		<10	
14-Chlorodehydroabietic acid	µg/L	10		<10	
12-Chlorodehydroabietic acid	µg/L	10		<10	
12,14-Dichlorodehydroabietic acid	µg/L	10		<10	
Resin acid total	µg/L	10		<10	
Resin and Fatty acid total	µg/L	10		<10	
Surrogate	Unit	Acceptable Limits			
O-methylpodocarpic	%	40-140		73	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6061042-

Elevated RDLs indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range or reduce matrix interference. 6061042Zb

Sample was analyzed in Montreal.

Analysis performed at AGAT Montréal (unless marked by *)

Certified By:

teus



AGAT WORK ORDER: 24H183156

PROJECT: 21260

Triazino Posticidos [Wator]

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

DATE RECEIVED: 2024-08-08				DATE REPORTED: 2024-08-19
		SAMPLE DESCRIPTION	: MW101-20	
		SAMPLE TYPE	: Water	
		DATE SAMPLED	2024-08-08 13:30	
Parameter	Unit	G/S RDL	6061042	
Trifluralin	µg/L	1.0	<1.0	
Simazine	µg/L	1.0	<1.0	
Atrazine	µg/L	0.5	<0.5	
Metribuzin	µg/L	0.25	<0.25	
Prometryne	µg/L	0.25	<0.25	
Vetolachlor	µg/L	0.11	<0.11	
Alachlor	µg/L	0.5	<0.5	
Cyanazine	µg/L	1.0	<1.0	
Surrogate	Unit	Acceptable Limits		
Triphenyl phosphate (surr)	%	30-130	71	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ODWS - Table D

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6061042 Results relate only to the items tested.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

#### Volatile Organic Compounds in Water (ug/L)

DATE RECEIVED: 2024-08-08					DA
	S	AMPLE DES	CRIPTION: PLE TYPE:	MW101-20 Water	
			SAMPLED:	2024-08-08	
				13:30	
Parameter	Unit	G/S	RDL	6061042	
Dichlorodifluoromethane	µg/L		0.40	<0.40	
Chloromethane	µg/L	700	0.20	<0.20	
Vinyl Chloride	µg/L	600	0.17	<0.17	
Bromomethane	µg/L	0.9	0.20	<0.20	
Chloroethane	µg/L		0.20	<0.20	
Trichlorofluoromethane	µg/L		0.40	<0.40	
Acetone	µg/L		1.0	<1.0	
1,1-Dichloroethylene	µg/L	400	0.2	<0.2	
Methylene Chloride	µg/L	100	0.30	<0.30	
trans- 1,2-dichloroethylene	µg/L	200	0.20	<0.20	
Methyl tert-butyl ether	µg/L	200	0.20	<0.20	
1,1-Dichloroethane	µg/L	200	0.30	<0.30	
Methyl Ethyl Ketone	µg/L	400	1.0	<1.0	
cis- 1,2-Dichloroethylene	µg/L	200	0.20	<0.20	
Chloroform	µg/L		0.20	<0.20	
1,2-Dichloroethane	µg/L	100	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	10	0.30	<0.30	
Carbon Tetrachloride	µg/L		0.20	<0.20	
Benzene	µg/L	100	0.20	0.40	
1,2-Dichloropropane	µg/L	0.7	0.20	<0.20	
Trichloroethylene	µg/L	20	0.20	<0.20	
Bromodichloromethane	µg/L	200	0.20	<0.20	
cis-1,3-Dichloropropene	µg/L		0.20	<0.20	
Methyl Isobutyl Ketone	µg/L	_	1.0	<1.0	
trans-1,3-Dichloropropene	µg/L	7	0.30	<0.30	
1,1,2-Trichloroethane	µg/L	800	0.20	<0.20	
Toluene	μg/L	0.8	0.20	0.35	
2-Hexanone	µg/L		1.0	<1.0	
Dibromochloromethane	µg/L	40	0.10	<0.10	

Certified By:



AGAT WORK ORDER: 24H183156 PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

**ATTENTION TO: Henry Erebor** 

SAMPLED BY:

#### Volatile Organic Compounds in Water (ug/L)

DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	S	AMPLE DESC	RIPTION:	MW101-20	
		SAMPL	E TYPE:	Water	
		DATE SA	MPLED:	2024-08-08 13:30	
Parameter	Unit	G / S	RDL	6061042	
Ethylene Dibromide	µg/L	5	0.10	<0.10	
Tetrachloroethylene	µg/L	50	0.20	<0.20	
1,1,1,2-Tetrachloroethane	µg/L	20	0.10	<0.10	
Chlorobenzene	µg/L	15	0.10	<0.10	
Ethylbenzene	µg/L	8	0.10	<0.10	
n & p-Xylene	µg/L	32	0.20	<0.20	
Bromoform	µg/L	60	0.10	<0.10	
Styrene	µg/L	4	0.10	<0.10	
1,1,2,2-Tetrachloroethane	µg/L	70	0.10	<0.10	
o-Xylene	µg/L	40	0.10	<0.10	
1,3-Dichlorobenzene	µg/L	2.5	0.10	<0.10	
1,4-Dichlorobenzene	µg/L	4	0.10	<0.10	
1,2-Dichlorobenzene	µg/L	2.5	0.10	<0.10	
1,2,4-Trichlorobenzene	µg/L	0.5	0.30	<0.30	
1,3-Dichloropropene (Cis + Trans)	µg/L		0.30	<0.30	
Kylenes (Total)	µg/L		0.20	<0.20	
n-Hexane	µg/L		0.20	<0.20	
Surrogate	Unit	Acceptable	Limits		
Toluene-d8	% Recovery	50-14	0	88	
4-Bromofluorobenzene	% Recovery	50-14	0	106	

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6061042 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)



AGAT WORK ORDER: 24H183156 PROJECT: 21260 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				Dissolve	d Oxygen in Water- mg/L	
DATE RECEIVED: 2024-08-08 DATE REPORTED: 2024-08-19						
	SAMPLE DESCRIPTION:			MW101-20		
	SAMPLE TYPE:			Water		
		DATE SAMPLED:		2024-08-08 13:30		
Parameter	Unit	G/S	RDL	6061042		
Dissolved Oxygen	mg/L		0.05	11.6		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Irús Verastegui



AGAT WORK ORDER: 24H183156

PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

					PWQO Parameters
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	S		CRIPTION: PLE TYPE: SAMPLED:	MW101-20 Water 2024-08-08 13:30	
Parameter	Unit	G / S	RDL	6061042	
рН	pH Units	6.5-8.5	NA	7.46	
Alkalinity (as CaCO3)	mg/L		5	563	
Ammonia as N	mg/L		0.02	0.04	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	0.000692	
Total Phosphorus	mg/L	*	0.02	4.58	
Turbidity	NTU		0.5	1490	
Cyanide, WAD	mg/L	0.005	0.002	<0.002	
Sulphide	mg/L		0.01	<0.01	
Phenols	mg/L	0.001	0.001	<0.001	
Aluminum-dissolved	mg/L	*	0.004	< 0.004	
Total Antimony	mg/L	0.020	0.003	<0.003	
Total Arsenic	mg/L	0.1	0.006	0.020	
Total Beryllium	mg/L	*	0.002	0.003	
Total Boron	mg/L	0.2	0.020	1.67	
Total Cadmium	mg/L	0.0002	0.0002	0.0004	
Total Iron	mg/L	0.3	0.100	33.6	
Total Chromium	mg/L		0.006	0.049	
Total Cobalt	mg/L	0.0009	0.0010	0.0193	
Total Copper	mg/L	0.005	0.004	0.015	
Total Lead	mg/L	*	0.0010	0.0227	
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001	
Total Molybdenum	mg/L	0.040	0.004	<0.004	
Total Nickel	mg/L	0.025	0.006	0.042	
Total Selenium	mg/L	0.1	0.004	<0.004	
Total Silver	mg/L	0.0001	0.0002	<0.0002	
Total Thallium	mg/L	0.0003	0.0006	<0.0006	
Total Tungsten	mg/L	0.030	0.020	<0.020	
Total Uranium	mg/L	0.005	0.0010	0.0146	
Total Vanadium	mg/L	0.006	0.004	0.059	

Certified By:

Iris Verastegui



AGAT WORK ORDER: 24H183156

PROJECT: 21260

CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

6061042

ATTENTION TO: Henry Erebor

SAMPLED BY:

				F	VQO Parameters
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	5	SAMPLE DES	CRIPTION:	MW101-20	
		SAM	PLE TYPE:	Water	
DATE SAMPLED			SAMPLED:	2024-08-08 13:30	
Parameter	Unit	G/S	RDL	6061042	
Total Zinc	mg/L	0.030	0.040	0.084	
Total Zirconium	mg/L	0.004	0.008	0.020	
Lab Filtration Aluminum Dissolved				1	
Lab Filtration mercury				1	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Dilution required, RDL has been increased accordingly.

Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as calculated.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Iris Verastegui

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### LANDTEK LTD. E:



AGAT WORK ORDER: 24H183156

PROJECT: 21260

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L42 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

#### CLIENT NAME: LANDTEK LTD.

SAMPLING SITE:

ATTENTION TO: Henry Erebor

SAMPLED BY:

				I	esidual Chlorine
DATE RECEIVED: 2024-08-08					DATE REPORTED: 2024-08-19
	SAMPLE DESCRIPTIO				
SAMPLE TYPE			PLE TYPE:	Water	
	DATE SAMPLED:		2024-08-08 13:30		
Parameter	Unit	G/S	RDL	6061042	
Total Residual Chlorine	mg/L		0.08	<0.08	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

6061042 Due to the instability of chlorine in aqueous solutions, the results reported may be biased low and should be reviewed with discretion. Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Iris Verastegui



### Quality Assurance

#### CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

SAMPLING SITE:

AGAT WORK ORDER: 24H183156

ATTENTION TO: Henry Erebor

SAMPLED BY:

#### Microbiology Analysis REFERENCE MATERIAL METHOD BLANK SPIKE DUPLICATE MATRIX SPIKE RPT Date: Aug 19, 2024 Acceptable Method Acceptable Acceptable Sample Blank Measured Limits Limits Limits PARAMETER RPD Batch Dup #1 Dup #2 Recovery Recovery ld Value Lower Upper Lower Upper Lower Upper E.Coli (MI-Agar)

Escherichia coli 6061471 0 0 NA

Comments: NA - % RPD Not Applicable.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 23 of 41



Page 24 of 41

### **Quality Assurance**

#### CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

SAMPLING SITE:

AGAT WORK ORDER: 24H183156

ATTENTION TO: Henry Erebor

SAMPLED BY:

## Trace Organics Analysis

RPT Date: Aug 19, 2024			Ľ	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lin	eptable nits
FARAMETER	Daten	ld	Dup #1	Dup #2	KF D		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Uppe
Base Neutrals and Acids [Water]											•				•
Naphthalene	6058518		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	116%	50%	140%	85%	50%	140%
Acenaphthylene	6058518		< 0.31	< 0.31	NA	< 0.31	88%	50%	140%	111%	50%	140%	87%	50%	140%
Acenaphthene	6058518		< 0.30	< 0.30	NA	< 0.30	102%	50%	140%	117%	50%	140%	78%	50%	140%
Fluorene	6058518		< 0.31	< 0.31	NA	< 0.31	106%	50%	140%	69%	50%	140%	75%	50%	140%
Phenanthrene	6058518		< 0.32	< 0.32	NA	< 0.32	93%	50%	140%	83%	50%	140%	117%	50%	140%
Anthracene	6058518		< 0.30	< 0.30	NA	< 0.30	92%	50%	140%	69%	50%	140%	83%	50%	140%
Fluoranthene	6058518		< 0.27	< 0.27	NA	< 0.27	89%	50%	140%	73%	50%	140%	80%	50%	140%
Pyrene	6058518		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	72%	50%	140%	85%	50%	140%
Benzo(a)anthracene	6058518		< 0.20	< 0.20	NA	< 0.20	97%	50%	140%	73%	50%	140%	67%	50%	140%
Chrysene	6058518		< 0.27	< 0.27	NA	< 0.27	92%	50%	140%	82%	50%	140%	68%	50%	140%
Benzo(b)fluoranthene	6058518		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	91%	50%	140%	105%	50%	140%
Benzo(k)fluoranthene	6058518		< 0.20	< 0.20	NA	< 0.20	115%	50%	140%	93%	50%	140%	114%	50%	140%
Benzo(a)pyrene	6058518		< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	93%	50%	140%	110%	50%	140%
ndeno(1,2,3-cd)pyrene	6058518		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	76%	50%	140%	86%	50%	140%
Dibenzo(a,h)anthracene	6058518		< 0.20	< 0.20	NA	< 0.20	70%	50%	140%	69%	50%	140%	66%	50%	140%
Benzo(g,h,i)perylene	6058518		< 0.20	< 0.20	NA	< 0.20	83%	50%	140%	73%	50%	140%	78%	50%	140%
Phenol	6058518		< 1.0	< 1.0	NA	< 1.0	72%	50%	140%	70%	50%	140%	70%	50%	140%
Bis(2-chloroethyl)ether	6058518		< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	109%	50%	140%	99%	50%	140%
2-Chlorophenol	6058518		< 0.5	< 0.5	NA	< 0.5	74%	50%	140%	100%	50%	140%	78%	50%	140%
o-Cresol	6058518		< 0.5	< 0.5	NA	< 0.5	108%	50%	140%	102%	50%	140%	99%	50%	140%
Bis(2-chloroisopropyl)ether	6058518		< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	84%	50%	140%	74%	50%	140%
m&p-Cresol	6058518		< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	100%	50%	140%	84%	50%	140%
Hexachloroethane	6058518		< 0.5	< 0.5	NA	< 0.5	89%	50%	140%	94%	50%	140%	76%	50%	140%
2,4-Dimethylphenol	6058518		< 0.5	< 0.5	NA	< 0.5	79%		130%	94%	30%	130%	78%	30%	130%
2,4-Dichlorophenol	6058518		< 0.3	< 0.3	NA	< 0.3	91%	50%	140%	92%	50%	140%	65%	50%	140%
1,2,4-Trichlorobenzene	6058518		< 0.5	< 0.5	NA	< 0.5	104%		140%	78%	50%	140%	57%	50%	140%
p-Chloroaniline	6058518		< 1.0	< 1.0	NA	< 1.0	81%	50%	140%	108%	50%	140%	80%	50%	140%
Hexachlorobutadiene	6058518		< 0.4	< 0.4	NA	< 0.4	101%	50%	140%	63%	50%	140%	67%	50%	140%
2,4,6-Trichlorophenol	6058518		< 0.2	< 0.2	NA	< 0.2	92%	50%	140%	119%	50%	140%	65%	50%	140%
2,4,5-Trichlorophenol	6058518		< 0.2	< 0.2	NA	< 0.2	113%	50%	140%	99%	50%	140%	116%	50%	140%
1,1-Biphenyl	6058518		< 0.5	< 0.5	NA	< 0.5	104%		140%	112%	50%	140%	88%	50%	140%
Dimethyl phthalate	6058518		< 0.5	< 0.5	NA	< 0.5	104%		140%	99%		140%	75%		140%
2,6-Dinitrotoluene	6058518		< 0.5	< 0.5	NA	< 0.5	111%		140%	93%	50%	140%	110%		140%
2,4-Dinitrotoluene	6058518		< 0.5	< 0.5	NA	< 0.5	102%		140%	113%	50%	140%	119%		140%
2,3,4,6-Tetrachlorophenol	6058518		< 0.5	< 0.5	NA	< 0.5	110%	50%	140%	63%	50%	140%	64%	50%	140%
Diethyl phthalate	6058518		< 0.5	< 0.5	NA	< 0.5	95%		140%	76%	50%		65%		140%
Hexachlorobenzene	6058518		< 0.5	< 0.5	NA	< 0.5	94%		140%	71%	50%	140%	62%		140%
Pentachlorophenol	6058518		< 0.5	< 0.5	NA	< 0.5	82%		140%	75%		140%	64%		140%
3,3'-dichlorobenzidine	6058518		< 0.5	< 0.5	NA	< 0.5	94%	30%	130%	62%	30%	130%	78%	30%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



Page 25 of 41

#### Quality Assurance

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260 SAMPLING SITE: AGAT WORK ORDER: 24H183156 ATTENTION TO: Henry Erebor

SAMPLED BY:

#### Trace Organics Analysis (Continued) DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Aug 19, 2024 MATRIX SPIKE Acceptable Method Acceptable Acceptable Sample Measured Blank Limits Limits Limits Dup #2 PARAMETER Batch Dup #1 RPD Recover Recovery Value ld Lower Upper Lower Upper Lower Upper Bis(2-Ethylhexyl)phthalate 6058518 < 0.5 104% 50% 140% 69% 50% 140% 99% 50% 140% < 0.5NA < 0.5 30% 30% 130% 2,4-Dinitrophenol 6058518 < 10 < 10 NA < 10 107% 130% 78% 30% 130% 77% Carbamate Pesticides (Water) Aldicarb 6041695 0.0% 102% 102% < 2.0 < 2.0 < 2.0 50% 140% 112% 50% 140% 50% 140% 1 6041695 95% Bendiocarb 1 < 2 < 2 0.0% < 2 121% 50% 140% 50% 140% 76% 50% 140% Carbofuran 1 6041695 < 5 < 5 0.0% < 5 121% 50% 140% 95% 50% 140% 76% 50% 140% 50% Carbaryl 1 6041695 < 5 < 5 0.0% < 5 56% 50% 140% 71% 50% 140% 89% 140% 6041695 99% 50% 140% 110% 140% Diuron 1 < 10 < 10 0.0% < 10 50% 140% 97% 50% Triallate 6041695 0.0% 108% 50% 140% 123% 140% 91% 50% 140% 1 < 1 < 1 < 1 50% 98% Temephos 1 6041695 < 10 < 10 0.0% < 10 89% 60% 130% 60% 130% 96% 60% 130% Diquat/Paraquat Diquat TWDUP < 5 < 5 0.0% < 5 99% 50% 140% 60% 50% 140% 99% 50% 140% TWDUP < 1 Paraquat < 1 < 1 0.0% 97% 50% 140% 65% 50% 140% 96% 50% 140% OC Pesticides + PCBs (Water) Gamma-Hexachlorocyclohexane 6065544 < 0.01 < 0.01 NA < 0.01 88% 50% 140% 85% 50% 140% 94% 50% 140% Heptachlor 6065544 82% 50% 104% 140% 109% 140% < 0.01 < 0.01 NA < 0.01 140% 50% 50% Aldrin 6065544 < 0.01 < 0.01 NA < 0.01 89% 50% 140% 92% 50% 140% 104% 50% 140% Heptachlor Epoxide 6065544 < 0.01< 0.01NA < 0.0182% 50% 140% 84% 50% 140% 94% 50% 140% Endosulfan I 6065544 < 0.05 < 0.05NA < 0.05 84% 50% 140% 90% 50% 140% 100% 50% 140% Endosulfan II 6065544 < 0.05 < 0.05 NA < 0.05 81% 50% 140% 91% 50% 140% 102% 50% 140% alpha - chlordane 6065544 < 0.1 < 0.1 NA < 0.1 82% 50% 140% 89% 50% 140% 89% 50% 140% 50% gamma-Chlordane 6065544 < 0.2 < 0.2 NA < 0.2 83% 50% 140% 86% 140% 96% 50% 140% op'-DDE 6065544 < 0.01 < 0.01 NA < 0.01 115% 50% 140% 105% 50% 140% 94% 50% 140% pp'-DDE 6065544 82% 50% 140% 95% 100% 50% 140% < 0.01 < 0.01 NA < 0.01 50% 140% op'-DDD 140% 6065544 < 0.05 < 0.05 NA < 0.05 104% 50% 140% 108% 50% 140% 109% 50% pp'-DDD 6065544 < 0.05 < 0.05 NA < 0.05 82% 50% 140% 98% 50% 140% 104% 50% 140% op'-DDT 6065544 < 0.04 < 0.04 NA < 0.04 95% 50% 140% 109% 50% 140% 115% 50% 140% pp'-DDT 6065544 < 0.05 < 0.05 NA < 0.05 82% 50% 140% 92% 50% 140% 98% 50% 140% 140% Dieldrin 6065544 < 0.02< 0.02NA < 0.0288% 50% 140% 89% 50% 140% 99% 50% 84% Endrin 6065544 < 0.05< 0.05NA < 0.0550% 140% 86% 50% 140% 106% 50% 140% Methoxychlor 6065544 < 0.04 < 0.04 NA < 0.04 82% 50% 140% 88% 50% 140% 106% 50% 140% 6065544 50% 97% 103% 140% Hexachlorobenzene < 0.01 < 0.01 NA < 0.01 103% 140% 50% 140% 50% Hexachlorobutadiene 6065544 < 0.01 < 0.01 NA < 0.01 91% 50% 140% 115% 50% 140% 104% 50% 140% 50% Hexachloroethane 6065544 < 0.01 < 0.01 NA < 0.01 89% 50% 140% 103% 140% 115% 50% 140% Aroclor 1242 6065544 < 0.1 < 0.1 < 0.1 106% 60% 140% 60% 140% 60% 140% NA NA NA Aroclor 1248 140% 6065544 < 0.1 < 0.1 NA < 0.1 98% 60% 140% NA 60% 140% NA 60% Aroclor 1254 6065544 < 0.1 < 0.1 NA < 0.1 102% 60% 140% NA 60% 140% NA 60% 140% Aroclor 1260 6065544 < 0.1 < 0.1 NA < 0.1 97% 60% 140% NA 60% 140% NA 60% 140%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



### **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260 SAMPLING SITE:

AGAT WORK ORDER: 24H183156

ATTENTION TO: Henry Erebor

SAMPLED BY:

	٦	Frace	Org	anics	Ana	alysis	(Cor	ntin	ued	)					
RPT Date: Aug 19, 2024			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	1 1 10	eptable mits
	Baton	ld	Dup "I	Dup "2			Value	Lower	Upper	1100001019	Lower	Upper	recovery	Lower	Uppe
Polychlorinated Biphenyls	6065544		< 0.1	< 0.1	NA	< 0.1	103%	60%	140%	102%	60%	140%	NA	60%	140%
Oil and Grease (Total) in Water															
Total Oil and Grease in water	6056507		< 0.5	< 0.5	NA	< 0.5	98%	70%	130%	99%	70%	130%	96%	70%	130%
Phenoxy Acid Herbicides (Water)															
2,4-D			< 0.5	< 0.5	NA	< 0.5	95%	50%	140%	90%	50%	140%	76%	50%	140%
2,4,5-T			< 0.5	< 0.5	NA	< 0.5	98%	50%	140%	94%	50%	140%	81%	50%	140%
2,4,5-TP			< 0.5	< 0.5	NA	< 0.5	90%	50%	140%	85%	50%	140%	79%	50%	140%
Dicamba			< 0.5	< 0.5	NA	< 0.5	94%	50%	140%	82%	50%	140%	85%	50%	140%
Dichlorprop			< 0.5	< 0.5	NA	< 0.5	97%	50%	140%	90%	50%	140%	86%	50%	140%
Dinoseb			< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	80%	50%	140%	70%	50%	140%
Picloram			< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	96%	50%	140%	72%	50%	140%
Diclofop-methyl			< 0.5	< 0.5	NA	< 0.5	98%	50%	140%	78%	50%	140%	84%	50%	140%
2,3,4,6-Tetrachlorophenol			< 0.5	< 0.5	NA	< 0.5	75%	50%	140%	80%	50%	140%	NA	50%	140%
2,4-Dichlorophenol			< 0.2	< 0.2	NA	< 0.2	86%	50%	140%	94%	50%	140%	NA	50%	140%
2,4,5-Trichlorophenol			< 0.5	< 0.5	NA	< 0.5	94%	50%	140%	91%	50%	140%	NA	50%	140%
2,4,6-Trichlorophenol			< 0.5	< 0.5	NA	< 0.5	75%	50%	140%	80%	50%	140%	NA	50%	140%
Bromoxynil			< 0.3	< 0.3	NA	< 0.3	98%	50%	140%	85%	50%	140%	NA	50%	140%
МСРА			< 5.0	< 5.0	NA	< 5.0	96%	50%	140%	90%	50%	140%	90%	50%	140%
MCPP			< 5.0	< 5.0	NA	< 5.0	102%	50%	140%	90%	50%	140%	86%	50%	140%
Pentachlorophenol			< 0.1	< 0.1	NA	< 0.1	95%	50%	140%	94%	50%	140%	NA	50%	140%
Triazine Pesticides [Water]															
Trifluralin	6061464		< 0.2	< 0.2	NA	< 1.0	111%	50%	140%	71%	50%	140%	101%	50%	140%
Simazine	6061464		< 0.5	< 0.5	NA	< 1.0	102%	50%	140%	82%	50%	140%	99%	50%	140%
Atrazine	6061464		< 0.5	< 0.5	NA	< 0.5	95%	50%	140%	73%	50%	140%	95%	50%	140%
Metribuzin	6061464		< 0.25	< 0.25	NA	< 0.25	107%	50%	140%	115%	50%	140%	104%	50%	140%
Prometryne	6061464		< 0.25	< 0.25	NA	< 0.25	74%	50%	140%	77%	50%	140%	83%	50%	140%
Metolachlor	6061464		< 0.11	< 0.11	NA	< 0.11	108%	50%	140%	85%	50%	140%	105%	50%	140%
Alachlor	6061464		< 0.5	< 0.5	NA	< 0.5	114%	50%	140%	87%	50%	140%	105%	50%	140%
Cyanazine	6061464		< 0.5	< 0.5	NA	< 1.0	104%	50%	140%	100%	50%	140%	108%	50%	140%
Volatile Organic Compounds in W	/ater (ug/L)	)													
Dichlorodifluoromethane	6059553		<0.40	<0.40	NA	< 0.40	74%	50%	140%	113%	50%	140%	80%	50%	140%
Chloromethane	6059553		<0.20	<0.20	NA	< 0.20	81%	50%	140%	116%		140%	92%		140%
Vinyl Chloride	6059553		<0.17	<0.17	NA	< 0.17	102%	50%	140%	114%		140%	102%	50%	140%
Bromomethane	6059553		<0.20	<0.20	NA	< 0.20	106%	50%	140%	109%	50%	140%	98%	50%	
Chloroethane	6059553		<0.20	<0.20	NA	< 0.20	84%		140%	111%		140%	93%	50%	140%
Trichlorofluoromethane	6059553		<0.40	<0.40	NA	< 0.40	83%	50%	140%	111%	50%	140%	99%	50%	140%
Acetone	6059553		<1.0	<1.0	NA	< 1.0	98%	50%	140%	112%	50%	140%	111%	50%	140%
1,1-Dichloroethylene	6059553		<0.2	<0.2	NA	< 0.2	110%	50%		104%	60%	130%	90%	50%	140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



### **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

SAMPLING SITE:

AGAT WORK ORDER: 24H183156 ATTENTION TO: Henry Erebor SAMPLED BY:

#### Trace Organics Analysis (Continued)

RPT Date: Aug 19, 2024			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable hits	Recovery		ptable nits	Recovery		ptable nits
FARAMETER	Daten	ld	Dup #1	Dup #2	INF D		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upp
Methylene Chloride	6059553		<0.30	<0.30	NA	< 0.30	109%	50%	140%	103%	60%	130%	95%	50%	1409
trans- 1,2-dichloroethylene	6059553		<0.20	<0.20	NA	< 0.20	75%	50%	140%	72%	60%	130%	89%	50%	1409
Methyl tert-butyl ether	6059553		<0.20	<0.20	NA	< 0.20	96%	50%	140%	104%	60%	130%	100%	50%	1409
1,1-Dichloroethane	6059553		<0.30	<0.30	NA	< 0.30	115%	50%	140%	105%	60%	130%	95%	50%	140
Methyl Ethyl Ketone	6059553		<1.0	<1.0	NA	< 1.0	100%	50%	140%	108%	50%	140%	102%	50%	140
cis- 1,2-Dichloroethylene	6059553		<0.20	<0.20	NA	< 0.20	116%	50%	140%	106%	60%	130%	98%	50%	140
Chloroform	6059553		<0.20	<0.20	NA	< 0.20	104%	50%	140%	112%	60%	130%	104%	50%	140
1,2-Dichloroethane	6059553		<0.20	<0.20	NA	< 0.20	104%	50%	140%	115%	60%	130%	101%	50%	140
1,1,1-Trichloroethane	6059553		<0.30	< 0.30	NA	< 0.30	113%	50%	140%	98%	60%	130%	90%	50%	140
Carbon Tetrachloride	6059553		<0.20	<0.20	NA	< 0.20	107%	50%	140%	93%	60%	130%	86%	50%	140
Benzene	6059553		0.93	0.87	NA	< 0.20	116%	50%	140%	106%	60%	130%	94%	50%	140
1,2-Dichloropropane	6059553		<0.20	<0.20	NA	< 0.20	114%		140%	105%	60%		90%	50%	140
Trichloroethylene	6059553		<0.20	<0.20	NA	< 0.20	113%	50%	140%	107%	60%	130%	96%	50%	140
Bromodichloromethane	6059553		<0.20	<0.20	NA	< 0.20	106%	50%	140%	102%	60%	130%	87%	50%	140
cis-1,3-Dichloropropene	6059553		<0.20	<0.20	NA	< 0.20	100%	50%	140%	105%	60%	130%	92%	50%	140
Methyl Isobutyl Ketone	6059553		<1.0	<1.0	NA	< 1.0	75%	50%	140%	95%	50%	140%	115%	50%	140
trans-1,3-Dichloropropene	6059553		<0.30	<0.30	NA	< 0.30	108%		140%	110%	60%	130%	104%	50%	140
1,1,2-Trichloroethane	6059553		<0.20	<0.20	NA	< 0.20	108%	50%	140%	112%	60%	130%	109%	50%	140
Toluene	6059553		1.63	1.55	5.0%	< 0.20	107%	50%	140%	104%	60%	130%	103%	50%	140
2-Hexanone	6059553		<1.0	<1.0	NA	< 1.0	93%	50%	140%	107%	50%	140%	117%	50%	140
Dibromochloromethane	6059553		<0.10	<0.10	NA	< 0.10	89%	50%	140%	94%	60%	130%	88%	50%	140
Ethylene Dibromide	6059553		<0.10	<0.10	NA	< 0.10	105%	50%	140%	110%	60%	130%	102%	50%	140
Tetrachloroethylene	6059553		<0.20	<0.20	NA	< 0.20	102%	50%	140%	106%	60%	130%	102%	50%	140'
1,1,1,2-Tetrachloroethane	6059553		<0.20 <0.10	<0.20 <0.10	NA	< 0.20	102%	50%	140%	100%	60%	130%	102%	50%	140
Chlorobenzene	6059553		<0.10	<0.10	NA	< 0.10	100%		140%	100%	60%	130%	101%	50%	140
	6059553		<0.10		NA		107%	50%	140%	100%	60%	130%	103%	50%	140
Ethylbenzene m & p-Xylene	6059553		1.05	<0.10 1.00	4.9%	< 0.10 < 0.20	100%		140%	100%	60%	130%	103%	50%	140
Due	0050550		0.40	0.40		0.40	700/	500/	4.400/	0.40/	000/	4000/	000/	500/	4.40
Bromoform	6059553		<0.10	<0.10	NA	< 0.10	79%		140%	84%	60%	130%	82%	50%	140
Styrene	6059553		<0.10	<0.10	NA	< 0.10	92%	50%	140%	100%	60%	130%	101%	50%	140
1,1,2,2-Tetrachloroethane	6059553		<0.10	<0.10	NA	< 0.10	102%	50%	140%	111%	60%	130%	106%	50%	140
o-Xylene	6059553		0.38	0.35	NA	< 0.10	104%		140%	105%	60%	130%	105%	50%	140
1,3-Dichlorobenzene	6059553		<0.10	<0.10	NA	< 0.10	102%	50%	140%	109%	60%	130%	113%	50%	140
1,4-Dichlorobenzene	6059553		<0.10	<0.10	NA	< 0.10	102%	50%	140%	111%	60%	130%	111%	50%	140
1,2-Dichlorobenzene	6059553		<0.10	<0.10	NA	< 0.10	102%	50%	140%	111%	60%	130%	116%	50%	140
1,2,4-Trichlorobenzene	6059553		<0.30	<0.30	NA	< 0.30	106%	50%	140%	109%		130%	101%	50%	140
n-Hexane	6059553		1.33	1.10	18.9%	< 0.20	102%	50%	140%	106%	60%	130%	107%	50%	140
Ethanolamines in Water by H	PLC - Low Leve	el													
Diethanolamine (DEA)	1347 (	6061042	<0.04	<0.04	NA	< 0.040	108%	80%	120%	106%	70%	130%	108%	60%	140
Ethanolamine (MEA)		6061042	<0.05	<0.05	NA	< 0.05	106%	80%		104%		130%	104%	60%	1400

AGAT QUALITY ASSURANCE REPORT (V1)

Page 27 of 41

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



## **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

SAMPLING SITE:

AGAT WORK ORDER: 24H183156

ATTENTION TO: Henry Erebor

SAMPLED BY:

#### Trace Organics Analysis (Continued)

			-			-	-			-					
RPT Date: Aug 19, 2024	PT Date: Aug 19, 2024			UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Diisopropanolamine (DIPA)	1347	6061042	<0.1	<0.1	NA	< 0.1	105%	80%	120%	102%	70%	130%	103%	60%	140%
Monoisopropanolamine (MIPA)	1347	6061042	<0.1	<0.1	NA	< 0.1	100%	80%	120%	97%	70%	130%	98%	60%	140%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Glycols Analysis in Water															
Propylene Glycol	941	6066764	<10	<10	NA	< 10	77%	50%	140%	79%	50%	140%	97%	50%	140%
Monoethylene Glycol	941	6066764	<8	<8	NA	< 8	75%	50%	140%	77%	50%	140%	93%	50%	140%
Diethylene Glycol	941	6066764	<5	<5	NA	< 5.0	78%	50%	140%	81%	50%	140%	97%	50%	140%
Triethylene Glycol	941	6066764	<8	<8	NA	< 8	80%	50%	140%	84%	50%	140%	100%	50%	140%
Tetraethylene Glycol	941	6066764	<10	<10	NA	< 10	76%	50%	140%	76%	50%	140%	86%	50%	140%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated. The sample spikes and dups are not from the same sample ID.

Resin and Fatty acid (water)

F	Fatty acid total	MR	522	466	11.3%	< 10	NA	70%	130%	84%	70%	130%	NA	70%	130%
F	Resin acid total	MR	1100	1020	7.5%	< 10	NA	70%	130%	80%	70%	130%	NA	70%	130%
F	Resin and Fatty acid total	MR	1620	1480	9.0%	< 10	NA	70%	130%	82%	70%	130%	NA	70%	130%
(	O-methylpodocarpic	MR	80%	66%	0.0%	81	NA	40%	140%	80%	40%	140%	NA	40%	140%

Comments: The QC criteria are only applicable to the total resins and total fatty acids.

NA : Non applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

NA in the spike blank or CRM indicates that it is not required by the procedure.

Certified By:

Page 28 of 41

#### AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



## Quality Assurance

#### CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

SAMPLING SITE:

AGAT WORK ORDER: 24H183156

ATTENTION TO: Henry Erebor

#### SAMPLED BY:

				Wate	er Ar	nalysi	S								
RPT Date: Aug 19, 2024			C	UPLICATE	1		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER		mple	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
PWQO Parameters															
рН	6059538		7.32	7.43	1.5%	NA	100%	90%	110%						
Alkalinity (as CaCO3)	6059538		83	87	4.7%	< 5	97%	80%	120%						
Ammonia as N	6059538		0.22	0.22	0.0%	< 0.02	110%	70%	130%	100%	80%	120%	105%	70%	130%
Total Phosphorus	6057500		<0.02	<0.02	NA	< 0.02	105%	70%	130%	99%	80%	120%	107%	70%	130%
Turbidity	6059538		<0.5	<0.5	NA	< 0.5	104%	80%	120%						
Cyanide, WAD	6065539		<0.002	0.002	NA	< 0.002	95%	70%	130%	97%	80%	120%	109%	70%	130%
Sulphide	6063135		<0.01	<0.01	NA	< 0.01	100%	90%	110%	99%	90%	110%	102%	80%	120%
Phenols	6057463		<0.001	<0.001	NA	< 0.001	102%	90%	110%	100%	90%	110%	90%	80%	120%
Aluminum-dissolved	6061042 6061	042	<0.004	<0.004	NA	< 0.004	89%	70%	130%	92%	80%	120%	102%	70%	130%
Total Antimony	6058518		<0.003	<0.003	NA	< 0.003	101%	70%	130%	101%	80%	120%	102%	70%	130%
Total Arsenic	6058518		<0.003	<0.003	NA	< 0.003	103%	70%	130%	105%	80%	120%	98%	70%	130%
Total Beryllium	6058518		<0.001	<0.001	NA	< 0.001	99%	70%	130%	105%	80%	120%	105%	70%	130%
Total Boron	6058518		0.158	0.157	0.6%	< 0.010	100%	70%	130%	104%	80%	120%	104%	70%	130%
Total Cadmium	6058518	<	<0.0001	<0.0001	NA	< 0.0001	100%	70%	130%	101%	80%	120%	99%	70%	130%
Total Iron	6058518		<0.050	0.061	NA	< 0.050	101%	70%	130%	106%	80%	120%	100%	70%	130%
Total Chromium	6058518		<0.003	<0.003	NA	< 0.003	100%	70%	130%	102%	80%	120%	99%	70%	130%
Total Cobalt	6058518		0.0102	0.0108	5.7%	< 0.0005	99%	70%	130%	105%	80%	120%	100%	70%	130%
Total Copper	6058518		<0.002	<0.002	NA	< 0.002	101%	70%	130%	102%	80%	120%	96%	70%	130%
Total Lead	6058518	~	<0.0005	<0.0005	NA	< 0.0005	95%	70%	130%	102%	80%	120%	94%	70%	130%
Dissolved Mercury	6063473	<	<0.0001	<0.0001	NA	< 0.0001	102%	70%	130%	104%	80%	120%	102%	70%	130%
Total Molybdenum	6058518		0.003	0.003	NA	< 0.002	97%	70%	130%	105%	80%	120%	106%	70%	130%
Total Nickel	6058518		0.008	0.007	NA	< 0.003	102%	70%	130%	105%	80%	120%	102%	70%	130%
Total Selenium	6058518		<0.002	<0.002	NA	< 0.002	99%	70%	130%	97%	80%	120%	96%	70%	130%
Total Silver	6058518	~	<0.0001	<0.0001	NA	< 0.0001	104%	70%	130%	103%	80%	120%	91%	70%	130%
Total Thallium	6058518	<	<0.0003	<0.0003	NA	< 0.0003	96%	70%	130%	100%	80%	120%	94%	70%	130%
Total Tungsten	6058518		<0.010	<0.010	NA	< 0.010	96%	70%	130%	100%	80%	120%	99%	70%	130%
Total Uranium	6058518		0.0082	0.0077	6.3%	< 0.0005	95%	70%	130%	105%	80%	120%	103%	70%	130%
Total Vanadium	6058518		<0.002	<0.002	NA	< 0.002	103%	70%	130%	108%	80%	120%	103%	70%	130%
Total Zinc	6058518		<0.020	<0.020	NA	< 0.020	100%	70%	130%	100%	80%	120%	118%	70%	130%
Total Zirconium	6058518		<0.004	<0.004	NA	< 0.004	95%	70%	130%	99%	80%	120%	95%	70%	130%
Residual Chlorine															
Total Residual Chlorine	6065541		1.4	1.3	7.4%	< 0.01	97%	80%	120%	100%	90%	110%	NA	80%	120%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

# Inis Verastegui

Page 29 of 41

#### AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Certified By:



### **Quality Assurance**

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260 SAMPLING SITE: AGAT WORK ORDER: 24H183156

ATTENTION TO: Henry Erebor

SAMPLED BY:

#### Water Analysis (Continued)

					-			-							
RPT Date: Aug 19, 2024	RPT Date: Aug 19, 2024			UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Acceptable Measured Limits			Recoverv	Lir	ptable nits	Recoverv	Lin	ptable nits
		Id					Value	Lower	Upper	,		Upper	1		Upper

Page 30 of 41

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.



## Method Summary

CLIENT NAME: LANDTEK LTD.		AGAT WORK ORI	DER: 24H183156						
PROJECT: 21260		ATTENTION TO: H	lenry Erebor						
SAMPLING SITE:	SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Microbiology Analysis									
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration						



## Method Summary

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

AGAT WORK ORDER: 24H183156

FROJECT. 21200		ATTENTION TO.	
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			-
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Hexachloroethane	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
	ORG-91-5114	modified from EPA 3510C, 8270E &	GC/MS



## Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 24H183156

	SAMPLED BY					
AGAT S.O.P						
ORG-91-5114	modified from EPA 3510C, 8270E &	ANALYTICAL TECHNIQUE GC/MS				
ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	ON MOECC E3265	GC/MS				
ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
		N/A				
		HPLC				
		HPLC				
		HPLC				
		HPLC				
		HPLC HPLC				
	•					
		HPLC/UV				
		HPLC/UV				
	·	GC/FID				
		GC/FID GC/FID				
	ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114 ORG-91-5114	ORG-91-5114         modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265           ORG-91-5114         Modified from EPA 3510C, 8270E & ON MOECC E3265				



## Method Summary

CLIENT NAME: LANDTEK LTD.

## PROJECT: 21260

AGAT WORK ORDER: 24H183156

FROJECT. 21200	ATTENTION TO. HEITY LIEDOT						
SAMPLING SITE:		SAMPLED BY:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Diethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID				
Triethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID				
Tetraethylene Glycol	TO-1410	EPA SW-846 8015	GC/FID				
Heptanol	TO-1410	EPA SW-846 8015	GC/FID				
Gamma-Hexachlorocyclohexane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Heptachlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Aldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Heptachlor Epoxide	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Endosulfan I	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Endosulfan II	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Endosulfan	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION				
alpha - chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
gamma-Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION				
op'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
pp'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION				
op'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
pp'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION				
op'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
pp'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION				
Dieldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Endrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Methoxychlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Hexachlorobenzene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Hexachlorobutadiene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Hexachloroethane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD				
Aroclor 1242	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD				



## Method Summary

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

AGAT WORK ORDER: 24H183156

1100201.21200		ATTENTION TO.			
SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	AGAT S.O.P LITERATURE REFERENCE			
Aroclor 1248	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD		
Aroclor 1254	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD		
Aroclor 1260	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD		
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510C & 8082A	GC/ECD		
ТСМХ	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD		
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD		
Total Oil and Grease in water	VOL-91-5011	SM 5520 & EPA SW846 3510C & EPA 1664	^A BALANCE		
2,4-D	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
2,4,5-T	ORG-91-5510	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
2,4,5-TP	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Dicamba	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Dichlorprop	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Dinoseb	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Picloram	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Diclofop-methyl	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
2,3,4,6-Tetrachlorophenol	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
2,4-Dichlorophenol	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
2,4,5-Trichlorophenol	ORG-91-5100	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
2,4,6-Trichlorophenol	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Bromoxynil	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
МСРА	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
МСРР	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
Pentachlorophenol	ORG-91-5110	modified from EPA 515.2, EPA SW-846 8151A	GC/ECD		
DCAA	ORG-91-5110	EPA SW-846 8151	GC/ECD		
1-Methylnaphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
2-Methylnaphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
Acenaphthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
Acenaphthylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
Acridine, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
Anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
Benzo(a)anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		
Benzo(a)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS		



## Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

#### SAMPLING SITE

AGAT WORK ORDER: 24H183156 ATTENTION TO: Henry Erebor SAMPLED BY

SAMPLING SITE:	SAMPLED BY:						
PARAMETER	AGAT S.O.P	S.O.P LITERATURE REFERENCE ANALYTICAL TE					
Benzo(b)fluoranthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Benzo(j+k)fluoranthene	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Benzo(e)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Benzo(ghi)perylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Chrysene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Dibenzo(a,h)anthracene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Fluoranthene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Fluorene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Indeno(1,2,3-cd)pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Naphthalene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Perylene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Phenanthrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Pyrene, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Quinoline, Ultra-low	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Sediment			GC/MS/FID				
Naphthalene-d8	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Terphenyl-d14	ORG-120-5119	EPA 3510C/8270E	GC/MS				
Pyrene-d10	ORG-120-5119	EPA 3510C/8270E	GC/MS				
PAH - Extraction (Ultra-low)			GC/MS				
Linoleic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Linolenic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Oleic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
9,10-Dichlorostearic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Stearic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Fatty acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Pimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Sandaracopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Isopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Palustric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Levopimaric acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Dehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Abietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Neoabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
14-Chlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
12-Chlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
12,14-Dichlorodehydroabietic acid	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Resin acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Resin and Fatty acid total	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
O-methylpodocarpic	ORG-100-5112F	MA.414–Aci-g-r 1.0	GC/MS				
Trifluralin	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Simazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Atrazine	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Metribuzin	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Prometryne	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Metolachlor	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				



## Method Summary

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

AGAT WORK ORDER: 24H183156 ATTENTION TO: Henry Erebor

SAMPLING SITE:		SAMPLED BY:					
PARAMETER	AGAT S.O.P						
Alachlor	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE GC/MS					
Cyanazine	ORG-91-5104	E9121 EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Triphenyl phosphate (surr)	ORG-91-5104	EPA SW-846 3510C, 8270D & MOE E3121	GC/MS				
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
trans- 1,2-dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
cis-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
trans-1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				



## Method Summary

CLIENT NAME: LANDTEK LTD.

#### PROJECT: 21260

AGAT WORK ORDER: 24H183156 ATTENTION TO: Henry Erebor

SAMPLING SITE:	SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE ANALYTICAL TECH					
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
2-Hexanone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,2,4-Trichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
1,3-Dichloropropene (Cis + Trans)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				



## Method Summary

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

AGAT WORK ORDER: 24H183156 ATTENTION TO: Henry Erebor

SAMPLING SITE:	SAMPLED BY:					
PARAMETER	AGAT S.O.P	AGAT S.O.P LITERATURE REFERENCE				
Water Analysis						
Dissolved Oxygen	INOR-93-6006	Modified from SM 4500-O G	DO METER			
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE			
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE			
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA			
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION			
Total Phosphorus	INOR-93-6057	modified from LACHAT 10-115-01-3A	LACHAT FIA			
Turbidity	INOR-93-6000	modified from SM 2130 B	PC TITRATE			
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015,SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS			
Sulphide	INOR-93-6054	modified from SM 4500 S2- D	SPECTROPHOTOMETER			
Phenols	INOR-93-6072	modified from SM 5530 D	LACHAT FIA			
Aluminum-dissolved	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS			
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Thallium	MET-93-6103	3010A & 6020B				
Total Tungsten	MET-93-6103	93-6103 modified from EPA 200.8, 3005A, ICP-MS 3010A & 6020B				
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			



## Method Summary

CLIENT NAME: LANDTEK LTD.

PROJECT: 21260

AGAT WORK ORDER: 24H183156

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNI						
Total Zirconium	MET-93-6103	03 modified from EPA 200.8, 3005A, 3010A & 6020B ICP-MS						
Lab Filtration Aluminum Dissolved	SR-78-9001	SR-78-9001 FILTRATION						
Lab Filtration mercury	SR-78-9001		FILTRATION					
Total Residual Chlorine	INOR-93-6060	modified from SM 4500-CL- G	SPECTROPHOTOMETER					

Chain of Custody Rec			Have feed Scan here quick sur	e for a Ph	: 905.7:	12,510	auga, 00 Fa	Ontar x: 905 rth.ag			Co	ooler ( rrival 1	Quanti Temper	ty: ratures	;:	26	(0		
Contact:         HENRY EI           Address:         205 NEBD           L3w 2EI           Phone:         289-880-3	K LIMITED REBOR RD, HAMILTO	N ON	Re (Picas)	gulatory Requirements:         se check all applicable boxes)         Regulation 153/04         Table         Indicate One         Ind/Com         Res/Park         Agriculture         Texture (Check One)         Coarse         Fine	5	Se	ewer U: Sanitar Regi ov. Wa njective	se y on ter Qu es (PW	] Storm ality		Ci N Tu Re	ustody otes: rnar gula sh Tr	r Seal I TOUNG r TAT AT (Rus B Busir Days	<b>d Tirr</b> h Surchan	rges App	Yes 7.0 / AT) Re 5 to 7 E	equire Busines ness	No Loc ed: s Days	,
Project Information: Project: 21260 Site Location: 3275/320 Sampled By: LB AGAT Quote #: 854/48	TRAFALGA	R RD, OAEVILLE		his submission for a <b>Record</b> of Site Condition (RSC)? Yes No	Cei			f An	e on alysis No	1			TAT is e	exclusi	ve of w	rior notifi veekends <b>please (</b>	s and st	atutory h	nolidays
Invoice Information: Company: LANDTEK Contact: KATHY C Address: 205 NEBO	e Umitted)	i be billed full price for analysis. Sill To Same: Yes 🔎 No [		gal Sample     Image: Constraint of the second	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	- 🗆 CrVI, 🗆 Hg, 🗆 HWSB	F1-F4 PHCs		oclors 🗆	Regulation 406 Characterization Package pH, Metals, BTEX, F1-F4		Regulation 406 SPLP Rainwater Leach mSPLP:	Characteri	□ Moisture □ Sulphide	PWQO			Potentially Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time # of Sampled Containers	Sample Matrix	Comments/ Special Instructions	Y/O	Metals	Metals	BTEX, F	VOC	PCBs: Aroclors	Regulati 0H, Meta	EC, SAR	Regulation SPLP:	TCLP:	orrosiv				otental
1. MW101-20 2. 3.	Aug, B	1-30 AM AM AM	GW		N											X			
4. 5.		AM PM AM PM																	
6.		AM PM	-																
7. 8.		AM PM AM PM					-		-	-									
9.		AM PM				01												1	
10.		AM PM AM PM	-																
Samples Relinquished Br (Print Name and Sign): Law en Bla'r Samples Relinquished Br (Print Name and Sign) Samples Relinquished Br (Print Name and Sign)		Date Aug. 8/24 Time Pang 8/24 Date Date	lh.	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): and conditions as set forth at www.upatinbs.com	R	h	z		K	1.60	tay 8	Tim	2: TP	357 n	N°:	Page	, 16	_of	33

Pink Copy-Client 1 Yellow Copy AGAT 1 White Copy-AGAT

ag

## ALS Canada Ltd.



#### **CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)**

: 1 of 3
: ALS Environmental - Waterloo
Emily Smith
: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
+1 519 886 6910
: 13-Aug-2024 06:30
d : 14-Aug-2024
: 15-Aug-2024 06:07
į

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario

#### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
μg/L	micrograms per litre

>: greater than.

<: less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .



#### **Analytical Results**

			Client sample ID	24H183156-6061042Z (x,y,z)				
				-MW101-20				
Sub-Matrix: Groundwater		S	Sampling date/time	08-Aug-2024				
(Matrix: Water)				10:30				
Analyte	Method/Lab	LOR	Unit	WT2423232-001	ONPWQO	ONPWQO	 	 
					IPWQOT2<100	IPWQOT2>100		
Volatile Organic Compound	ls							
Dioxane, 1,4-	E611I/WT	20	μg/L	<20	20 µg/L	20 µg/L	 	 
Volatile Organic Compounds Surrogates								
Bromofluorobenzene, 4-	E611I/WT	1.0	%	95.3			 	 
Difluorobenzene, 1,4-	E611I/WT	1.0	%	96.9			 	 

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

#### No Breaches Found

#### Key:

ONPWQO

IPWQOT2>100

Ontario PWQO (Provincial Water Quality Objectives, JULY, 1994)

IPWQOT2<100 Surface Water T2 Interim PWQOs (Hardness < 100 mg/L)

Surface Water T2 Interim PWQOs (Hardness > 100 mg/L)



# QUALITY CONTROL INTERPRETIVE REPORT

Work Order	WT2423232	Page	: 1 of 5
Client	AGAT Laboratories Ltd.	Laboratory	: ALS Environmental - Waterloo
Contact	: Eva Janzen	Account Manager	: Emily Smith
Address	: 8600 Glenlyon Parkway	Address	: 60 Northland Road, Unit 1
	Burnaby BC Canada V5J 0B6		Waterloo, Ontario Canada N2V 2B8
Telephone	· · · · · · · · · · · · · · · · · · ·	Telephone	: +1 519 886 6910
Project	: 24H183156	Date Samples Received	: 13-Aug-2024 06:30
PO	: 226666	Issue Date	: 15-Aug-2024 06:07
C-O-C number	:		
Sampler	: Client		
Site	:		
Quote number	: 2022 Price List		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

#### Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

**RPD: Relative Percent Difference.** 

#### Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

#### **Summary of Outliers** Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

#### **Outliers: Reference Material (RM) Samples**

• No Reference Material (RM) Sample outliers occur.

# Outliers : Analysis Holding Time Compliance (Breaches) <u>No</u> Analysis Holding Time Outliers exist.

# Outliers : Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page	:	3 of 5
Work Order	:	WT2423232
Client	:	AGAT Laboratories Ltd.
Project	:	24H183156



### Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time excee	edance ; 🔹	= Within	Holding Time
Analyte Group : Analytical Method	Method	ethod Sampling Date Extraction / Preparation Analysis								
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Volatile Organic Compounds : VOCs (Dioxane) by Headspace GC-MS										
Glass vial (sodium bisulfate) 24H183156-6061042Z (x,y,z)-MW101-20	E611I	08-Aug-2024	14-Aug-2024	14 days	6 days	4	14-Aug-2024	14 days	6 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page	:	4 of 5
Work Order	:	WT2423232
Client	:	AGAT Laboratories Ltd.
Project	:	24H183156



# **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

atrix: Water Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification; ✓ = QC frequency within specification;									
Quality Control Sample Type			C	ount	Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
VOCs (Dioxane) by Headspace GC-MS	E611I	1594516	1	1	100.0	5.0	✓		
Laboratory Control Samples (LCS)									
VOCs (Dioxane) by Headspace GC-MS	E611I	1594516	1	1	100.0	5.0	✓		
Method Blanks (MB)									
VOCs (Dioxane) by Headspace GC-MS	E611I	1594516	1	1	100.0	5.0	✓		
Matrix Spikes (MS)									
VOCs (Dioxane) by Headspace GC-MS	E611I	1594516	1	1	100.0	5.0	✓		



## Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs (Dioxane) by Headspace GC-MS	E611I	Water	EPA 8260D/1624C	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
			(mod)	Samples are prepared in headspace vials and are heated and agitated on the
	ALS Environmental -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Waterloo			the headspace in accordance with Henry's law.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.

# ALS Canada Ltd.



# QUALITY CONTROL REPORT

Work Order	WT2423232	Page	: 1 of 3
Client	: AGAT Laboratories Ltd.	Laboratory	: ALS Environmental - Waterloo
Contact	: Eva Janzen	Account Manager	: Emily Smith
Address	∶8600 Glenlyon Parkway	Address	:60 Northland Road, Unit 1
	Burnaby BC Canada V5J 0B6		Waterloo, Ontario Canada N2V 2B8
Telephone		Telephone	: +1 519 886 6910
Project	: 24H183156	Date Samples Received	: 13-Aug-2024 06:30
PO	: 226666	Date Analysis Commenced	: 14-Aug-2024
C-O-C number		Issue Date	: 15-Aug-2024 06:07
Sampler	: Client		
Site			
Quote number	: 2022 Price List		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario

Page	:	2 of 3
Work Order	:	WT2423232
Client	:	AGAT Laboratories Ltd.
Project	:	24H183156



#### **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

# = Indicates a QC result that did not meet the ALS DQO.

#### Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

#### Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Cor	Volatile Organic Compounds (QC Lot: 1594516)										
WT2423232-001	24H183156-6061042Z (x,y,z)-MW101-20	Dioxane, 1,4-	123-91-1	E611I	20	µg/L	<20	<20	0	Diff <2x LOR	

#### Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot:	1594516)				
Dioxane, 1,4-	123-91-1 E611I	20	µg/L	<20	



#### Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Target Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCLot: 1	594516)								
Dioxane, 1,4-	123-91-1	E611I	20	µg/L	100 µg/L	113	70.0	130	

#### Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic O	Compounds (QCLot: 15	94516)								
WT2423232-001	24H183156-6061042Z (x,y,z)-MW101-20	Dioxane, 1,4-	123-91-1	E611I	118 µg/L	100 µg/L	118	60.0	140	

and a	
	6
	S
	8
	$\tilde{C}$
	5

V

www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

Page 1 of 1 COC Number: 21 -

Canada Toll Free: 1 800 668 9878

Report To Company:	Contact and company name below will appear on the final report AGAT Laboratories	r on the final report	Select Report Format:	Reports / I	Recipients		Routine [R]	Turmaround Time (TAT) Requested Routine [R] if received by 3pm M-F - no surcharges apply	Requested Ircharges apply		
Phone:	905-712-5096; 905-712-5131		Compare Results to Criteria on Report - provide details below if box checked	Criteria on Report - p	provide details below if I		g day [P3]	aday [P3] if received by 3pm M-F - 2.	Environm	Environmental Division	DE LABEL HERE
	Company address below will appear on the final report	report	Select Distribution:	S EMAIL	MAIL AX		_k day (rz) i _t day (E) if	上 day [H2] if received by 3pm M-F - 100 】 day [任] if received by 3pm M-F - 100	Waterloo	laterloo Heference	ster Ster
Street:	5835 Coopers Avenue		Email 1 or Fax jan	janzen@agatlabs.com	om		Same day [E	Same day [E2] if received by 10am M-S	Norke	52550VC	1
City/Province:	Mississauga/ON		1	ramnaralgn@agatlabs.com	abs.com	1955	Ac	Additional fees may apply to rus	N I	C4C0-	ne tests.
Postal Code:	L4Z 1Y2						Date and	Date and Time Required for all E&P T			Ξ
Invoice To	Same as Report To	ON		Invoice Recipients	cipients			For all tests with rush Tr			1
	Copy of Invoice with Report VES NO	NO	Select Invoice Distribution:	ribution: 🗹 EMAIL	L 🗌 MAIL 🗍 FAX						1
Company:			Email 1 or Fax jar	janzen@agatlabs.com	om		RS	Indicate Filtered (F), Preser			
Contact:			Email 2 rar	ramnaraign@agatlabs.com	abs.com						
	Project Information			d Gas Required	Oil and Gas Required Fields (client use)		41N			- 10 AA6 6910	
ALS Account # / Quote #:	# / Quote #:		AFE/Cost Center:		PO#		IT/		euoudele 1	Telephone: +1 bis	_
Job #:	24H183156		Major/Minor Code:		Routing Code:		01				<u>ц</u>
PO / AFE:	226666		Requisitioner:				C -				
LSD:			Location:				OF				<u> </u>
ALS Lab Wo	ALS Lab Work Order # (ALS use only):		ALS Contact:		Sampler:		BER				PLE
ALS Sample #	(0	nd/or Coordinates		Date		Sample Type	4-Dio				SAN
(ALS use only)	(This description will appear on the report)	pear on the report)		(dd-mmm-yy)	(hh:mm)						5
	24H183156 - 6061042Z (x,y,z) - MW101-20			8-Aug-24	13:30	GW	ਪ ਸ				
		:									
Drinkin	Drinking Water (DW) Samples ¹ (client use)	Notes / Specify	Notes / Specify Limits for result evaluation by selecting from drop-down below	uation by selectin	ig from drop-down l		t daar da ameri		RECEIPT DETA	SAMPLE RECEIPT DETAILS (ALS use only)	
			(Exce	(Excel COC only)			Cooling Method:	thod: 🗌 NONE 🛃 ICE	ICE PACKS		COOLING INITIATED
Are samples ta	Are samples taken from a Regulated DW System? ()	Ontario Provincial Water Quality Objectives (JULY, 1994)	ar Quality Objectives	(JULY, 1994)			Submission	ified	Sample Receipt N	lotification:	þ
Are samples fo	5					-1-2	Cooler Cus	Cooler Custody Seals Intact UKES 1	ZNA	Sample Custody Seals Intact:res	CI: LIYES
Tes	US O N						D. E.H.				2.22
	SHIPMENT RELEASE (client use)		TINI	TAL SHIPMENT	INITIAL SHIPMENT RECEPTION (ALS use only)	- 12 e		FIN	<b>AL SHIPMENT RE</b>	FINAL SHIPMENT RECEPTION (ALS use only)	ίY)
Released by:	Date:	Time:	Received by:		Date:		Time:	Received by:	Date	いたい	Time:
REFER TO BAC	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	440	MARCEN	WHP	WHITE - LABORATORY COPY	YE	LOW - CLIENT COPY	r copy	1 1.3		Aus 2020 A
REFERIO BACK P	e all notifies of this framework and the second of the second s	INFORMATION	is the of this form the us	or soknowiednes an	t = - LABORATON 1		VVV - CLIEIN	as specified on the back page of the white - report copy	nort nonv		

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy

# APPENDIX G

# **DEWATERING ASSUMPTIONS AND CALCULATIONS – UNDERGROUND LEVELS**



# Table 1 – Excavation Dewatering Calculations-Phase 1 Underground Parking Levels

# $Q = 2\pi kD (H - h_w)/ln (R_o/r_e)$

Equation 1: The potential groundwater flow rate to the excavation was estimated using equation for full penetration by single well of confined aquifer (artesian conditions) fed by a circular source.

Where:  $Q = discharge rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

D = Aquifer thickness (m)

H = height of piezometer level above based of aquifer (m)

 $h_w$  = height of water at outside edge of pumping wells after drawdown (m)

R = radius of influence (m)

re = equivalent radius (m)

D = 16.6 m

Excavation Dimensions: 99.5 m x 60.0 m

 $\mathbf{R} = \mathbf{C}^*(\mathbf{H} - \mathbf{h})^* \sqrt{(\mathbf{K})}$  Radius of Influence - Sichardt's equation

 $\mathbf{r}_{e} = \sqrt{(\mathbf{L} * \mathbf{B})/\pi}$  (applies when a/b>1.5 and R0 << rs)

 $r_e = (L + B)/\pi$  (applies when a/b<1.5 and R0 >> rs)

Underground	H (m)	h _w (m)	R (m)	r _e (m)	Q m3/s	Q L/day	Q L/day	Q L/s
Parking							(2.0 Factor of Safety)	(2.0 Factor of Safety)
Faiking	12.10	3.90	6.80	43.60	~4.446 x 10-4	~38,413	~ 76,826	~ 0.89

- 1. A confined aquifer is presumed to exist locally with a piezometric water table determined to be 6.90 mbgs at MW111-7D on July 26, 2023, and extending to an estimated depth of approximately 19.0 mbgl.
- 2. The maximum dewatering depth of construction activities is assumed to be 15.1 mbgl (0.5 m below bottom of Excavation).
- 3. It is assumed that as a requirement of the proposed construction activities the excavation will be pumped dry.
- 4. The hydraulic conductivity values for the bedrock beneath the site was determined to be 7.538 x 10⁻⁸ m/s

# Table 2 – Excavation Dewatering Calculations-Phase 2 West Underground Parking Levels

# $Q = 2\pi kD (H - h_w)/ln (R_o/r_e)$

Equation 1: The potential groundwater flow rate to the excavation was estimated using equation for full penetration by single well of confined aquifer (artesian conditions) fed by a circular source.

Where:  $Q = discharge rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

D = Aquifer thickness (m)

H = height of piezometer level above based of aquifer (m)

h_w = height of water at outside edge of pumping wells after drawdown (m)

R = radius of influence (m)

re = equivalent radius (m)

$$C = 3000$$

D = 16.6 m

Excavation Dimensions: 101.0 m x 60.5 m

 $\mathbf{R} = \mathbf{C}^*(\mathbf{H} - \mathbf{h})^* \sqrt{(\mathbf{K})}$  Radius of Influence - Sichardt's equation

 $\mathbf{r}_{e} = \sqrt{(\mathbf{L} * \mathbf{B})/\pi}$  (applies when a/b>1.5 and R0 << rs)

 $r_e = (L + B)/\pi$  (applies when a/b<1.5 and R0 >> rs)

Underground	H (m)	h _w (m)	R (m)	r _e (m)	Q m3/s	Q L/day	Q L/day	Q L/s
Parkina							(2.0 Factor of Safety)	(2.0 Factor of Safety)
Parking	12.10	3.90	6.8	44.1	~4.494 x 10-4	~38,828	~ 77,656	~ 0.90

- 1. A confined aquifer is presumed to exist locally with a piezometric water table determined to be 6.90 mbgs at MW111-7D on July 26, 2023, and extending to an estimated depth of approximately 19.0 mbgl.
- 2. The maximum dewatering depth of construction activities is assumed to be 15.1 mbgl (0.5 m below bottom of Excavation).
- 3. It is assumed that as a requirement of the proposed construction activities the excavation will be pumped dry.
- 4. The hydraulic conductivity values for the bedrock beneath the site was determined to be 7.538 x 10⁻⁸ m/s

# Table 3 – Excavation Dewatering Calculations-Phase 2 East A Underground Parking Levels

# $Q = 2\pi kD (H - h_w)/ln (R_o/r_e)$

Equation 1: The potential groundwater flow rate to the excavation was estimated using equation for full penetration by single well of confined aquifer (artesian conditions) fed by a circular source.

Where:  $Q = discharge rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

D = Aquifer thickness (m)

H = height of piezometer level above based of aquifer (m)

 $h_w$  = height of water at outside edge of pumping wells after drawdown (m)

R = radius of influence (m)

 $r_e$  = equivalent radius (m)

$$C = 3000$$

D = 16.2 m

Excavation Dimensions: 110.0 m x 48.0 m

 $\mathbf{R} = \mathbf{C}^*(\mathbf{H} - \mathbf{h})^* \sqrt{(\mathbf{K})}$  Radius of Influence - Sichardt's equation

 $\mathbf{r}_{e} = \sqrt{(\mathbf{L} * \mathbf{B})/\pi}$  (applies when a/b>1.5 and R0 << rs)

 $r_e = (L + B)/\pi$  (applies when a/b<1.5 and R0 >> rs)

Underground	H (m)	h _w (m)	R (m)	r _e (m)	Q m3/s	Q L/day	Q L/day (2.0 Factor of Safety)	Q L/s (2.0 Factor of Safety)
Parking	15.9	3.90	9.90	41.0	~4.255 x 10-4	~36,763	~ 73,526	~ 0.85

- 1. A confined aquifer is presumed to exist locally with a piezometric water table determined to be 3.10 mbgs (average of the highest water level readings at MW111-20, MW1D-23 and MW122D-23) and extending to an estimated depth of approximately 19.0 mbgl.
- 2. The maximum dewatering depth of construction activities is assumed to be 15.1 mbgl (0.5 m below bottom of Excavation).
- 3. It is assumed that as a requirement of the proposed construction activities the excavation will be pumped dry.
- 4. The hydraulic conductivity values for the bedrock beneath the site was determined to be 7.538 x 10⁻⁸ m/s

# Table 4 – Excavation Dewatering Calculations-Phase 2 East B Underground Parking Levels

# $Q = 2\pi kD (H - h_w)/ln (R_o/r_e)$

Equation 1: The potential groundwater flow rate to the excavation was estimated using equation for full penetration by single well of confined aquifer (artesian conditions) fed by a circular source.

Where:  $Q = discharge rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

D = Aquifer thickness (m)

H = height of piezometer level above based of aquifer (m)

 $h_w$  = height of water at outside edge of pumping wells after drawdown (m)

R = radius of influence (m)

 $r_e$  = equivalent radius (m)

$$C = 3000$$

D = 12.40 m

Excavation Dimensions: 78.0 m x 55.0 m

 $\mathbf{R} = \mathbf{C}^*(\mathbf{H} - \mathbf{h})^* \sqrt{(\mathbf{K})}$  Radius of Influence - Sichardt's equation

 $\mathbf{r}_{e} = \sqrt{(\mathbf{L} * \mathbf{B})/\pi}$  (applies when a/b>1.5 and R0 << rs)

 $\mathbf{r}_{e} = (\mathbf{L} + \mathbf{B})/\pi$  (applies when a/b<1.5 and R0 >> rs)

Underground	H (m)	h _w (m)	R (m)	r _e (m)	Q m3/s	Q L/day	Q L/day	Q L/s
Parking							(2.0 Factor of Safety)	(2.0 Factor of Safety)
Faiking	14.29	3.90	8.60	42.4	~3.302 x 10-4	~28,5294	~ 57,058	~ 0.66

- 1. A confined aquifer is presumed to exist locally with a piezometric water table determined to be 4.71 mbgs at MW103 on May 22, 2022, and extending to an estimated depth of approximately 19.0 mbgl.
- 2. The maximum dewatering depth of construction activities is assumed to be 15.1 mbgl (0.5 m below bottom of Excavation).
- 3. It is assumed that as a requirement of the proposed construction activities the excavation will be pumped dry.
- 4. The hydraulic conductivity values for the bedrock beneath the site was determined to be 7.538 x 10⁻⁸ m/s

# Table 5 – Excavation Dewatering Calculations-Phase 2 East C Underground Parking Levels

# $Q = 2\pi kD (H - h_w)/ln (R_o/r_e)$

Equation 1: The potential groundwater flow rate to the excavation was estimated using equation for full penetration by single well of confined aquifer (artesian conditions) fed by a circular source.

Where:  $Q = discharge rate (m^3/s)$ 

K = hydraulic conductivity (m/s)

D = Aquifer thickness (m)

H = height of piezometer level above based of aquifer (m)

 $h_w$  = height of water at outside edge of pumping wells after drawdown (m)

R = radius of influence (m)

re = equivalent radius (m)

D = 14.1 m

Excavation Dimensions: 64.0 m x 18.0 m

 $\mathbf{R} = \mathbf{C}^*(\mathbf{H} - \mathbf{h})^* \sqrt{(\mathbf{K})}$  Radius of Influence - Sichardt's equation

 $\mathbf{r}_{e} = \sqrt{(\mathbf{L} * \mathbf{B})/\pi}$  (applies when a/b>1.5 and R0 << rs)

 $r_e = (L + B)/\pi$  (applies when a/b<1.5 and R0 >> rs)

Basement	H (m)	h _w (m)	R (m)	r _e (m)	Q m3/s	Q L/day	Q L/day (2.0 Factor of Safety)	Q L/s (2.0 Factor of Safety)
	16.44	3.90	10.3	19.2	~1.949 x 10-4	~16,839	~ 33,678	~ 0.39

- 1. A confined aquifer is presumed to exist locally with a piezometric water level determined to be 2.56 mbgs at MW106 on March 25, 2022, and extending to an estimated depth of approximately 19.0 mbgl.
- 2. The maximum dewatering depth of construction activities is assumed to be 15.1 mbgl (0.5 m below bottom of Excavation).
- 3. It is assumed that as a requirement of the proposed construction activities the excavation will be pumped dry.
- 4. The hydraulic conductivity values for the bedrock beneath the site was determined to be 7.538 x 10⁻⁸ m/s

# APPENDIX H

## WATER BALANCE (PHASE 1 DEVELOPMENT)



## 1. Climate Information

Precipitation (collected from Env. Canada data) Evapotranspiration (calculated by Thornthwaite method) Water Surplus	897.1 mm/a 629.58 mm/a 267.52 mm/a	
2. Infiltration Rates		
Infiltration Factors (Table 2)		
Rolling Land (average slope from 2.8 m to 3.8 m per km)	0.2	
Medium combinations of clay and loam	0.2	
Cultivated Lands	0.1	
TOTAL	0.5	
Infiltration	134 mm/a	
Run-off	134 mm/a	
Clayey Silt	100 mm/a	
[*] MOE Table 2 and Table 3 approach in the Technical Inf	ormation Requirements for	
Land Development Applications (MOE, 1995).		
Site development area is underlain by glaciolacustring ma	erial (clavey silt/silty clay material)	

Site development area is underlain by glaciolacustrine material (clayey silt/silty clay material). Based on the above, the recharge rate is approximately 100 mm/a with runoff of 167.5 mm/a

3. Site Statistics		
	a of the optime Si	140
Phase 1 Area Development which impacts the Water Balance	e or the entire Si	le
Pre-Development:		2
Impervous Area	0.46 ha	4,635 m ²
Roof Top Area	0.00 ha	0 m ²
Landcape Area + Core Area	7.33 ha	73,311 m ²
TOTAL	7.79 ha	77,946 m ²
Post-Development:		
Impervous Area	0.76 ha	7,633 m ²
Roof Top Area	0.33 ha	3,316 m ²
Landcape Area + Core Area	6.70 ha	66,996 m ²
TOTAL	7.79 ha	77,946 m ²
Post Development		
Impervous Area (4.26 %)	0.76 ha	7,633 m ²
Roof Top Area (9.79 %)	0.33 ha	3,316 m ²
Lanscape Area + Core Area (85.95 %)	6.70 ha	66,996 m ²

## 4. Annual Pre-Development Water Balance

Land Use	Area (m ² )	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Building Roofs	0	0	-	-	0
Lanscape + Core Area	73,311	65,767	46,155	7,331	12,281
Impevous Area	4,635	4,158	-	-	4,158
TOTAL	77,946	69,925	46,155	7,331	16,439

#### 5. Annual Post-Development Water Balance

Land Use	Area (m ² )	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Building Roofs	3,316	2,975	-	-	2,975
Impevous Area	7,633	6,848	-	-	6,848
Lanscape + Core Area	66,996	60,103	42,180	6,700	11,223
TOTAL	77,946	69,925	42,180	6,700	21,046

## 6. Comparison of Pre-Development and Post-Development

	Precipitation (m ³ )	Evapotranspiration (m ³ )	Infiltration (m ³ )	Run-Off (m ³ )
Pre-Development	69,925	46,155	7,331	16,439
Post-Development	69,925	42,180	6,700	21,046

#### 7. Post development infiltration measures

Post-development infiltration volume	6,700 m ³
Pre-development infiltration volume	7,331 m ³
Deficit from pre to post-development infiltration	631 m ³
Percentage of water collected from roof area required to match pre-development infiltration	21 %
Roof Runoff	2,975 m3
Deficit from pre to post-development infiltration	631 m3
Water Surplus	2,344 m3

## **APPENDIX H: Thornthwaite Method For Calculating Evapotranspiration**

## Thornthwaite method for determining potential evapotranspiration

A monthly index is obtained from the equation:

 $i = (t/5)^{1.514}$ 

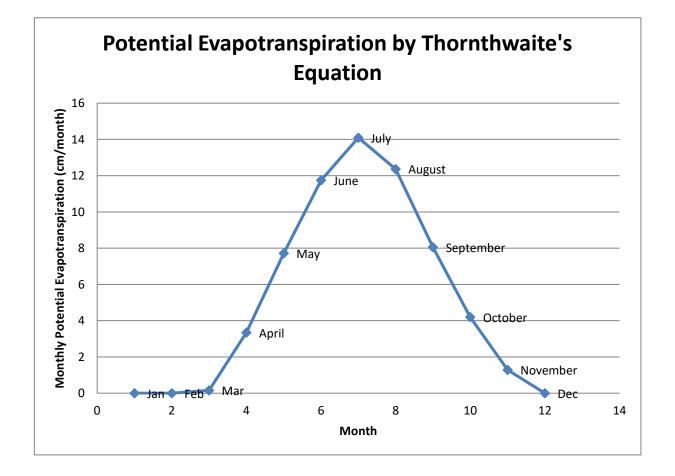
Summation of the 12 monthly values gives an appropriate heat index, I.

To calculate a, the expression is:

 $a = 0.00000675I^3 - 0.0000771I^2 + 0.01792I + 0.49239$ 

From these relations, a general equation for potential evapotranspiration is obtained. It is:

$$e = 1.6 \left(\frac{10t}{I}\right)^a$$


in which a has the value given in the equation above.

# APPENDIX H: Thornthwaite Method For Calculating Evapotranspiration

	o onnuto Duta				
	Daily Average Temp (C [°] )	Monthly index (i)	Potential Evapotranspiration (cm)	Adjusted Potential Evaportranspiration (cm)	
Jan	-4.7		( )	0	
Feb	-3.9			0	
Mar	0.5	0.030619634	0.141489475	0.158468212	
April	7.1	1.70045269	2.980613536	3.33828716	
Мау	13.3	4.398157705	6.129446549	7.723102652	
June	18.9	7.487254318	9.177357679	11.74701783	
July	22	9.422960101	10.92657209	14.095278	
August	20.9	8.718883818	10.30139518	12.36167422	
September	16.3	5.984273673	7.74263507	8.052340473	
October	10	2.856007959	4.417316126	4.196450319	
November	4.1	0.740481431	1.586283476	1.284889615	
Dec	-1.4			0	
	HEAT INDEX (I) =	= 41.3084717		62.96 cm/year	
				629.58 mm/year	
	0 -	- 1 1/965/707			

#### Hamilton RBG Climate Data

a = 1.148654797



LANDTEK LIMITED