

420 and 468 South Service Road East, Oakville, Ontario

L6J 2X6 Hydrogeological Investigation

Client:

420 South Service Limited Partnership 156 Duncan Mill Road, Suite 12, Toronto, ON M3B 3N2

Attention: Mr. Amir Hazar, P.Eng., M.Eng.

Type of Document: Final Report

Project Name: 420 and 468 South Service Road East, Oakville, Ontario

Project Number: GTR-23006348-D0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: 2024-10-02

Table of Contents

1	Introdu	uction	3
	1.1	Project Description	3
	1.2	Project Objectives	3
	1.3	Scope of Work	3
	1.4	Review of Previous Reports	4
2	Hydrog	geological Setting	5
	2.1	Regional Setting	5
	2.1.1	Regional Physiography	5
	2.1.2	Regional Geology and Hydrogeology	5
	2.1.3	Existing Water Well Survey	5
	2.2	Site Setting	6
	2.2.1	Site Topography	6
	2.2.2	Local Surface Water Features	6
			6
	2.2.3	Local Geology and Hydrogeology	0
3		Local Geology and Hydrogeology	
3			9
3	Results	· · · · · · · · · · · · · · · · · · ·	9 9
3	Results 3.1	Monitoring Well Details	9 9 9
3	Results 3.1 3.2	Monitoring Well Details	9 9 9 12
3	Results 3.1 3.2 3.3	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing	9 9 12 12
3	Results 3.1 3.2 3.3 3.3.1	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests	9 9 12 12 13
	Results 3.1 3.2 3.3 3.3.1 3.3.2 3.4	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests Pumping Test	9 9 12 12 13 13
	Results 3.1 3.2 3.3 3.3.1 3.3.2 3.4	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests Pumping Test Groundwater Quality	9 9 12 12 13 13 15
	Results 3.1 3.2 3.3 3.3.1 3.3.2 3.4 Dewate	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests Pumping Test Groundwater Quality ering Assessment	9 9 12 12 13 13 15 16
	Results 3.1 3.2 3.3 3.3.1 3.3.2 3.4 Dewate 4.1	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests Pumping Test Groundwater Quality ering Assessment Dewatering Flow Rate Estimate and Zone of Influence.	9 9 12 12 13 13 15 16 16
	Results 3.1 3.2 3.3 3.3.1 3.3.2 3.4 Dewate 4.1 4.2	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests Pumping Test Groundwater Quality ering Assessment Dewatering Flow Rate Estimate and Zone of Influence Cooper-Jacob's Radius of Influence	9 9 12 12 13 13 15 16 16 17
	Results 3.1 3.2 3.3 3.3.1 3.3.2 3.4 Dewate 4.1 4.2 4.3	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing Single Well Response Tests Pumping Test Groundwater Quality ering Assessment Dewatering Flow Rate Estimate and Zone of Influence Cooper-Jacob's Radius of Influence Stormwater	9 9 12 12 13 13 15 16 16 17 17

EXP Services Inc.
420 and 468 South Service Road East, Oakville, Ontario
Hydrogeological Investigation
GTR-23006348-D0
October 2, 2024

	4.5	MECP Water Taking Permits	. 19			
	4.5.1	Short-Term Discharge Rate (Construction Phase)	. 19			
	4.5.2	Long-Term Discharge Rate (Post Construction Phase)	. 20			
5	Enviror	imental Impact	. 21			
	5.1	Surface Water Features	. 21			
	5.2	Groundwater Sources	. 21			
	5.3	Geotechnical Considerations	. 21			
	5.4	Groundwater Quality	. 21			
	5.5	Well Decommissioning	. 22			
6	Conclus	sions and Recommendations	. 23			
7	' Limitations					
8	References					

List of Figures

- Figure 1 Site Location Plan
 Figure 2 Surficial Geology
 Figure 3 MECP Water Well Records Map
 Figure 4 Borehole/Monitoring Well Location Plan
 Figure 5A Cross Section A-A
 Figure 5B Cross Section B-B
 Figure 6A Overburden Groundwater Flow Map
 Figure 6B Shallow Bedrock Groundwater Flow Map
- Figure 6C Deep Bedrock Groundwater Flow Map

List of Appendices

- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results
- Appendix D Pumping Test Results
- Appendix E Laboratory's Certificates of Analysis
- Appendix F Construction and Post-Construction Flow Rate Calculations
- Appendix G Architectural Drawings

*exp.

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by 420 South Service Limited Partnership. to prepare a Hydrogeological Investigation Report associated with the proposed development located at 420 and 468 South Service Road East, Oakville, Ontario (hereinafter referred to as the 'Site').

The Site is located on the south side of South Service Road East, approximately 260 metres (m) west of Chartwell Road in Oakville, Ontario. The Site measures approximately 11.4 hectares (28.26 acres) in area and is currently vacant, aside from a portion of the former General Electric building located along the northern portion of the Site which was designated as historically significant, and the foundations of the former buildings are still in place. In addition, there are five areas on-Site where stockpiles were observed, and a berm was located in the southeast portion of the Site.

It is our understanding that the client has recently purchased the site. The proposed development plan is expected to consist of three blocks (1, 2, and 4), each containing a 4-storey podium structure with four or six high-rise tower and a three (3) or four (4) levels of underground parking garage. The blocks would be separated by arterial and collector roads and would include internal driveways and public spaces. The Site location plan is shown on Figure 1.

EXP conducted a Preliminary Geotechnical Investigation and Phase 1 Environmental Site Assessment (ESA) in conjunction with this investigation. The pertinent information gathered from the noted investigations is utilized for this report.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Assess construction flow rates and potential impacts;
- Assess groundwater quality; and
- Prepare a Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Reviewed available geological and hydrogeological information for the Site;
- Review private water supply wells on Site within 500 m of the Site (MECP database searches);
- Developed and conducted Single Well Response Tests (SWRT) on twelve (12) monitoring wells to evaluate hydraulic conductivities of the saturated stratigraphic units at the Site;
- Collected one (1) groundwater sample for laboratory testing of the Regional Municipality of Halton/City of Oakville Sanitary and Storm Sewer Use By-Law;
- Evaluated the information collected during the field investigation program, including borehole geological information, Water Well Records (WWR), SWRT results, groundwater level measurements and groundwater water quality;

- Prepared site plans, cross sections, geological mapping and groundwater contour mapping for the Site;
- Estimate construction dewatering flow rates;
- Assess potential impacts and recommend mitigation measures, and
- Prepare a Hydrogeological Investigation Report

The Hydrogeological Investigation was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, Halton Sanitary & Combined Sewer bylaw (2-03) and The Town of Oakville Storm Sewer bylaw (2009-031). The scope of work outlined above was made to assess dewatering and did not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Investigation:

- EXP Services Inc. (September 2024), Preliminary Geotechnical Investigation, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (February 2024), Phase 1 Environmental Site Assessment, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (October 2023), Soil and Groundwater Sampling and Chemical Testing Program, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.

Any past and/or future geotechnical, hydrogeological, environmental and risk assessments, and updated development/architectural plans should be provided to update this hydrogeological report prior to submission of permits and approvals by the municipalities and agencies.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is within a physiographic region known as the Iroquois Plain. The physiographic landform is named Shale Plains. The South Slope lies to the north of the Iroquois Plain (Chapman & Putnam, 2007).

The Iroquois Plain was created along the shores of former Lake Iroquois, an ancient glacial lake. The noted Plain primarily consists of shallow water sandy deposits.

The topography of the Iroquois Plain is relatively flat with a gradual slope to the south and southwest, toward Sixteen Mile Creek and Lake Ontario.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as a mixture of coarse-textured Glaciolacustrine deposits and Paleozoic Bedrock (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Based on the available regional geology maps, the subsurface stratigraphy of the Site from top to bottom is summarized in Table 2-1 (TRCA, 2008 and Oak Ridge Moraine Groundwater Program, 2023). The overburden thickness is approximately 2.1 m.

Stratigraphic Unit	General Description	Top Elevation of Stratigraphic Unit
Surficial geology	This lithologic unit is fine textured glaciolacustrine deposits typically consists of silt and clay, minor sand and gravel, interbedded silt and clay and gritty, pebbly flow till and rain out deposits	106.3
Newmarket Till (Aquitard)	This lithologic unit mainly consist of a massive and dense silty sand unit.	105.9
Georgian Bay Formation	Bedrock primarily consists of interbedded shale, limestone, dolostone and siltstone. It belongs to the Upper Ordovician, (Ministry of Northern Development and Mines, 2012).	104.2

Table 2-1: Summary of Subsurface Stratigraphy

Regional groundwater across the area flows southwesterly towards Sixteen Mile Creek and Lake Ontario (Oak Ridge Moraine Groundwater Program, 2023). Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

*ехр.

The MECP WWR database indicates that one hundred seventy-eight (178) records within a 500 m radius from the Site centroid where fifteen (15) well record is identified onsite (Figure 3 and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances in Appendix A exceed 500 m.

The database indicates that the offsite wells are at an approximate distance of two hundred (200) m or greater from the Site centroid. All offsite wells were reportedly identified as monitoring and observation wells, test holes, water supply wells, abandoned and/or listed with unknown use.

The Well Identification Number (Well ID No.) of the only offsite water supply well is 2802363 where it is reportedly located 581 m from the Site centroid. Two onsite water supply wells, 2802420 and 2802421, are reported located 147 and 159 m from the Site centroid respectively.

The reported water levels ranged from depths of 1.3 m to 16.8 meters below ground surface (mbgs).

Based on the year of installation of the water supply wells (between 1949 and 1954) and since the area is municipally serviced, it is unlikely that the noted water supply wells are still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in an urban land use setting. The topography is considered relatively flat with a regional gradual south-southeasterly slope towards Sixteen Mile Creek and Lake Ontario.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 101.13 to 105.76 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the West Lake Ontario Shoreline. No Surface water features exist onsite. .The nearest surface water features include Morrison Creek and Sixteen Miles Creek, located about 300 meters northeast and 1,150 meters southwest of the Site boundary respectively. Lake Ontario is approximately 2.3 km from the Site boundary to the southeast

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, March 2023). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

Details of the subsurface conditions encountered during the drilling program are summarized on the borehole logs in Appendix B. The logs include textural descriptions of the subsoil and groundwater conditions and indicate the soil boundaries inferred from non-continuous sampling and observations during drilling. These boundaries reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report.

Soil Stratigraphy

The previous investigations generally encountered an upper layer of variable fill material overlying native clayey silt till, with shallow bedrock; this was consistent with the findings of the EXP investigation, which are further detailed in the subsections below.

Asphalt, Concrete, Granular Fill

The boreholes were each advanced through surficial asphalt, concrete, and/or granular fill. Asphalt was encountered at Boreholes MW-312, MW-315, MW-317, MW-320, and MW-324 and ranged in thickness from 25 to 100 mm. Concrete was encountered at Boreholes MW-319 and MW-325 with thicknesses of 75 and 140 mm, respectively. Granular fill was encountered at all boreholes (except MW-319, MW-325, and MW-326) at the ground surface or below the asphalt or concrete and ranged in thickness from 50 to 350 mm.

Fill/Reworked Native Soil

A layer of fill or reworked native soil was encountered below the pavement structure at all boreholes except MW-314 and MW-315 and extended to depths ranging from 0.8 to 3.1 m below grade. The fill was variable and consisted of silty clay, silty sand, sand, or sand and gravel, and traces of deleterious materials (rootlets/organics or asphalt); the colours comprised brown, grey, dark grey, or black; the moisture condition ranged from damp to wet.

Sand

A native sand stratum was encountered at Borehole MW-315 below the pavement structure, extending to a depth of approximately 2.0 m. The sand contained traces of silt and occasional silt seams; was brown in colour; and in a very moist state. Based on SPT N values ranging from 12 to 21 blows per 305 mm of penetration, the stratum is classified as compact.

Silty Clay Till

Silty clay till was encountered at all boreholes below the pavement structure or fill and extended to the bedrock surface or borehole termination at depths ranging from 2.3 to 3.8 m. The stratum contained traces of sand, gravel, and shale fragments; was brown to grey in colour; and in a damp to moist state. SPT N values ranged from 17 to greater than 100 blows per 305 mm penetration. Based on undrained shear strengths ranging from 75 kPa to greater than 225 kPa as determined by pocket penetrometer measurements, the silty clay till is classified as stiff to hard in consistency.

Bedrock

All boreholes (except MW-326) were augered into the weathered shale bedrock. The bedrock surface was encountered at depths ranging from 2.3 to 4.0 m as detailed in the table below. The bedrock contact elevations should not be interpreted as the exact planes of the bedrock surface since the auger will frequently penetrate some distance into the weathered rock before noticeable resistance is encountered. Further, the distinction between highly weathered shale and the overlying stratum, particularly if the latter contains abundant shale fragments, is not always clear and consequently, some of the soil resting on the surface of the bedrock might be very weak and highly weathered shale.

Based on the Ontario Geological Survey (OGS) Map 2544, Bedrock Geology of Ontario, Southern Sheet, the bedrock in the site vicinity consists of grey shale of the Georgian Bay Formation. In general, the upper portion of the Georgian Bay Shale bedrock is usually highly weathered to weathered in the upper layers, generally to depths of about 500 mm to 1.5 m and occasionally the highly weathered/fractured zones can extend to more than 3 m depth. The degree of weathering and presence of silty clay till layers were inferred by auger resistance and limited split spoon samples. Hard limestone lenses are also common within the shale and have been encountered by EXP at various sites in Oakville.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5A (Cross section A-

A') and on Figure 5B (Cross section B-B'). The cross section shows a simplified representation of soil conditions and soil deposits may be interconnected differently than represented. Borehole logs used to generate both cross-sections are provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical and Environmental Investigations at the Site. It consists of the following:

Ten (10) deep bedrock monitoring well (MW308D, MW320D, MW332D, MW333, MW334, MW335, MW336, MW337, MW338, and MW339) were installed.

The diameter of all monitoring wells is 50 mm. All wells were installed with a monument protective casing, except MW320D, MW334, NW335 and MW336, which were installed with flush mount protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels in the monitoring wells installed outside of the existing building were recorded in three (3) monitoring events, including August 26, 27 and 29 of 2024. A summary of all static water level data in overburden, shallow and deep bedrock monitoring wells as it relates to the elevation survey is given in Table 3-1, 3-2 and 3-3 below.

The groundwater elevation recorded in the overburden wells ranged from 100.0 masl (1.13 mbgs at MW308S on August 29, 2024) to 103.55 masl (1.31 mbgs at MW301 on August 27, 2024). The groundwater elevation recorded for the shallow bedrock wells ranged from 98.81 masl (2.32 mbgs at MW308I on August 24 and 29, 2024) to 102.90 masl (2.81 mbgs at MW119A on August 27, 2024). The groundwater elevation recorded for the deep bedrock wells ranged from 94.70 masl (6.43 mbgs at MW308D on August 29, 2024) to 101.73 masl (4.03 mbgs at MW333 on August 26, 2024).

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024 10

Table 3-1: Summary of Measured Overburden Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	26-Aug-24	27-Aug-24	29-Aug-24
MW301	104.86	2.83	103.52	103.55	mbgs	-	1.31	1.34
10100301	104.80	2.85	105.52	105.55	masl	-	103.55	103.52
MW307	101.57	2.52	100.86	100.92	mbgs	-	0.65	0.71
10100507	101.57	2.52	100.80	100.92	masl	-	100.92	100.86
MW310	101.82	2.71	100.44	100.47	mbgs	-	1.35	1.38
10100310	101.82	2.71	100.44	100.47	masl	-	100.47	100.44
MW308S	101.13	2.35	100.00	100.01	mbgs	-	1.12	1.13
101005065	101.15	2.55	100.00	100.01	masl	-	100.01	100.00
MW332S	105.70	4.04	102.59	402 74	mbgs	2.96	2.96	3.11
101003323	105.70	4.04	102.59	102.74	masl	102.74	102.74	102.59

Table 3-1: Summary of Measured Shallow Bedrock Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	26-Aug-24	27-Aug-24	29-Aug-24
MW302	104.99	6.90	102.71	102.77	mbgs	-	2.22	2.28
10100302	104.99	0.90	102.71	102.77	masl	-	102.77	102.71
MW304	104.27	7.08	101.66	101.66	mbgs	-	2.61	2.61
10100304	104.27	7.06	101.00	101.00	masl	-	101.66	101.66
MW309	101.82	7.10	99.92	99.96	mbgs	-	1.86	1.90
10100309	101.82	7.10	99.92	99.90	masl	-	99.96	99.92
MW119A	105.71	7.07	102.85	102.90	mbgs	-	2.81	2.86
IVIVVIIJA	105.71	7.07	102.85	102.90	masl	-	102.90	102.85
MW308I	101.13	6.59	98.81	00.01	mbgs	-	2.32	2.32
101003081	101.13	0.59	90.81	98.81	masl	-	98.81	98.81

EXP Services Inc. 11

420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Table 3-3: Summary of Measured Deep Bedrock Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Minimum GW Elevation (masl)	Maximum GW Elevation (masl)	Depth	26-Aug-24	27-Aug-24	29-Aug-24
MW308D	101.13	12.92	94.70	95.09	mbgs	-	6.04	6.43
10100 5060	101.15	12.92	94.70	95.09	masl	-	95.09	94.70
MW320D	102.79	12.87	96.06	96.14	mbgs	6.65	6.73	6.67
101005200	102.79	12.07	90.00	90.14	masl	96.14	96.06	96.12
MW332D	105.70	12.22	99.73	99.80	mbgs	5.9	5.94	5.97
IVI VV 332D	105.70	13.22	99.73	99.80	masl	99.80	99.76	99.73
MW333	105 70	12.11	101 00	101 72	mbgs	4.03	4.16	4.07
10100333	105.76	13.11	101.60	101.73	masl	101.73	101.60	101.69
1414224	101.21	12.11	06 70	06.04	mbgs	7.42	7.40	7.41
MW334	104.21	13.11	96.79	96.81	masl	96.79	96.81	96.80
1414225	101.21	42.47	00.64	00.60	mbgs	5.57	5.53	5.55
MW335	104.21	12.17	98.64	98.68	masl	98.64	98.68	98.66
144226	102.24	40.07	05 50	05 50	mbgs	6.66	6.70	6.71
MW336	102.24	12.87	95.53	95.58	masl	95.58	95.54	95.53
N 41 4 2 2 7	102.00	44.24	0.0.07	07.04	mbgs	6.97	7.23	7.31
MW337	103.98	14.24	96.67	97.01	masl	97.01	96.75	96.67
1414220		06.00	mbgs	7.18	7.52	7.56		
MW338	103.87	103.87 14.29	96.42	96.80	masl	96.80	96.46	96.42
	405 70	4.4.00	00.00	00.47	mbgs	6.63	6.27	6.25
MW339	105.72	14.00	99.09	99.47	masl	99.09	99.45	99.47

Three (3) maps were created for the Site to show groundwater contours of the overburden, shallow and deep bedrock waterbearing zones (Figures 6A, 6B and 6C). Accordingly, the groundwater flow directions in the shallow overburden, shallow and deep bedrock are interpreted to be south and southwest of the Site, towards Morrison Creek.

For the design of foundations without perimeter and foundation drainage systems, shallower wells need to be considered to evaluate the shallow groundwater table. The hydrogeologist needs to be consulted during the design process.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

3.3 Hydraulic Conductivity Testing

3.3.1 Single Well Response Tests

Ten (10) Single Well Response Tests (SWRT's) were completed on monitoring wells MW308D, MW320D, MW332D, MW333, MW334, MW335, MW336, MW337, MW338, and MW339 on August 27, 2024. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths utilizing data loggers, preprogramed to take measurement on (time in sec/ half sec/minutes) intervals.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Table 3-2.

Monitoring Well	Approximate Well Depth	Screen Interval (mbgs)		Soil Formation Screened	Estimated Hydraulic Conductivity (m/s)	
	(mbgs)	from	to		conductivity (m/s)	
MW308D	12.92	9.92	12.92	Bedrock	7.9E-08	
MW320D	12.87	9.87	12.87	Bedrock	4.2E-07	
MW332D	13.22	10.22	13.22	Bedrock	7.3E-07	
MW333	13.11	10.11	13.11	Bedrock	8.0E-06	
MW334	13.11	10.11	13.11	Bedrock	7.1E-06	
MW335	12.17	9.17	12.17	Bedrock	2.3E-06	
MW336	12.87	9.87	12.87	Bedrock	1.6E-06	
MW337	13.07	10.07	13.07	Bedrock	2.3E-06	
MW338	13.15	10.15	13.15	Bedrock	3.3E-07	
MW339	13.06	10.06	13.06	Bedrock	9.5E-08	
	8.0E-06					
	2.3E-06					
	9.0E-07					

Table 3-2: Summary of Hydraulic Conductivity Testing

SWRTs provide K-estimates of the geological formation surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-2, the highest K-value of the tested water-bearing zone is 8.0E-06 m/s, and the arithmetic and geometric mean of the K-values are 2.3E-06 m/s and 9.0E-07 m/s respectively.

3.3.2 Pumping Test

EXP conducted a short constant-rate pumping test at MW332D on August 29, 2024 where drawdown at the pumping well was monitored, followed by a recovery period until the well reach static conditions. The purpose of the pumping test was to determine the hydraulic properties of the bedrock. The locations of the pumping well and the monitoring wells are presented in Figure 4.

The static water level in MW332D prior to the commencement of pumping phase was at a depth of 13.22 mbgs, corresponding to a static water column head of 5.92 m above the screened interval. MW332D equipped with an electronic datalogger programmed at 1 second intervals; additionally, water levels were also taken manually. The data was subjected to barometric compensation to resolve background atmospheric pressure fluctuations before use in hydrographs and curve-fitting pump test analyses.

MW332D was pumped at a rate of 0.26 L/min until maximum available drawdown was reached at 3,614 seconds (approximately 60 mins). To prevent the water level in the well from being lowered to the pump intake, the pump was shut off and recovery period was initiated at 3,614 seconds. The well recovered to 0.14 m below its initial water level (>90% recovery) and stabilized after approximately 60 mins into the recovery period.

The pump test data was analyzed using Aqtesolv Pro. V.4.5 software package. The semi-log plots showing drawdown versus time, as well as the results of detailed data analysis are included in Appendix D.

The maximum drawdown during the test was 1.33 m at MW332D. The Transmissivity of the bedrock, based on the confined Cooper-Jacob analytical solution, was 9.53E-07 m²/s. The K-value of the bedrock (1.3E-07 m/s) is calculated based on Transmissivity and a uniform saturated aquifer thickness of 7.3 m, which is comparable to the SWRT results.

3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the town of Oakville during dewatering activities, one (1) groundwater sample was collected from monitoring well MW332D on August 30, 2024 using a peristaltic pump. Prior to collecting the noted water sample, approximately three (3) standing well volumes of groundwater were purged from the referred well. The samples were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Bureau Veritas Laboratory, a CALA certified independent laboratory in Mississauga, Ontario. Analytical results are provided in Appendix E.

Table 3-3 summarizes exceedance(s) of the Town of Oakville Storm (Table 1) and the Halton Sanitary and Combined (Table 2) Sewer Use By-Law parameters.

When comparing the chemistry of the collected groundwater samples to the Town of Oakville Storm Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported

When comparing the chemistry of the collected groundwater samples to the Halton Sanitary and Combined Sewer Discharge Criteria (Table 2), the following parameters reported an exceedance: Total Manganese (Mn).

Reporting detection limits (RDLs) were below the Sewer Use By-Law parameter criteria of Tables 1 and 2.

Based on the environmental sampling, exceedances of O.Reg.153/04 were found in the overburden for PHCs and BTEX, VOCs, PAHs and metals and treatment should be planned to treat these parameters.

*exp.

Based on Phase Two O. Reg. 153 groundwater check, there were no parameter exceedances against the Town of Oakville Storm Sewer Drainage Discharge Criteria (Table 1).

Based on Phase Two O. Reg. 153 groundwater check, there were no parameter exceedances against the Halton Sanitary and Combined Sewer Discharge Criteria (Table 2).

Parameter	Units	The Town of Oakville Stormer Sewer Discharge Limit (Table1)	Halton Sanitary and Combined Sewer Discharge Limit (Table 2)	Concentration MW332D August 30, 2024
Total Manganese (Mn)	μg/L	5,000	50	180

Table 3-3: Summary of Analytical Results

Bold - Exceeds Halton Sanitary and Combined Sewer Discharge Limit (Table 2).

Bold & underlined – Exceeds The Town of Oakville Storm Sewer Discharge Limit (Table 1).

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to be discharged without a treatment system.

For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase, as required by the City.

An agreement to discharge into the sewers owned by the The Town of Oakville will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

15

4 Dewatering Assessment

The dimensions of the three (3) proposed development blocks (1, 2, and 4, see Appendix G) to support the dewatering assessment are summarized in Table 4-1 below.

Table 4-1 Building Dimensions for Dewatering Assessment

Input Parameter	Block 1	Block 2	Block 4	Units	Notes
Number of Subgrade Levels	3 Levels	3 Levels	4 Levels	-	Based on architectural drawings (Graziani and Corazza Architect, 2024) Cross Section (Drawing No. A501)
Ground Elevations	105.76	104.99	103.98	masl	Based on the ground elevations of the nearest boreholes /Monitoring wells
Groundwater Elevation	103.74	103.77	102.5	masl	Highest shallow groundwater elevation measured at the nearest monitoring wells plus 1 m
Top of Slab Elevation	95	95	92	masl	Based on architectural drawings (Graziani and Corazza Architect, 2024) Cross Section (Drawing No. A501)
Lowest Footing Elevation	93.5	93.5	90.5	masl	Assumed to be approximately 1.5 m below the top of slab elevation
Short-Term Dewatering Elevation Target	92.5	92.5	89.5	masl	Assumed to be one (1) meter below the lowest foundation elevation.
Long-Term Dewatering Elevation Target	94.5	94.5	91.5	masl	Assumed to be 0.5 m below the lowest top slab elevation
Excavation Area (Length x Width)	16,964 (135.6 x 125.3)	15,166 (138.5 x 109.5)	10,227 (114.8 x 89.1)	m² (m x m)	Approximate area (length x width) of Site for the proposed development

4.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit-Forcheimer equation for radial flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$

$$r_e = \frac{a+b}{\pi} \qquad \qquad R_o = R_{cj} + r_e$$

Where:

Qw = Rate of pumping (m³/s)

- X = Length of excavation (m)
- K = Hydraulic conductivity (m/s)
- H = Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)
- h = Hydraulic head above the base of aquifer in an excavation (m)
- R₀ = Radius of influence (m)
- R_{cj} = Cooper-Jacob's radius of influence (m)
- re = Equivalent perimeter (m)
- a = Length of the excavation area (m)
- *b* = Width of the excavation area (m)

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation.

4.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob's formula as follows:

$$R_{ci} = \sqrt{2.25KDt/s}$$

Where:

Ro = Estimated radius of influence (m)

- D = Aquifer thickness (original saturated thickness) (m)
- K = Hydraulic conductivity (m/s)
- S = Storage coefficient
- t = Duration of pumping (s)

4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 25 mm precipitation event was utilized for estimating the stormwater volume. The calculation of the stormwater volume is included in Appendix F.

The estimate of the stormwater volume only accounts for direct precipitation into the excavation. The dimensions of the excavation are considered in the dewatering calculations. Runoff which originated outside of the excavation's footprint is excluded and it should be directed away from the excavation.

During precipitation events greater than 25 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. A two (2) and a one hundred (100) year storm event over a 24-hour period are 56.5 and 122.6 mm (refer to Appendix F).

4.4 Results of Dewatering Rate Estimates

4.4.1 Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the assumed shoring design change.

Short-term (construction) dewatering calculations are presented in Appendix F.

Pits (elevator, sump pits) are assumed to have the same excavation depth and dewatering target as the main excavation; deeper pits may require localized dewatering and revised dewatering estimates.

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows:

Parameters	Unit	Block 1	Block 2	Block 4
Dewatering Flow Rate without Safety Factor	m³/day	82	80	76
Dewatering Flow Rate with Safety Factor of 2	m³/day	165	161	152
Area	m²	16,964	15,166	10,227
Precipitation (25 mm)	m³	425	379	256
Dewatering Flow Rate with Safety Factor of 2 including 25 mm rain event.	m³/day	590	540	407

Table 4-2 Summary of Construction Dewatering Rate

The peak dewatering flow rates does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation.

[%]ехр.

Local dewatering may be required for pits (elevator pits, sump pits), if these extend deeper than the dewatering target. Local dewatering is not considered to be part of this assessment. Dewatering estimates should be reviewed once the pit dimensions are available.

Local dewatering may be required for pits (elevator pits, sump pits, raft) and for localized areas with permeable, soft, or wet soil conditions. Local dewatering is not considered to be part of this assessment, but contractor should be ready to install additional system to manage such conditions. Dewatering estimates should be reviewed once the pit dimensions are available.

All grading around the perimeter of the excavation should be graded away from the shoring the systems and ramp/site access to redirect runoff away from excavation.

The dewatering assumptions are based on using shoring system without open cuts and sloped excavations.

If groundwater cutoff systems (ex: caisson walls, sheet piles) are installed, these should be designed for maximal hydrostatic pressure for shallow and deep water levels, without dewatering on the outer side of the groundwater cutoff. Soldier pile and lagging and caisson wall systems should be designed to account for shallow groundwater conditions and take into consideration that dewatering systems may not provide fully dewatered soil conditions.

If groundwater cutoff systems are used for decreasing long-term dewatering rates, these should be designed as permanent structures to cutoff groundwater inflow in the long-term. All perforations should be sealed permanently (ex: tiebacks, breaches, and cold joints) with no leakages and inspected. Fillers should extend into low permeability deposits (ex: sound bedrock or till) to cutoff groundwater from water bearing zones. Inspections should be conducted to confirm the depth of low permeability deposits along shoring system and that fillers are keyed into low permeability soil deposits.

All grading around the perimeter of the construction Site should be graded away from the shoring the system.

The contractor is responsible for the design of the dewatering systems (depth of wells, screen length, number of wells, spacing sand pack around screens, prevent soil loss etc.) to ensure that dry conditions are always maintained within the excavation at all costs.

Dewatering should be monitored using dedicated monitoring wells within and around the perimeter of the excavation, and these wells should be monitored using manual measurements and with electronic data loggers; records should be maintained on site to track dewatering progress. Discharge rates should be monitored using calibrated flow meters and records of dewatering progress, and daily precipitation as per MECP requirements should be maintained.

4.4.2 Post-Construction Dewatering Rate Estimate

It is our understanding that the development plan includes a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system if conventional footings are installed.

The long-term dewatering was based on the same equations as construction dewatering shown in Section 4.1.

The calculation for the estimated flow to the future sub-drain system (with no cutoff walls) is provided in Appendix F. The dewatering target for the foundation drainage system is taken at 0.5 m below the lowest slab elevation.

The foundation drain analysis provides a flow rate estimate. Once the foundation drain is built, actual flow rate measurements of the sump discharge will be required to confirm the estimated flow rate.

Based on the assumptions provided in this report, the estimated sub-drain discharge volumes are summarized in Appendix F. Seasonal and daily fluctuations are expected. These estimates may be affected by hydrogeological conditions beyond those

[%]ехр.

encountered at this time, fluctuations in groundwater regimes, surrounding Site alterations, and existing and future infrastructures.

For the design of foundations without perimeter and/or foundation drainage system, shallower wells need to be considered to evaluate the shallow groundwater table. The hydrogeologist needs to be consulted during the design process.

Parameters	Unit	Block 1	Block 2	Block 4
Dewatering Flow Rate without Safety Factor	m³/day	59	58	57
Dewatering Flow Rate with Safety Factor of 1.5	m-/uay	89	87	86

Table 4-3: Summary of Long-Term Dewatering Rate

Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. A safety factor was applied to the flow rate to account for water level fluctuations due to seasonal changes.

These estimates assume that pits (elevator and/or sump pits) are made as watertight structures (without drainage), if their depths extend below the dewatering target, as previously stated.

The sub-drain rate estimate is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the sub-drain discharge volumes.

4.5 MECP Water Taking Permits

4.5.1 Short-Term Discharge Rate (Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m³/day but less than 400 m³/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required. If groundwater dewatering rates onsite exceed 400 m³/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021, an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the EASR water taking limit of 400 m³/day would apply to groundwater takings of each dewatered work area only, excluding stormwater.

The dewatering estimates for all development blocks (i.e., 1, 2 and 4) including a safety factor of 2 are greater than 50 m³/day and less than 400 m³/day as shown in Table 4-2. The MECP construction dewatering rate excludes the precipitation amount and is the rate used for the permit application. Based on the MECP construction dewatering an EASR will be required to facilitate the construction dewatering program for each development block.

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The PTTW/EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the EASR will need to be updated to reflect these modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

4.5.2 Long-Term Discharge Rate (Post Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m³/day, then an application for a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

Based on the dewatering estimates for all development blocks (i.e., 1, 2, and 4) shown in Table 4-3 with a safety factor of 1.5 greater than 50 m³/day, a Category 3 Permit to Take Water (PTTW) will be required to facilitate the post-development phase of each development block.

The safety factor for construction (short-term) dewatering is selected larger than for long-term to account for anticipated greater groundwater volumes during initial dewatering. The applied analytical formula is adequate for long-term (steady state) conditions as it omits specific yield and time dependency. When the formula is used for short-term conditions a larger safety factor is recommended to cover a larger initial dewatering rate, which is required to remove stored groundwater. Moreover, a large initial construction dewatering rate is favorable, as it supports reducing the time to reach the dewatering target elevation.

5 Environmental Impact

5.1 Surface Water Features

The Site is within the West Lake Ontario Shoreline. No surface water features exist onsite. .The nearest surface water features include Morrison Creek and Sixteen Miles Creek, located about 300 meters northeast and 1,150 meters southwest of the Site boundary respectively. Lake Ontario is approximately 2.3 km from the Site boundary to the southeast

Due to the limited extent of zone of influence and the wide distance to the nearest surface water feature, no detrimental impacts on surface water features are expected during construction activities.

5.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the presence and number of water supply wells within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is limited, no dewatering related impact is expected on the water wells in the area.

5.3 Geotechnical Considerations

As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

5.4 Groundwater Quality

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the The Town of Oakville Sewer Use By-Law.

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

For the Short-term (construction) discharge to the Sanitary/Storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

For the long-term (post construction) dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by The Town of Oakville will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

[%]ехр.

5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

6 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

- When comparing the chemistry of the collected groundwater samples to the Town of Oakville Storm Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.
- When comparing the chemistry of the collected groundwater samples to the Halton Sanitary and Combined Sewer Discharge Criteria (Table 2), the following parameters reported an exceedance: Total Manganese (Mn).
- Based on the assumptions outlined in this report, the estimated peak dewatering rate for proposed construction activities in development block 1, 2, and 4 are approximately 590 m³/day, 540 m³/day and 407 m³/day respectively. These are the rates which will be required to be discharged to the municipal sewer system.
- The estimated MECP short-term (construction) dewatering rate for proposed construction activities in development block 1, 2 and 4 are approximately 165 m³/day, 161 m³/day and 152 m³/day respectively. As these dewatering flow rate estimates are between 50 m³/day and 400 m³/day, an EASR will be required to facilitate the construction dewatering program for each development block.
- The estimated long-term (post-construction) dewatering rate for development blocks 1, 2 and 4 are estimated to be approximately 89 m³/day, 87 m³/day and 86 m³/day respectively. A category 3 PTTW will be required to facilitate the post construction development phase for each Block as their long-term dewatering rates are above 50 m³/day.
- The construction and post-construction dewatering rate estimates are based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volumes.
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.
- For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to discharge without a treatment system.
- For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment as required.
- As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to
 water taking (ex: settlement, soil loss, subsidence etc.) is required. The water taking should not have unacceptable
 interference on soils and underground structures (foundations, utilities etc.). A letter related to geotechnical issues as it
 pertains to the Site is required to be completed under a separate cover.
- An agreement to discharge into the sewers owned by The Town of Oakville will be required prior to releasing dewatering effluent.
- The EASR registration allows construction dewatering discharge of up to 400 m³/day. A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire construction dewatering phase. The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must always also be available at the construction Site for the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since EASR will need to be updated to reflect these

exp.

modifications. The hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction dewatering.

 In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 420 South Service Limited Partnership. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

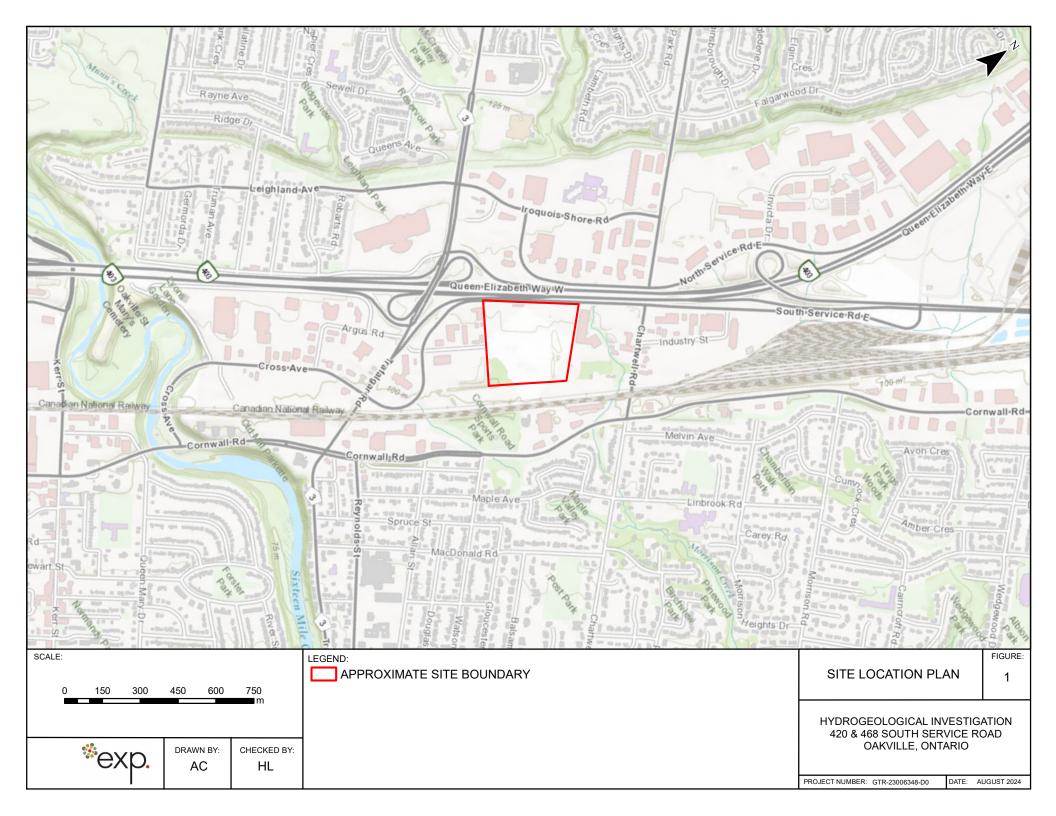
EXP Services Inc.

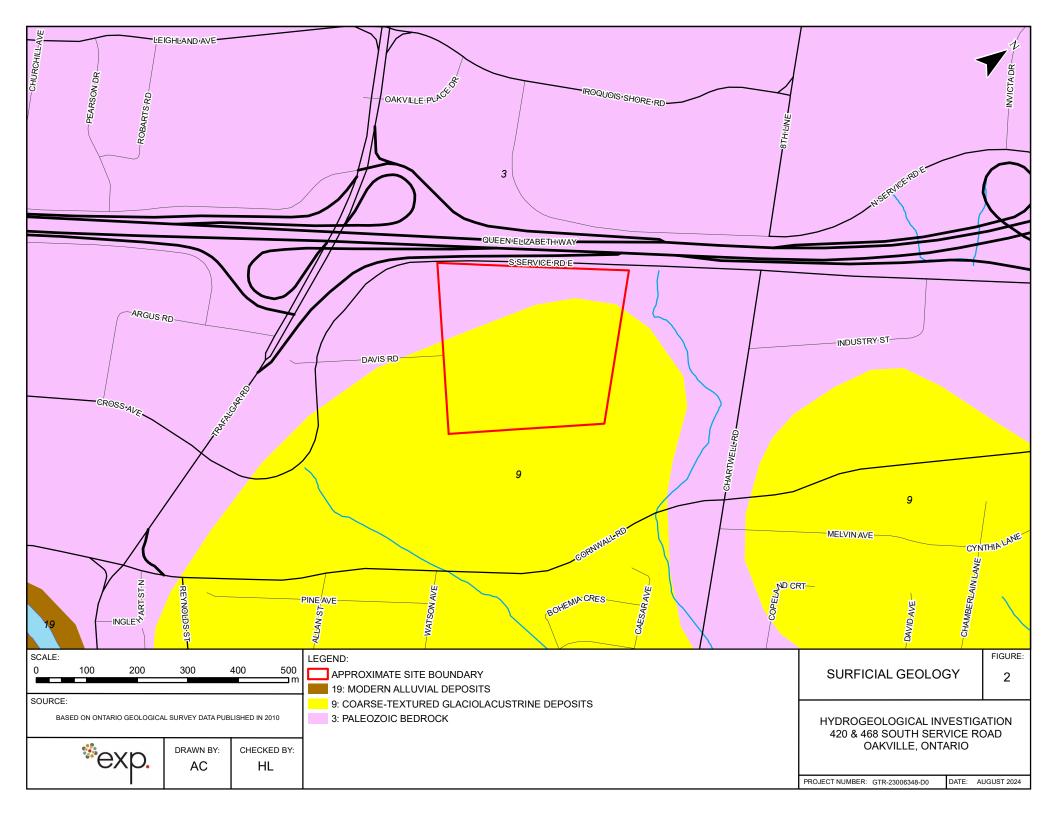
Hammond Lo, M.Eng., P.Eng. Senior Hydrogeologist Environmental Services

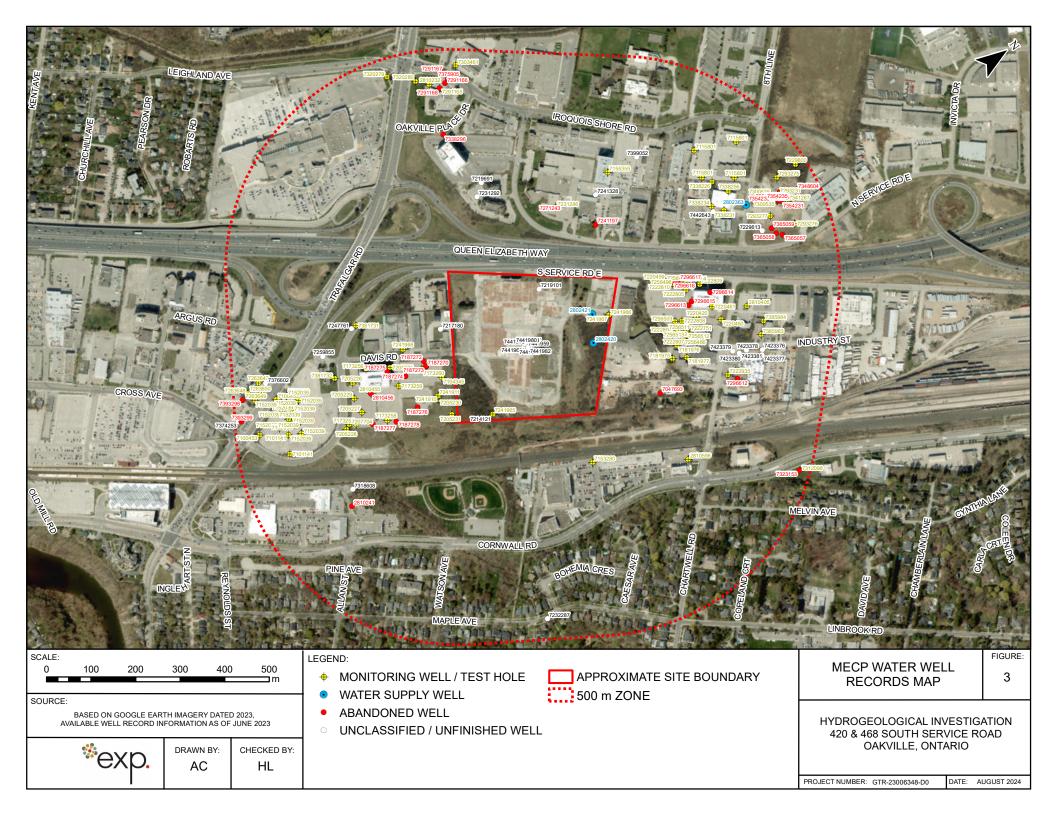
4

Francois Chartier, M.Sc., P.Geo. Discipline Manager, Hydrogeology Environmental Services

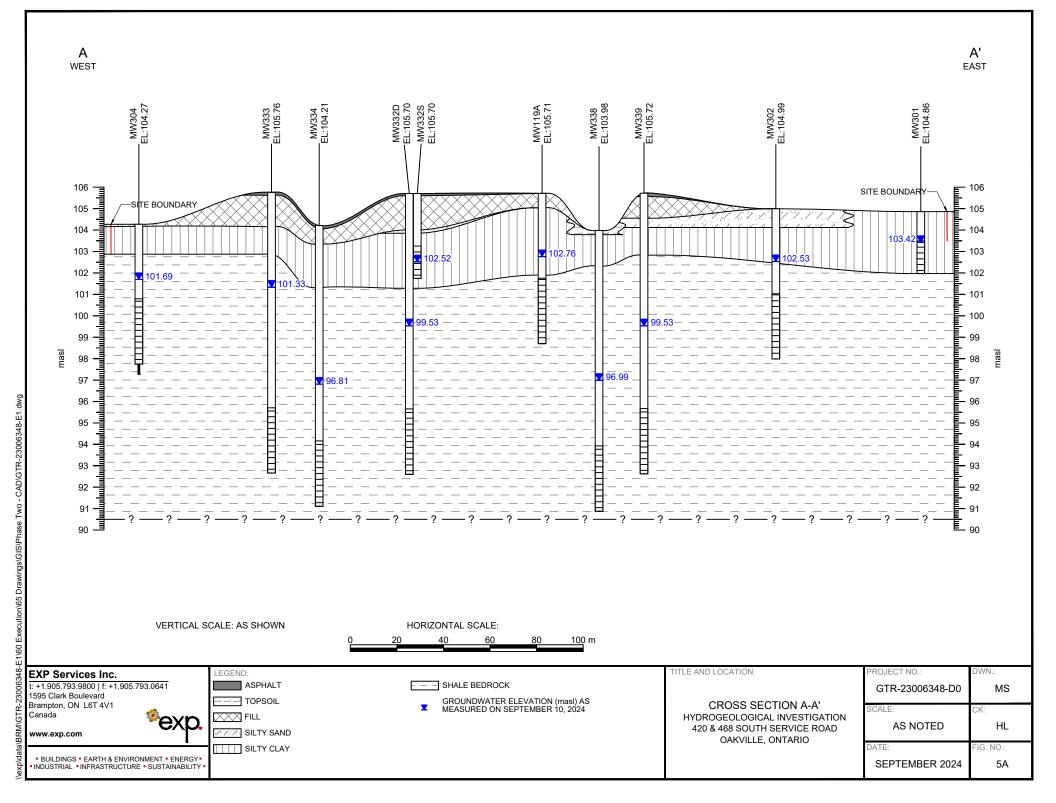
8 References

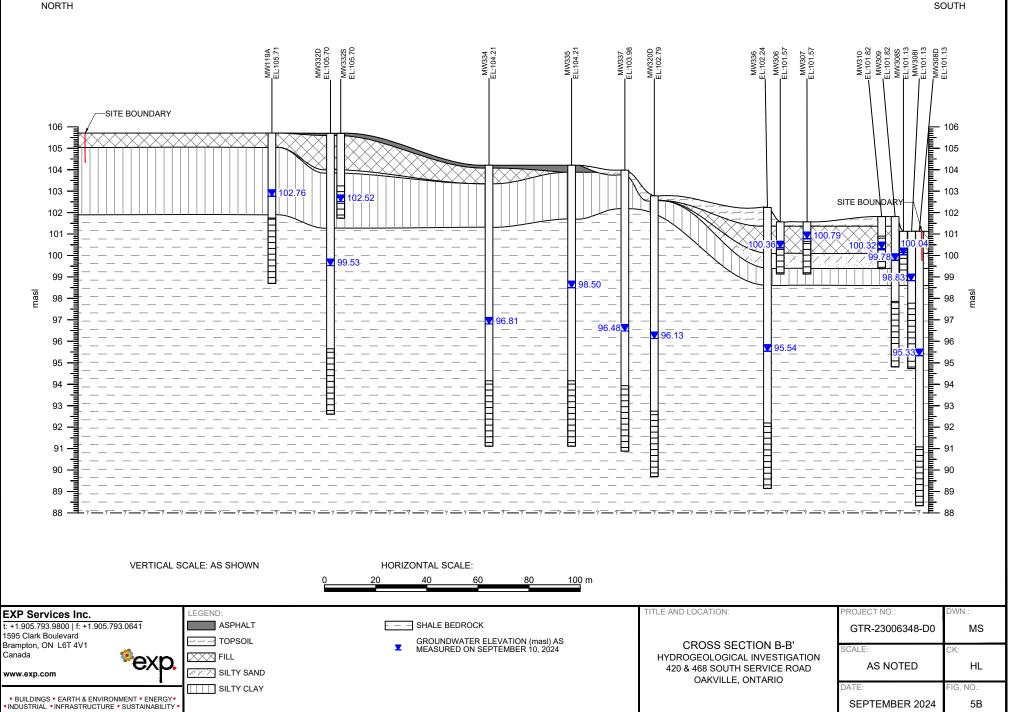

- Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.
- Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.
- EXP Services Inc. (September 2024), Preliminary Geotechnical Investigation, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (February 2024), Phase 1 Environmental Site Assessment, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- EXP Services Inc. (October 2023), Soil and Groundwater Sampling and Chemical Testing Program, 420 and 468 South Service Road East, Oakville, ON, prepared for Rose Acquisition Corporation.
- J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.
- Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.
- Oak Ridges Moraine Groundwater Program. Accessed to the website (https://oakridgeswater.ca/) 2023.
- Toronto and Region Conservation (2008/2009), Humber/Don River State of the Watershed Report Geology and Groundwater Resources.




EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Figures





B NORTH

CAD\GTR-23006348-E1.dwg

E1\60 Execution\65 Drawings\GIS\Phase Two

23006348-

xp\data\BRM\GTR-

B'

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix A – MECP WWR Summary Table

					ELEVATION			On-Site	DISTANCE FROM		WELL DEPTH	WATER FOUND	CASING			
BORE_HOLE_ID	WELL_ID 2802420	10/1/1951 (506961 48	RTH83	(m ASL) 103.8	LOCATION ACCURACY	STREET	CITY	SITE CENTROID (m) 147	METHOD	(m bgs) 2.4	(m bgs) 2.4	DIAMETER (cm) 91.4	1st USE Public	2nd USE	FINAL STATUS Water Supply
10148971 1004677311 1004730819	2802421 7214121	7/16/1954 (12/6/2013 (10/28/2013 (606906 48 606963 48	13245 12932	104.6 101.1 105.3	unknown UTM on Water Well Record on Water Well Record			159 178 126	Cable Tool	7.6	3.7	15.2	Commerical		Water Supply
1005384474 1005384477	7241965 7241966	2/3/2015 (2/6/2015 (606962 48 606928 48	12933 13273	105.3 101.1 104.4	on Water Well Record on Water Well Record on Water Well Record	420 SOUTH SERVICE RD E 420 SOUTH SERVICE RD E	OAKVILLE	126 176 191	DIRECT PUSH DIRECT PUSH	20.1 20.1		3.8 3.8	Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Observation Wells
1005384480 1009397482 1009397485	7241967 7441959 7441960		606880 48	13275 13081 13078	104.4 103.7 103.7	on Water Well Record on Water Well Record on Water Well Record	420 SOUTH SERVICE RD EAST	OAKVILLE	193 7 11	DIRECT PUSH	20.1		3.8	Monitoring and Test Hole		Observation Wells
1009397511 1009397514	7441977	1/9/2023 0	505877 48 505883 48 505881 48	13092	103.7 103.7	on Water Well Record on Water Well Record			6 2							
1009397517 1009397520 1009397523	7441980	1/6/2023 0	506878 48 506875 48 506886 48	13083	103.7 103.7 103.7	on Water Well Record on Water Well Record on Water Well Record			2 7							
1009397526		1/6/2023 0 1/5/2023 0			103.7 103.7	on Water Well Record on Water Well Record		Off-Site	7							
BORE_HOLE_ID	WELL_ID	DATE	EAST83 NO	RTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СПТУ	DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m bgs)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
23047693 10148913	2802363	6/6/2007 0 2/14/1948 0	606903 48	13669	102.0 107.4	on Water Well Record unknown UTM	562 CHARTWELL ROAD	OAKVILLE	316 581	Cable Tool	24.4	16.8	15.2	Domestic		Abandoned-Other Water Supply
11319360 11319187 11319196	2810232	9/20/2004 (4/19/2005 (5/13/2005 (606272 48		103.5 111.7 97.5	on Water Well Record on Water Well Record on Water Well Record	1012 SOUTH SERVICE RD 350 IROQUOIS SHORE RD 271-351 CORNWALL ROAD	OAKVILLE OAKVILLE OAKVILLE	499 626 538	Boring Rotary (Convent.) Boring	3.0 6.0	2.4 1.5 4.0	5.0 4.5			Observation Wells Observation Wells Abandoned-Other
11552365 11552506	2810455 2810596	12/13/2005 (6/12/2006 (606767 48 607297 48	12735 13234	101.6 99.8	on Water Well Record on Water Well Record	354 DAVIS RD 461 CORNWALL RD	OAKVILLE	371 443	Boring Other Method	5.8	5.5	5.1 5.1			Observation Wells Observation Wells
11552366 1000044211 1002634243	7100453	12/16/2005 (9/26/2007 (9/26/2007 (606700 48	12735 12477 12477	101.6 99.1 101.1	on Water Well Record Not Applicable i.e. no UTM Not Applicable i.e. no UTM	354 DAVIS RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE Oakville Oakville	371 637 637	Boring Auger Auger	4.7	2.0		Not Used Monitoring Monitoring		Abandoned-Other Observation Wells Observation Wells
1001912450 1001912459 1001580243	7101141	9/27/2007 0 9/27/2007 0 3/17/2008 0	606738 48	12531	99.7 98.5 104.4	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 354 DAVIS RD	OAKVILLE	575 596 209	Auger Auger	5.2	3.9 3.9	5.0	Monitoring Monitoring Not Used		Test Hole Test Hole
1001580243 1002782848 1002782830	7115801	7/14/2008 (7/14/2008 (7/14/2008 (606837 48	13683	104.4 109.0 109.2	on Water Well Record on Water Well Record on Water Well Record	504 IROQUOIS SHORE ROAD 504 IROQUOIS SHORE ROAD 504 IROQUOIS SHORE ROAD	Oakville Oakville	596 596	Boring S.S.A. S.S.A.	5.2		5.0	Test Hole Test Hole		Observation Wells Test Hole Test Hole
1002782839 1001905244 1003340124		7/14/2008	606837 48	13683 13683 12559	109.5 109.0 101.4	on Water Well Record on Water Well Record on Water Well Record	504 IROQUOIS SHORE ROAD 504 IROQUOIS SHORE ROAD 547 TRAFALGAR RD	Oakville Oakville OAKVILLE	596 596	S.S.A. S.S.A. DIRECT PUSH	5.5 4.0			Test Hole Test Hole		Test Hole Test Hole Test Hole
1003340124 1003603938 1003604011	7152039	9/3/2010 0	606669 48	12559	101.4 101.1 100.4	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH	4.0			Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1003604020 1003603965 1003604029	7152039 7152039 7152039	9/7/2010 0	606669 48	12559 12559 12559	101.3 99.7 101.3	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003603929 1003604001		9/3/2010 0	606669 48	12559	101.3 101.4 101.1	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE	569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1003603947 1003603956	7152039	9/7/2010 0	606669 48	12559	100.5	on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE OAKVILLE	569 569	DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1003603920 1003603983 1003603992	7152039	9/7/2010 0		12559	101.4 101.1 101.1	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE OAKVILLE	569 569 569	DIRECT PUSH DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003603974 1003604038	7152039	9/9/2010 (606669 48	12559	99.7 101.3	on Water Well Record on Water Well Record	547 TRAFALGAR RD 547 TRAFALGAR RD	OAKVILLE	569 569	DIRECT PUSH DIRECT PUSH				Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1003604047 1003352596 1003424505		9/9/2010 0 9/22/2010 0 10/21/2010 0	607179 48	12559 13054 13456	101.4 99.0 108.0	on Water Well Record on Water Well Record on Water Well Record	547 TRAFALGAR RD 461 CORNWALL RD. 400 IROQUOIS SHORE ROAD	OAKVILLE OAKVILLE Oakville	569 302 426	DIRECT PUSH Rotary (Convent.) Boring	4.6 6.1		5.1 4.6	Monitoring and Test Hole Test Hole Monitoring		Test Hole Test Hole Observation Wells
1003617680 1003617682	7173256 7173257	1/17/2011	606715 48 606805 48	12758	102.2 101.3	on Water Well Record on Water Well Record	3 DAVIS AVE. DAVIS AVE.	Oakville Oakville	369 427	Air Percussion Air Percussion	5.5 4.6		4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1003617684 1003617686 1003617688	7173259	11/17/2011 (11/17/2011 (11/17/2011 (606789 48	12796	101.3 101.9 102.4	on Water Well Record on Water Well Record on Water Well Record	DAVIS AVE. DAVIS AVE. DAVIS AVE.	Oakville Oakville Oakville	360 306 246	Air Percussion Air Percussion Air Percussion	4.3 4.3 4.3		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1003842234 1003842272	7181975 7181976	5/4/2012 0 5/4/2012 0	607091 48 607073 48	13335 13360	101.8 101.8	on Water Well Record on Water Well Record	574 CHARTWELL RD 574 CHARTWELL RD	Oakville Oakville	325 334	Boring Boring	2.4 1.7	1.7 1.5	5.1 5.1	Test Hole Test Hole		Test Hole
1003842316 1004156747 1004156833		5/4/2012 0		13363 12871 12871	101.8 102.7 102.7	on Water Well Record on Water Well Record on Water Well Record	574 CHARTWELL RD 354 DAVIS RD 354 DAVIS RD	Oakville Oakville Oakville	357 236 236	Boring	2.3	1.7 1.5 1.5	5.1	Test Hole		Test Hole Abandoned-Other Abandoned-Other
1004156954 1004157023	7187273	5/7/2012 0	606775 48 606787 48	12871	102.7 102.4	on Water Well Record on Water Well Record	354 DAVIS RD 354 DAVIS RD	Oakville Oakville	238 236			1.4 1.5				Abandoned-Other Abandoned-Other
1004157026 1004157029 1004157032		5/7/2012 0	506780 48 506747 48 506852 48	12794	102.5 102.3 101.8	on Water Well Record on Water Well Record on Water Well Record	354 DAVIS DR 354 DAVIS RD 354 DAVIS RD	Oakville Oakville Oakville	285 323 287			1.3 1.5 1.5				Abandoned-Other Abandoned-Other Abandoned-Other
1004157035 1004157038	7187278	5/7/2012 0		12746	101.4 99.4	on Water Well Record on Water Well Record	354 DAVIS RD 354 DAVIS RD	Oakville Oakville	393 343			1.5 1.5				Abandoned-Other Abandoned-Other
1004448573 1004448576 1004448579	7205226	6/21/2013 (6/21/2013 (6/20/2013 (606724 48	12715	102.3 101.8 101.3	on Water Well Record on Water Well Record on Water Well Record	354 DAVIS DRIVE 364 DAVIS DRIVE 354 DAVIS DRIVE	Oakville Oakville Oakville	315 404 404	Air Percussion Air Percussion Air Percussion	4.9 4.9 4.6		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1004448582 1004448585	7205228 7205229	6/20/2013 (6/20/2013 (505801 48 506754 48	12644 12698	100.3 101.7	on Water Well Record on Water Well Record	354 DAVIS DRIVE 354 DAVIS DRIVE	Oakville Oakville	451 410	Air Percussion Air Percussion	4.6 4.6		4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1004448588 1004448591 1004563895	7205231	6/20/2013 (6/20/2013 (7/15/2013 (606909 48	12851 12857 12655	105.4 105.9 100.3	from gis from gis on Water Well Record	354 DAVIS DRIVE 354 DAVIS DRIVE 354 DAVIS RD	Oakville Oakville Oakville	238 233 441	Other Method Air Percussion Air Percussion	4.6 4.6 6.1		4.0 4.0 4.0	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Monitoring and Test Hole
1004717148 1004734717	7217180 7219691	12/23/2013 (12/23/2013 (606738 48 606521 48	12946 13210	103.8 109.4	on Water Well Record on Water Well Record		Oakville	200 378					-		
1004765093 1004766135 1004766138	7220459	3/26/2014 (3/26/2014 (3/26/2014 (606925 48	13401	104.4 105.7 103.3	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	Oakville Oakville Oakville	382 316 436	Direct Push Direct Push Direct Push	5.8 2.7 6.1		5.2 4.0 5.2	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole Test Hole
1004766141 1004899779	7222805	3/26/2014 0 4/24/2014 0	606982 48		105.0 105.1	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE ROAD	Oakville ONTARIO	421 374	Direct Push Direct Push	5.8 6.2		5.2 5.1	Monitoring and Test Hole Monitoring and Test Hole		Test Hole Test Hole
1004899794 1004899803 1004899819	7222807	4/21/2014 (4/21/2014 (4/21/2014 (607072 48	13387	103.8 103.9 104.5	on Water Well Record on Water Well Record on Water Well Record	74 SOUTH SERVICE RD. 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	OAKVILLE OAKVILLE OAKVILLE	330 356 349	Air Percussion Air Percussion Air Percussion	2.6 2.3 2.7		4.0 4.0 4.0	Test Hole Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Test Hole Observation Wells
1004899825 1004899831 1004899638	7222810	4/22/2014 (4/22/2014 (5/13/2014 (606953 48		105.3 105.3 104.2	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD.	OAKVILLE OAKVILLE Oakville	408 351 363	Air Percussion Air Percussion Direct Push	6.1 2.1 2.7		4.0 4.0 5.1	Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Test Hole
1004899658 1004894127	7222752 7222935	5/13/2014 0 9/11/2008 0	607043 48 607192 48	13381	103.8 101.3	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 573 CHARTWELL RD.	Oakville OAKVILLE	363 336 453	Direct Push Direct Push Rotary (Convent.)	9.1		5.1 5.1 5.1	Monitoring and Test Hole Monitoring and Test Hole Test Hole		Monitoring and Test Hole Monitoring and Test Hole Test Hole
1005168446 1005164568 1005210235	7229613	9/26/2014 (8/1/2014 (10/30/2014 (606971 48	13665	108.8 105.9 108.1	on Water Well Record on Water Well Record on Water Well Record	1055 NORTH SERVICE ROAD	Oakville Oakville	724 584 315	Boring	4.6 6.1	3.6	5.0 5.0	Test Hole Monitoring		Test Hole
1005210307 1005235400	7231292 7232287	10/27/2014 0	606541 48 607409 48	13184	108.7 94.8	on Water Well Record on Water Well Record	MAPLE AVE	Oakville	351 619	Auger	5.0		1.9	womening		Other Status
1005347843 1005355845 1005383342	7241328	4/23/2015 (4/23/2015 (2/13/2015 (606690 48		107.3 107.4 105.4	on Water Well Record on Water Well Record on Water Well Record	455 NORTH SERVICE RD 420 SOUTH SERVICE RD. E	Oakville OAKVILLE	309 369 232	DIRECT PUSH	20.1			Monitoring and Test Hole		Abandoned-Other Observation Wells
1005383359 1005384483	7241911 7241968	2/17/2015 (2/11/2015 (606857 48 606727 48	12855	105.4 102.4	on Water Well Record on Water Well Record	420 SOUTH SERVICE RD. E 420 SOUTH SERVICE RD. E 420 SOUTH SERVICE RD. EAST	OAKVILLE OAKVILLE	234 282	DIRECT PUSH DIRECT PUSH DIRECT PUSH	20.1 20.1 20.1			Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Observation Wells Observation Wells Observation Wells
1005667259 1005872102 1005872123	7256486	2/9/2015 (11/26/2015 (11/26/2015 (607067 48	13381	103.2 103.9 105.6	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	OAKVILLE Oakville	399 348 388	Direct Push Direct Push	5.5 6.4		7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005872126 1005872129	7256494 7256495	11/26/2015 0 11/26/2015 0	606965 48 606958 48	13454	105.5 105.5	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	Oakville OAKVILLE	376 367	Direct Push Direct Push	6.1		7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1005872132 1005872153 1005872177	7256496 7256503	11/26/2015 (11/26/2015 (11/26/2015 (606952 48 607026 48	13437 13387	105.5 104.5 103.8	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	OAKVILLE Oakville Oakville	356 333 338	Direct Push Direct Push Direct Push	4.6 5.5 5.5		7.6 7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1005872180 1005872183	7256512 7256513	11/26/2015 (11/26/2015 (507060 48 507057 48	13396 13396	103.8 103.8	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD 514 SOUTH SERVICE RD 514 SOUTH SERVICE RD	Oakville OAKVILLE	357 356	Direct Push Direct Push Direct Push	5.5 5.5		7.6 7.6 7.6	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1005913488 1006016582 1006016610	7263647	9/9/2015 (4/23/2016 (4/23/2016 (505602 48	12542	102.2 100.9 100.8	on Water Well Record on Water Well Record on Water Well Record	562 TAFALGAR RD 562 TAFALGAR RD	Oakville Oakville	463 612 640	Air Percussion Air Percussion	6.1 6.1		5.1 5.1	Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1006016613 1006016616	7263649 7263650	4/23/2016 0 4/23/2016 0	606630 48 606625 48	12513	99.9 100.9	on Water Well Record on Water Well Record	562 TAFAKGAR RD 562 TAFALGAR RD	Oakville Oakville	627 610	Air Percussion Air Percussion	6.1 6.1		5.1 5.1	Monitoring and Test Hole Monitoring and Test Hole		Monitoring and Test Hole Monitoring and Test Hole
1006240551 1006675270 1006675428	7291165	5/6/2016 (6/22/2017 (6/22/2017 (606293 48	13255	107.8 111.6 111.3	on Water Well Record on Water Well Record on Water Well Record	400 IROQUOIS SHORE ROAD 350 IROQUOIS SHORE ROAD 350 IRQUOIS SHORE ROAD	Oakville Oakville Oakville	323 609 617	Boring Direct Push Direct Push			4.6 5.1 5.1	Monitoring Test Hole Test Hole	Monitoring Monitoring	Abandoned-Other Monitoring and Test Hole Abandoned-Other
1006675431 1006675434	7291167 7291168	6/22/2017 0 6/22/2017 0	606269 48 606293 48	13284	111.6 111.6	on Water Well Record on Water Well Record	350 IROQUOIS SHORE ROAD 350 IROQUOIS SHORE ROAD	Oakville Oakville	640 609	Direct Push Direct Push			5.1 7.6	Test Hole Test Hole	Monitoring Monitoring	Abandoned-Other Abandoned-Other
1006713567 1006711726 1006711729		7/10/2017 0	606940 48	13742 13780 13761	108.0 107.6 108.3	on Water Well Record on Water Well Record on Water Well Record	1011 NORTH SERVICE ROAD 1011 NORTH SERVICE ROAD 1011 NORTH SRVICE ROAD	Oakville Oakville Oakville	655 694 673	Direct Push Direct Push Direct Push	4.0 4.0 4.0		5.1 5.1 5.1	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Monitoring and Test Hole Monitoring and Test Hole Monitoring and Test Hole
1006711732 1006711735	7293276 7293277	7/7/2017 (7/7/2017 (606999 48 606954 48	13734 13699	106.5 107.1	on Water Well Record on Water Well Record	1011 NORTH SERVICE ROAD 1011 NORTH SERVICE ROAD	Oakville Oakville	657 615	Direct Push Direct Push	4.0 4.0		5.1 5.1	Test Hole Test Hole	Monitoring Monitoring	Monitoring and Test Hole Monitoring and Test Hole
1006758946 1006758949 1006758964	7296613	9/18/2017 (9/18/2017 (9/18/2017 (607013 48	13434	101.8 105.2 105.2	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD.	OAKVILLE OAKVILLE OAKVILLE	476 371 425	DIRECT PUSH DIRECT PUSH DIRECT PUSH			7.6 7.6 7.6	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Abandoned Monitoring and Test Hole Abandoned Monitoring and Test Hole Abandoned Monitoring and Test Hole
1006758967 1006758970	7296615 7296616	9/18/2017 (9/18/2017 (607010 48 606949 48	13445 13434	105.2 105.5	on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 514 SOUTH SERVICE RD.	OAKVILLE	380 353	DIRECT PUSH DIRECT PUSH			7.6 7.6	Test Hole Test Hole	Monitoring Monitoring	Abandoned Monitoring and Test Hole Abandoned Monitoring and Test Hole
1006758973 1006851898 1006851910	7300535	9/18/2017 (10/5/2017 (10/5/2017 (606934 48		105.5 107.8 108.2	on Water Well Record on Water Well Record on Water Well Record	514 SOUTH SERVICE RD. 1011 NORTH SERVICE RD EAST 1011 NORTH SERVICE RD EAST	OAKVILLE OAKVILLE OAKVILLE	366 645 641	DIRECT PUSH Rotary (Convent.) Rotary (Convent.)	4.0 4.0		7.6 5.1 5.1	Test Hole Test Hole Test Hole	Monitoring Monitoring Monitoring	Abandoned Monitoring and Test Hole Observation Wells Test Hole
1006858145 1006858148	7300869 7300870	10/4/2017 (10/3/2017 (506923 48 506934 48	13745 13733	108.0 108.0	on Water Well Record on Water Well Record	1011 NORTH SERVICE RD EAST 1011 NORTH SERVICE RD E 1011 NORTH SERVICE RD E	OAKVILLE	658 647	Direct Push Direct Push	7.6 4.1		3.5 3.5	Test Hole Test Hole	Monitoring Monitoring	Observation Wells Observation Wells
1006969880 1007086153 1007290754	7312098	4/19/2017 (4/2/2018 (6/14/2018 (607462 48	13424	112.0 100.5 99.0	from gis on Water Well Record on Water Well Record	CORNWALL RD & CHARTWELL RD	Oakville OAKVILLE	650 673 512	Boring Boring	4.6 7.9	1.9	5.2 5.1	Test Hole Monitoring	Monitoring	Monitoring and Test Hole Observation Wells
1007296951 1007296954	7320279 7320280	7/25/2018 (7/26/2018 (506204 48 506248 48	13173	111.8 110.9	on Water Well Record on Water Well Record	LEIGHLAND AVE & TRAFALGAR RD LEIGHLAND AVE & TRFALAGAR RD	OAKVILLE	680 644	Boring Boring	4.6 5.2	3.8 3.5	5.2 5.2	Test Hole Test Hole	Monitoring Monitoring	Test Hole Test Hole
1007317894 1007554166 1007554181	7338226	9/5/2018 0 7/17/2019 0 7/17/2019 0	606816 48	13636	100.5 108.3 107.8	on Water Well Record on Water Well Record on Water Well Record	CORNWALL RD & CHARTWELL RD 1030 8TH LINE 1030 8TH LINE	Oakville OAKVILLE OAKVILLE	672 551 533	Boring Boring	5.1 5.1	3.9 3.9	5.1 5.1	Monitoring Monitoring		Abandoned-Other Observation Wells Observation Wells
1007554190 1007554256	7338234 7338256	7/17/2019 (7/17/2019 (606860 48 606854 48	13603 13654	108.4 107.9	on Water Well Record on Water Well Record	1030 8TH LINE 1030 8TH LINE	OAKVILLE	515 566	Boring Boring	5.1 5.1	3.9 3.9	5.1 5.1	Monitoring Monitoring		Observation Wells Observation Wells
1007555472	7338296	7/12/2019	606383 48	13202	110.8	on Water Well Record	360 Oakville Place Drive	Oakville	509			4.5	5.0			Abandoned-Other

1007630310	7341266 4/23/2019 606943 4813753	108.0	on Water Well Record	1011 North Service Road	Oakville	668	Direct Push	2.7		3.2	Monitoring and Test Hole		Monitoring and Test Hole
1007630313	7341267 4/23/2019 606949 4813749	108.0	on Water Well Record	1011 North Service Road	Oakville	664	Direct Push	2.7		3.2	Monitoring and Test Hole		Monitoring and Test Hole
1007630316	7341268 4/23/2019 606940 4813744	108.0	on Water Well Record	1011 North Service Road	Oakville	658	Direct Push	2.7		3.2	Monitoring and Test Hole		Monitoring and Test Hole
1007733070	7348604 11/6/2019 606939 4813781	107.6	on Water Well Record	1011 North Servia Road E	Oakville	695							Abandoned-Other
1008180755	7354057 9/20/2019 606932 4813732	108.2	on Water Well Record	1011 NORTH SERVICE RD	Oakville	646					Monitoring		Abandoned-Other
1008180758	7354058 9/20/2019 606936 4813735	108.0	on Water Well Record	1011 NORTH SERVICE RD	Oakville	649					Monitoring		Abandoned-Other
1008180902	7354083 9/20/2019 606924 4813745	108.0	on Water Well Record	1011 north service rd	Oakville	658				5.1	Monitoring		Abandoned-Other
1008173838	7354231 9/20/2019 606941 4813738	108.0	on Water Well Record	1011 north service rd	Oakville	653				5.1	Test Hole	Monitoring	Abandoned-Other
1008173841	7354232 9/20/2019 606934 4813736	108.0	on Water Well Record	1011 north service rd	Oakville	650				5.1	Test Hole	Monitoring	Abandoned-Other
1008173844	7354233 9/20/2019 606916 4813729	108.2	on Water Well Record	1011 north service rd	Oakville	642				5.1	Test Hole	Monitoring	Abandoned-Other
1008173856	7354234 9/10/2019 606923 4813748	108.0	on Water Well Record	1011 north service rd	Oakville	661				5.1	Test Hole	Monitoring	Abandoned-Other
1008173868	7354235 9/20/2019 606936 4813734	108.0	on Water Well Record	1011 north service rd	Oakville	648				5.1	Test Hole	Monitoring	Abandoned-Other
1008436270	7365057 6/30/2020 607005 4813697	105.4	on Water Well Record	1011 North Service Rd E	Oakville	622				5.1	Monitoring		Abandoned-Other
1008436273	7365058 6/30/2020 606993 4813688	105.4	on Water Well Record	1011 North Service Rd E	Oakville	610				5.1	Monitoring		Abandoned-Other
1008436276	7365059 6/30/2020 606978 4813686	106.2	on Water Well Record	1011 North service rd e	Oakville	606				5.1	Monitoring		Abandoned-Other
1008519639	7374253 10/29/2020 606648 4812455	99.5	on Water Well Record			674							
1008530191	7375905 12/15/2020 606285 4813283	111.3	on Water Well Record	350 Iroquois SHore Rd	Oakville	625					Test Hole		Abandoned-Other
1008558437	7376602 8/13/2020 606612 4812555	101.5	on Water Well Record			596							
1008637216	7381731 2/2/2021 606622 4812795	103.0	on Water Well Record	320 Davis Dr	Oakville	390	Auger	4.6	4.0	5.1	Monitoring		Observation Wells
1008637219	7381732 2/2/2021 606692 4812688	102.2	on Water Well Record	1151 BRONTE ROAD	Oakville	442	Auger	6.1	4.3	5.1	Monitoring		Observation Wells
1008650066	7385983 3/26/2021 607161 4813529	102.4	on Water Well Record	1021 INDUSTRY STREET		523	Rotary (Convent.)	4.6		5.1	Monitoring and Test Hole		Observation Wells
1008650069	7385984 3/26/2021 607139 4813551	102.4	on Water Well Record	1021 INDUSTRY STREET		531	Rotary (Convent.)	4.6		5.1	Monitoring and Test Hole		Observation Wells
1008719261	7393298 7/9/2021 606614 4812490	100.2	on Water Well Record	233 Cross Avenue	Oakville	654				5.0			Abandoned-Other
1008719264	7393299 6/25/2021 606652 4812460	99.7	on Water Well Record	233 Cross Avenue	Oakville	668				5.0			Abandoned-Other
1008802047	7399052 2/7/2021 606674 4813529	107.7	on Water Well Record			486							
1009120086	7423376 6/21/2022 607190 4813512	101.4	on Water Well Record			526							
1009120089	7423377 6/21/2022 607199 4813505	101.8	on Water Well Record			526							
1009120092	7423378 6/21/2022 607171 4813482	101.6	on Water Well Record			490							
1009120095	7423379 6/22/2022 607155 4813456	101.9	on Water Well Record			460							
1009120098	7423380 6/22/2022 607176 4813469	102.0	on Water Well Record			483							
1009120101	7423381 6/22/2022 607167 4813465	102.0	on Water Well Record			474							
1009399984	7442643 4/29/2022 606873 4813599	107.4	on Water Well Record			511							

 COUNT

 Monitoring Well
 106

 Test Hole
 0

 Water Supply Well
 3

 Abandoned Well
 40

 Unclassified /
 29

 TOTAL
 178

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix B – Borehole Logs

Chemical Analysis

GTR-23006348-C0 Project No.

August 14, 2023

Geodetic

1 Drawing No.

Project: Soil and Groundwater Sampling and Chemical Testing Program	
---	--

420 & 468 South Service Road East, Oakville, ON

17T 4813148.99 m N, 606892.68 m E

Date Drilled:

Drill Type:

Location:

- Datum:
- ING CME-75 Track Mount. Solid Stem MET
- BTEX Benzene, Toluene, Ethylbenzene and Xylenes Metals and Inorganics Metals PAH Polycyclic Aromatic Hydrocarbons PEST
 - Organochlorine Pesticides
- Duplicate Sample

PCB

PHC

Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Sheet No. 1 of 1

Volatile Organic Compounds

VOC

SYMBO-DEP G W L ELEV. M RECOV N Value Soil Description Combustible Vapour Reading (ppm) Ē m H 03.99 ASPHALT: (~75 mm thick) 103.7 63 SS1 GRANULAR: (~180 mm thick) q (H) 3 (l) FILL: silty clay, trace sand, brown, moist (possible reworked native) ~102.9 VOC SS2 71 SILTY CLAY TILL: trace sand, brown to 0 (H) 4 (I) grey, moist, hard some shale inclusions below 1.5 m SS3 25 0 (H) 3 (I) -101.7 SHALE BEDROCK: highly weathered, 8 SS4 some silty clay till layers, grey 0 (H) 0 (i) ~101.1 Borehole terminated at 2.9 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 Project No.

Drawing No.

2

Project: Soil and Groundwater Sampling and Chemical Testing Program

420 & 468 South Service Road East, Oakville, ON

17T 4813192.62 m N, 606893.30 m E

August 14, 2023

Date Drilled:

Drill Type:

Location:

- Datum:
- CME-75 Track Mount. Solid Stem Geodetic
- **Chemical Analysis** BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB MET Metals PHC PAH Polycyclic Aromatic Hydrocarbons VOC PEST
- Duplicate Sample Polychlorinated Biphenyls
- Petroleum Hydrocarbons (F1-F4) Volatile Organic Compounds

Sheet No. 1 of 1

Organochlorine Pesticides

G Y M W L O L	Soil Description	ELEV. m 105.37	DUPTH 0		20	N V 4(alue)	60		c	Combu	istible 25	oour 50	Rea	iding 75	(ppm)	SAMPLES	% RECOV	SAMPLE D	AN ALYS-S
δ δ .	GRANULAR: (~180 mm thick) FILL: silty clay, trace sand, brown, moist	~~105.2 						0 (1	1) 2 (Î)								83	SS1	
	_trace asphalt below 0.8 m	_	1					0(1	I) 4 (İ)))								75	SS2	
			2					0(1	I) 5 (I)								92	SS3	
	SILTY CLAY TILL: trace sand and gravel, brown to grey, moist, hard	~102.9 =~102.3	3					0 (1	I) 5 (İ)								83	SS4	voc
	SHALE BEDROCK: highly weathered, some silty clay till layers, grey	~102.3						0(1	i) 0 (i	7								21	SS5	
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23	Borehole terminated at 3.7 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		4 5 7 8 9 10																	

	10/	Dentile to
Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 Project No.

Drawing No. 3

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON Location:

17T 4813065.34 m N, 606718.90 m E

August 11, 2023

Geodetic

Date Drilled:

Drill Type:

Datum:

Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics CME-75 Track Mount. Solid Stem MET Metals PAH

PHC Polycyclic Aromatic Hydrocarbons VOC PEST Organochlorine Pesticides

Duplicate Sample

PCB

Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Sheet No. 1 of 1

Volatile Organic Compounds

GW L GW L	Soil Description	ELEV. m 105.85	H 20	N Value 40 60	Combustible Vapour Re	eading (ppm) 75	SAMPLES	SAMPLE -D	ANALYS-S
	GRANULAR: (~330 mm thick) SILTY CLAY TILL: trace sand and gravel, brown, damp to moist, hard	~105.5		0 (H) 5 (T			54	SS1	
8 / 9				0 (H) 5 (T			75	SS2	
			2	Ф (Н) 8 (Г			100	SS3	voc
	_trace shale inclusions below 2.3 m	-		0 (H) 2 (I			58	SS4	
			3	<u>ф (н) о (Г</u>			38	SS5	
	SHALE BEDROCK: highly weathered to weathered, some silty clay till layers, grey	=~101.8	4	Ф (Н) О (Г			8	SS6	
	─ straight auger to 6.7 m	_	6						
	Borehole terminated at 6.7 m depth below existing grade.	~99.2	7						
	NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.								

EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level	Depth to Cave
Time	(m)	(m)
on completion	3.5	open
September 13, 2023	2.36	7.06

GTR-23006348-C0 Project No.

Drawing No.

PCB

PHC

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON

17T 4813097.48 m N, 606790.96 m E

August 11, 2023

Geodetic

Date Drilled:

Drill Type:

Location:

Datum:

- **Chemical Analysis** BTEX Benzene, Toluene, Ethylbenzene and Xylenes
- ING Metals and Inorganics CME-75 Track Mount. Solid Stem MET Metals PAH
 - Polycyclic Aromatic Hydrocarbons PEST Organochlorine Pesticides
- Duplicate Sample
- Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Sheet No. 1 of 1

4

Volatile Organic Compounds

VOC

GWL SYMBOL	Soil Description	ELEV. m 105.72 ~105.7		20	N Value 40 60	Combustible Vapour 25 50	Reading (ppm)	SAMPLES	% RECOV	SAMPLE -D	ANALYSIS
2 2	ASPHALT: (~50 mm thick) GRANULAR: (~50 mm thick) SAND: trace silt, brown, very moist,	~105.7 ~105.6			0 (H) 3 (75	SS1	
	compact, occasional silt seams — trace gravel below 0.8 m —	-	1		Ф (H) 4 (İ				83	SS2	
	SILTY CLAY TILL: trace sand and	~103.7	2		• (H) 5 (58	SS3	
8 / 9	gravel, brown, damp, hard, trace shale	-			Ø (H) 5 (83	SS4	
	grey below 3.1 m	~102.1	3		Ф (H) 7 (I				100	SS5	VOC
	SHALE BEDROCK: highly weathered to weathered, some silty clay till layers, grey _		4						2	SS6	
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23 <u>11/11/11/11/11/11/11/11/11/11/11/11/11/</u>	 straight auger to 7.0 m straight auger to 7.0 m Borehole terminated at 7.0 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 	-	5 6 7 8 9 10								

EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion September 12, 2023 September 13, 2023		open 6.37

GTR-23006348-C0 Project No.

August 11, 2023

Geodetic

5 Drawing No.

Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1

420 & 468 South Service Road East, Oakville, ON

17T 4813053.75 m N, 606794.12 m E

CME-75 Track Mount. Solid Stem

Date Drilled:

Drill Type:

Project:

Location:

Datum:

- **Chemical Analysis** BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING
- Metals and Inorganics PCB MET Metals PHC Polycyclic Aromatic Hydrocarbons PAH VOC PEST

Duplicate Sample Polychlorinated Biphenyls

Petroleum Hydrocarbons (F1-F4)

Organochlorine Pesticides

Volatile Organic Compounds

G W L	SYMBOL	Soil Description	ELEV. m	DEPTH	N Value 20 40 60	Combustible Vapour Reading (ppm)	AZALYS-S
8		GRANULAR : (∼100 mm thick) / FILL : silty sand, trace gravel, brown, moist (possible reworked native) –	105.71 ~105.6	0		83 SS1	
				1		83 SS2	
		FILL: silty clay, trace sand, brown, very	~103.7	2		71 SS3	
		moist (possible reworked native)				79 SS4	
÷		SILTY CLAY TILL: trace sand, brown, moist, hard, trace shale fragments	~102.7	3		67 SS5	voc
	r111	- SHALE BEDROCK: highly weathered to - weathered, some silty clay till layers, grey	~101.9	4		17 SS6	
		- straight auger to 7.0 m		5			
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23		Borehole terminated at 7.0 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	50.7	9 10			

Time	Water Level (m)	Depth to Cave (m)
on completion September 12, 2023	3.7 3.33	open 6.53
September 13, 2023		0.00

GTR-23006348-C0 Project No.

6 Drawing No.

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON

17T 4813022.85 m N, 606757.35 m E

August 11, 2023

Geodetic

Date Drilled:

Drill Type:

Location:

Datum:

Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics CME-75 Track Mount. Solid Stem

PEST

MET Metals Polycyclic Aromatic Hydrocarbons PAH

Organochlorine Pesticides

Duplicate Sample Polychlorinated Biphenyls

Sheet No. 1 of 1

Petroleum Hydrocarbons (F1-F4)

VOC Volatile Organic Compounds

PCB

PHC

GWL GWL	Soil Description	ELEV. m	DEPTH		Value	Combustible Vapour Reading (pm)	% RECOV	SAMPLE -	ANALYS-S
	GRANULAR: (~230 mm thick)	104.23 ~104.2 ~104.0	0	20	40 60	25 50 75	S	71	SS1	Ś
	FILL: silty clay, trace sand, brown, very moist (possible reworked native) trace asphalt at 0.8 m	-	1		0 (H) 3 (33	SS2	
	grey, wet, trace organics below 1.5 m	_	2		Q (H) 5 (I			17	SS3	
	SILTY CLAY TILL: trace sand, grey, moist, hard, trace shale fragments	~101.8			0 (H) 9 (Ī			46	SS4	voc
	SHALE BEDROCK: highly weathered to weathered, some silty clay till layers, grey	~101.2	3					0	SS5	
		-	4		ф (H) о (F			8	SS6	
	─ straight auger to 7.0 m - 	~97.2	5							
	Borehole terminated at 7.0 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		9 10							

EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion September 12, 2023 September 13, 2023		open 5.83

GTR-23006348-C0 Project No.

Drawing No. 7

Project:	Soil and Groundwater Sampling and Chemical Testing Program

420 & 468 South Service Road East, Oakville, ON

17T 4813083.78 m N, 606855.94 m E **Chemical Analysis**

August 11, 2023

Geodetic

Date Drilled:

Location:

CME-75 Track Mount. Solid Stem Drill Type:

Datum:

BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics MET Metals

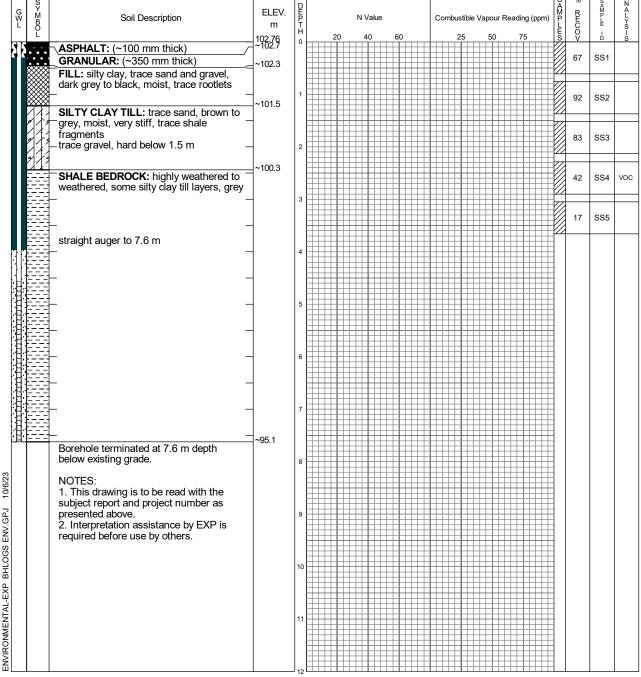
PAH Polycyclic Aromatic Hydrocarbons VOC PEST Organochlorine Pesticides

Duplicate Sample

PCB

Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Sheet No. 1 of 1


PHC Volatile Organic Compounds

G Y M N B L O L	Soil Description	ELEV. m	DHPTH	20	N V 40	60	0	Combu	stible \	/apou 50	ading 75	(ppm)	SAMPLES	% RECOV	SAMPLE -	ANALYS
	CONCRETE: (~75 mm thick) / FILL: sand, trace silt, trace gravel, brown, moist	104.19 ~104.1	0	20	4	0 (H) 5 (79	SS1	S
	FILL: silty clay, trace sand and gravel, brown, very moist, trace black staining	~103.4	1			0 (H) 5 ((1) (1)							75	SS2	
	_ SILTY CLAY TILL: trace sand and _ gravel, grey, moist, stiff, occasional sand	~102.4	2			0 (H) 5 ((1)							67	SS3	vo
	seams hard below 2.3 m	~101.5				0 (H) 5 ((1)							71	SS4	
	weathered, some silty clay till layers, grey	-	3			9 (H) 0 (0	SS5	
	straight auger to 5.5 m 	-	4													
	Borehole terminated at 5.5 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as	~98.7	6													
	2. Interpretation assistance by EXP is required before use by others.		7													
			9													
			10													
			11													

Time	Water Level (m)	Depth to Cave (m)
on completion	2. 7	òpen

GTR-23006348-C0 8 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4812964.14 m N, 606862.91 m E **Chemical Analysis** August 14, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: MET Metals PHC Petroleum Hydrocarbons (F1-F4) PAH Geodetic Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides

EXP Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	3.7	òpen

GTR-23006348-C0 Project No.

9 Drawing No.

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON

17T 4812923.80 m N, 606944.57 m E

CME-55 Track Mount. Solid

Geodetic

September 13, 2023 Date Drilled:

Drill Type:

Datum:

Location:

Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING

MET

- Metals and Inorganics PCB Metals PHC Polycyclic Aromatic Hydrocarbons VOC
- PAH PEST Organochlorine Pesticides
- Duplicate Sample Polychlorinated Biphenyls
- Petroleum Hydrocarbons (F1-F4)

Sheet No. 1 of 1

Volatile Organic Compounds

SYMBOL DEP G W L ELEV. Ñ RECOV N Value Soil Description Combustible Vapour Reading (ppm) Ē m H 101.02 0 FILL: silty clay, trace gravel, trace 38 SS1 rootlets, brown, moist ф (H) ф (h) FILL: silty clay, trace to some sand, trace gravel, brown, moist ~100.2 SILTY CLAY TILL: trace sand, brown, VOC 33 SS2 0 (H) 0 (I) moist, hard, trace shale fragments ~99.3 SHALE BEDROCK: weathered to highly SS3 79 0 (H) 0 (l) weathered, some silty clay till layers, grey ~98.9 Borehole terminated at 2.1 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 10 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813058.23 m N, 607034.98 m E **Chemical Analysis** September 13, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample * ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-55 Track Mount. Solid Drill Type: MET Metals PHC Petroleum Hydrocarbons (F1-F4) Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides

G SY W BO L OL	Soil Description	ELEV. m	DEP T H	2	0	N V 4	alue	60)		Com	bustil 25	ble V	apour 50	ing (ppm) SAMPLES	% RECOV	SAMPLE -D	ANALYS-9
	TOPSOIL: ~30 mm thick	102.54 ~102.5	0					0	(H) 3	(1)							25	SS1	
	SILTY CLAY TILL: trace sand, red,	~101.6	1					0	(H) 3	(1)							33	SS2	
		~100.4	2					0	(H) 3	(1)							29	SS3	
	SILTY CLAY TILL: trace gravel, grey- brown, moist, trace shale fragments	~100.2						0	(H) 3	(1)							75	SS4	
	wet beyond 3.05 m	~99.0	3					0	(H) 5	()							67	SS5	voc
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23	weathered, some silty clay till layers, grey/ Borehole terminated at 3.7 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	~98.9	4 5 7 8 9 10 11																

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 Drawing No. 11 Project No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4812995.37 m N, 606797.96 m E **Chemical Analysis** August 11, 2023 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample * ING Metals and Inorganics PCB Polychlorinated Biphenyls CME-75 Track Mount. Solid Stem Drill Type: Petroleum Hydrocarbons (F1-F4) MET Metals PHC Geodetic PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides

Soil Description	ELEV. m 103.50	DUPTH	20	N Value 40 60	Combustible Vapour Reading (ppm) 25 50 75	SAMPLES	% RECOV	NAZPLE -D	ANALYS-S
GRANULAR: (~115 mm thick)	103.50 ~103.5 ~103.3	0		0 (H) 4 (T)			75	SS1	
FILL: silty clay, trace sand and gravel, brown, trace black staining	~102.3	1		• (H) 5 (Ī)			54	SS2	
Provide the second seco	_	2		Q (H) 5 (I)			67	SS3	
SHALE BEDROCK: highly weathered, some silty clay till layers, grey	~101.1			ф (H) 7 (Ĭ)			58	SS4	vo
	_	3					13	SS5	
	_	4							
Borehole terminated at 5.5 m depth below existing grade.	~98.0	6							
NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		7							
		8							
		9							
		10							
		11							
		10							

Time	Water Level	Depth to Cave
on completion	(m) 2.1	(m) open
September 12, 2023		4.50
September 13, 2023	0.80	

GTR-23006348-C0 Project No.

Drawing No. 12

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON Location:

17T 4813018.43 m N, 606859.66 m E

August 14, 2023

Geodetic

Date Drilled:

Drill Type:

Datum:

BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics CME-75 Track Mount. Solid Stem

MET Metals PAH

Chemical Analysis

- PEST Organochlorine Pesticides

Duplicate Sample Polychlorinated Biphenyls

Sheet No. 1 of 1

Polycyclic Aromatic Hydrocarbons

Petroleum Hydrocarbons (F1-F4)

VOC Volatile Organic Compounds

PCB

PHC

G₩L	SYMBOL	Soil Description	ELEV. m	DEPTH	N Value	Combustible Vapour Reading (ppm)	SAMPLES	% RECOV	SAMPLE	AN ALYS-
2 [2	L 	CONCRETE: (~140 mm thick) FILL: sand and gravel, brown, moist	104.22 ~104.1	0	20 40 60	25 50 75	IS	71	ss1	S
			-	1	• (H) 3 (Î • (H) 5 (Î	D		58	SS2	
		damp below 1.5 m		2	Ф.(Н) 2 (Г			33	SS3	
		SILTY CLAY TILL: trace sand, brown, moist, hard, trace shale fragments	~101.9		0 (H) 6 (F)			88	SS4	voc
	<u>× × ×</u>	SHALE BEDROCK: highly weathered to weathered, some silty clay till layers, grey	~101.2	3	0 (H) 5 (T			38	SS5	
		straight auger to 5.5 m -		4						
			-	5						
<u>· I</u> ·		Borehole terminated at 5.5 m depth below existing grade.	~98.7	6						
		NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		7						
				8						
				9						
				10						
				11						
				12						

Time	Water Level (m)	Depth to Cave (m)
on completion	2.7	open

GTR-23006348-C0 Project No.

Drawing No.

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON

17T 4813166.71 m N, 606968.87 m E

CME-75 Track Mount. Solid Stem

August 14, 2023

Date Drilled:

Drill Type:

Location:

Geodetic Datum:

- **Chemical Analysis** BTEX Benzene, Toluene, Ethylbenzene and Xylenes
- ING Metals and Inorganics PCB MET Metals PHC Polycyclic Aromatic Hydrocarbons PAH VOC
- Duplicate Sample

Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Sheet No. 1 of 1

13

- Volatile Organic Compounds
- PEST Organochlorine Pesticides

G SY M B O L	Soil Description	ELEV. m 105.34 ~105.3	N Value Combustible Vapour Reading (ppm) S A M P E C C % R E C 20 40 60 25 50 75 S V	ANALYS-0
	GRANULAR: (~75 mm thick) // FILL: silty clay, trace sand and gravel, brown to reddish brown, damp to moist	-~105.3 -	50	SS1
		-	63	SS2
	trace organics below 1.5 m		33	SS3
	-	-	29	SS4 VOC
	SILTY CLAY TILL: trace sand, brown, moist, hard, trace shale fragments	=~102.3	71	SS5
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ 10/6/23	Borehole terminated at 3.7 m depth below existing grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	-~101.7		

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	open

GTR-23006348-C0 Project No.

Drawing No.

Soil and Groundwater Sampling and Chemical Testing Program Project:

420 & 468 South Service Road East, Oakville, ON

17T 4813004.46 m N, 606972.84 m E

September 13, 2023 Date Drilled:

Drill Type:

Location:

CME-55 Track Mount. Solid

Geodetic Datum:

Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB MET Metals PHC Polycyclic Aromatic Hydrocarbons PAH

Duplicate Sample Polychlorinated Biphenyls

Sheet No. 1 of 1

14

VOC PEST Organochlorine Pesticides

Petroleum Hydrocarbons (F1-F4) Volatile Organic Compounds

G Y M W BO	Soil Description	ELEV. m	DHP TH		Combustible Vapour Reading (ppm)	SAMPLES	% RECO	ш⊤ъд≻о	AZALYS
	ASPHALT: (~75 mm thick)	102.20 ~102.1	0	20 40 60 1	25 50 75	5		D	S
	FILL: gravelly sand/_	~102.0		0 (H) 0 (D		2	38	SS1	
	moist		1	0 (H) 0 (i)			17	SS2	
××××	SILTY CLAY TILL: trace sand, brown, moist, hard, trace shale fragments	~100.7	2	ф (H) 0 ()			79	SS3	
8 / 9 9 / 9		-		0 (H) 0 (T)			67	SS4	voo
	SHALE BEDROCK: weathered to highly weathered, some silty clay till layers, grey	~99.2	3				42	SS5	
	straight auger to 5.2 m		4						
<u></u>	Borehole terminated at 5.2 m depth below existing grade.	~97.0	5						
	NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is		6						
	 Interpretation assistance by EXP is required before use by others. 		7						
			8						
			9						
			10						
			11						

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

GTR-23006348-C0 Project No. Drawing No. Soil and Groundwater Sampling and Chemical Testing Program Sheet No. 1 of 1 Project: 420 & 468 South Service Road East, Oakville, ON Location: 17T 4813083.00 m N, 607029.78 m E **Chemical Analysis** September 13, 2023

Date Drilled: Drill Type:

BTEX

CME-55 Track Mount. Solid

Geodetic Datum:

Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB MET Metals PHC Polycyclic Aromatic Hydrocarbons PAH VOC

Duplicate Sample Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Volatile Organic Compounds

15

PEST Organochlorine Pesticides

G W L	S Y B O L	Soil Description	ELEV. m .103.67 ~103.6			20	N	Valu 40		0			ustible 25	our R	eadin 7	g (ppm) SAMP-LES	% RECOV	SA P LE D	AN ALYS-S
	🗰 FIL	PSOIL: (~30 mm thick) / L: silty clay fill, red-brown to brown, ce organics, trace gravel, moist /		0) (H) () (1)]						38	SS1	
	// mc	TY CLAY TILL: trace sand, brown, ist, hard, trace shale fragments NDY SILT: trace gravel	~102.9 ~102.9 ~102.8	1					() (H) () (I)]						42	SS2	
	SIL gra	TY CLAY TILL: trace sand, trace ivel, grey-brown, moist,trace shale gments –		2) (H) C) (1)	1						67	SS3	
		-) (H) C) (1)]						79	SS4	
<u>:甘</u> :	SH	ALE BEDROCK: weathered to highly athered, some silty clay till layers, grey	~100.4	3]						58	SS5	VOC
	Bo bel NC 1. sul pre 2.	rehole terminated at 3.7 m depth ow existing grade. THIS drawing is to be read with the oject report and project number as sented above. Interpretation assistance by EXP is quired before use by others.	~100.0	4																
				6																
J 10/6/23				8																
ENVIRONMENTAL-EXP BHLOGS ENV.GPJ				9 10 11																
ENVIE				12																

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	òpen

	Log of Borenole BH/M	//-119/	ł			
о.	<u>GTR-23006349-E</u> 1	Drawing No.		7		
	Phase Two ESA	Sheet No.	_1	of	1	
	420 & 468 South Service Road, Oakville, ON					

August 12, 2024 Date Drilled: Drill Type: Geoprobe 3230DT

Geodetic

Project N

Project: Location:

Datum:

Chemical Analysis

BTEX Benzene, Toluene, Ethylbenzene and Xylenes ING Metals and Inorganics PCB MET Metals PHC PAH Polycyclic Aromatic Hydrocarbons VOC PEST

Duplicate Sample Polychlorinated Biphenyls

Petroleum Hydrocarbons (F1-F4)

Volatile Organic Compounds

Organochlorine Pesticides

SYMBOL G W L ELEV. Ň RECOV Combustible Vapour Reading (ppm) N Value Soil Description m Ĥ 105.71 0 П FILL: sand and gravel fill 33 SS1 ф (н) о (і) 33 SS2 ф (H) 0 (I) ~104.0 SILTY CLAY: some sand 40 SS3 grey, moist below 1.82 m bgs 1 (H) 0 (Ħ 40 SS4 1 (H) 0 (I) SS5 33 1 (Н) 0 (ђ -101.9 WEATHERED SHALE: Weathered shale/rock fragments, black staining/free product, hydrocarbon НС/ВТЕХ SS6^P 36 (H) 100 (İ) 33 odour, wet ~101.1 Direct auger to 7.01 m depth below grade. 9/16/24 Ħ ~98.7 Borehole terminated at 7.01 m depth below grade. ENVIRONMENTAL-EXP_BH LOGS - 300 SERIES PART 2_CH.GPJ NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 10

Time	Water Level (m)	Depth to Cave (m)
on completion August 12, 2024 August 13, 2024	no free water 2.465 2.550	open

Log of Borehole BH/IVIW-13						
Project No.	<u>GTR-23006349-E</u> 1	Drawing No.		9		
Project:	Phase Two ESA	Sheet No.	_1	_of _		
Location:	420 & 468 South Service Road, Oakville, ON					
Location:	420 & 468 South Service Road, Oakville, ON			_		

August 12, 2024 Date Drilled: Geoprobe 3230DT Drill Type:

Chemical Analysis

BTEX	Benzene, Toluene, Ethylbenzene and	l Xylenes
ING	Metals and Inorganics	PCB
MET	Metals	PHC
PAH	Polycyclic Aromatic Hydrocarbons	VOC
PEST	Organochlorine Pesticides	

Duplicate Sample ×

.

1

*** 1

4

Polychlorinated Biphenyls

Petroleum Hydrocarbons (F1-F4) Volatile Organic Compounds

G₩L	S Y M B O	Soil Description	ELEV. m	DEPTH		١	V Value			Com	nbusi	tible	Vapo	our R	leadir	ng (p	pm)	SAMPLES	% RECOV	SAMPLE	
a la		SILTY CLAY:reddish brown, trace	106.15	0	20	0	40	60	0		2	5	5	0	7	5		s //	V	D	
		organics/rootlets																	100	SS1	oc
			~105.4																		
		SILTY CLAY:reddish brown, trace gravel	_	1																	
		giavei																	100	SS2	
		 Direct auger to 7.01 m depth below	~104.6															4			
		grade.		2																	
				2																	
			-																		
			-	3																	
			_	4																	
			-																		
				5																	
	-		_																		
			-	6																	
Ë		Borehole terminated at 7.01 m depth	~99.1	7																	
		below grade.																			
		NOTES:																			
		1. This drawing is to be read with the		8																	
		subject report and project number as presented above.																			
		2. Interpretation assistance by EXP is																			
		2. Interpretation assistance by EXP is required before use by others.																			
				9																	
				10																	
				11																	

Time	Water Level (m)	Depth to Cave (m)
on completion August 12, 2024 August 13, 2024	no free water 3.050 3.635	open

	Log of Bore	hole BH/MW	/-207	A		
Project No.	<u>GTR-23006349-E</u> 1		Drawing No		13	
Project:	Phase Two ESA		Sheet No	1	of	1
Location:	420 & 468 South Service Road, Oakville, Ol	١				
Date Drilled:	August 9, 2024 Chemical August 9	nalysis enzene, Toluene, Ethylbenzene and Xylenes	* Du	olicate Sa	ample	

Date Dimeal	<u>, (agaete, =e=)</u>
Drill Type:	Geoprobe 3230DT
Datum:	Geodetic

hemical A	Analysis
-----------	----------

BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes
ING	Metals and Inorganics	PCB
MET	Metals	PHC
PAH	Polycyclic Aromatic Hydrocarbons	VOC
PEST	Organochlorine Pesticides	

* Duplicate Sample Polychlorinated Biphenyls

- Petroleum Hydrocarbons (F1-F4) Volatile Organic Compounds

G M B O L	Soil Description	ELEV. m	DEPTH	N Value		Combustit	ole Vapour	Reading (ppm)	% RECOV	SAMPLE	ĺ
Г Г	Direct auger to 5.33 m depth below	104.86	н 0	40	60	25	50	75	E Õ S V	Ŀ	
6	_grade.	_									
	-		1								
	-	-									
		_	2								
		-	3								
		_									
	-		4								
		-									
			5								
	Borehole terminated at 5.33 m depth	~99.5									
	below grade.										
	NOTES:		6								
	1. This drawing is to be read with the subject report and project number as presented above.										
	presented above. 2. Interpretation assistance by EXP is										
	2. Interpretation assistance by EXP is required before use by others.		7								
			8								
			9								
			10								
			11								
			12								

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 13, 2024	no free water 1.400 1.740	open

Log of Borehole BH/MW-301

Pro	oject N	No.	<u>GTR-23006349-E</u> 1								Drawing N	lo.		17	
Pro	oject:		Phase Two ESA								Sheet N	lo.	1	_ of	1
Lo	cation	:	420 & 468 South Service F	Road, O	ak	ville,	ON								
Da	ite Dri	lled:	August 8, 2024		_	Chemic: BTEX	al Analysis Benzene,	Toluene, Ethy	lbenzene and	Xylenes	* [Duplic	ate Sa	ample	
Dri	ill Typ	e:	Geoprobe 3230DT			ING	Metals and	d Inorganics		PCB	Polychic		•	-	
	itum:		Geodetic		_	MET PAH PEST		Aromatic Hyd orine Pesticid		PHC VOC	Petroleu Volatile				· · ·
G W L	SY MBO L		Soil Description	ELEV. m 104.86		2	N Value	60	Combustible	Vapour R 50	eading (ppm) 75	SAMPLIES	% RECOV	SAMPLE -D	ANALYSIS
	XXX	SILT	Y CLAY: brown, trace rootlets	101.00	0										

Ľ	B O L	Our Description	m	Η̈́				· a.ao		Combas	25 50 75						S I
	Ĩ.		104.86			20)	40	60	2	5 5	50	75			H	ļ
	VX/	SILTY CLAY: brown, trace rootlets and gravel, moist	104.00	0	Ħ												
	XXX	and gravel moiet													2		OCF
	XXX.	and gravel, moist			+										100	SS1	005
	XX		1												8		
. Ľ	XXX		~104.1												4		
		Direct auger to 2.89 m depth below			\square												
		grade [–]	-	1													
		giade			+												
:	-		-		\vdash												
.'					\square												
1																	
	-		-	2	\square												
•																	
					+	++++	++++					+++		++++			
•]	L		_														
•																	
1			~102.0														
		Borehole terminated at 2.89 m depth	~102.0	3													
1			1	1	H	++TT	++TT				$++\pm$	$++\mp$		++			
		below grade.	1	1													
L		=	1	1	+	++++	++++						+++	++++			
		NOTES:	1	1	H												1
1			1	1	H												
		 I his drawing is to be read with the 	1	1	\square												1
1		subject report and project number as	1	4													
1		presented above	1	1	H	$++\mp$	+					$++\mp$		++			
1		 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 	1	1	Ħ												
		2. Interpretation assistance by EXP is			\vdash		++++										
		required before use by others.															
					+												
				5	\square												
				-													
					-												
					+		++++							++++			
				6													
				0	\square												
					\vdash		++++										
L			1	1	H												
			1	1	H												1
			1	-	Ŧ	+						++++		$+\pm\pm$			1
				7													
					+		++++							++++			
			1	1	H												1
			1	1	Ŧ	+++	+ + + + + + + + + + + + + + + + + + +				\square	++++	$-\Pi$	$+\pm\pm$			1
L			1	1	Ħ												
1			1	8	H	+++	+++				+++	+++	++	++++			
1			1	1	\square												1
			1		\pm												
1			1	1	H		$-\Pi$							+			1
			1	1													
			1	1	H	+++	+++	+++		$+++\mp$	+++	+++	$++\mp$	+++			1
			1	9	Ħ												
			1	ľ	+	++++	++++					+++	+++	++++			
			1	1	\square												1
			1	1													
			1	1	H	+++	+++	+++		$+++\mp$	+++	+++	$++\mp$	+++			1
			1		Ħ												
			1	10	++	++++	++++					++++	+++	++++			
L			1	10	Ύ[]												1
L			1														
1			1	1	H	$++\pm$	++					$++\mp$		++			
			1	1	Ħ												1
			1	1	H									++++			1
1			1	1	Ħ												
			1	11													1
1			1		H		- + + +					++++		$+\mp$			
L			1		Ħ												
			1	1	H	+						+++		++++			1
			1	1													1
1			1	1	+		++++					+++		+++			1
			1	1											1	1	

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 12, 2024	no free water 0.940 1.210	open

	Log	of Bor	ehole BH/N	IW	-302			
Project No.	GTR-23006349-E1				Drawing No.		18	
Project:	Phase Two ESA				Sheet No.	1	of	1
Location:	420 & 468 South Service Ro	ad, Oakville,	ON					
Date Drilled:	August 9, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	Imple	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•	,	
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum Hy Volatile Orgar			· · ·


GWL GWL	Soil Description	ELEV. m	DEPTH		N Va	lue		Con	nbusti	ble Va	apour	Read	ling (p	opm)	SAMPLES	% RECON	SAMP LE	A NALYS
	Direct auger to 7.01 m depth below grade.	104.99	0	20	40		60		25		50		75		S	V	D	
		-																ĺ
		-	1															
		-																
		-	2															ĺ
			3															
9																		
		1	4															ĺ
		1																
		-	5															
		-																
		-	6															ĺ
		-																ĺ
	Borehole terminated at 7.01 m depth	~98.0	7															
	below grade.																	
	NOTES: 1. This drawing is to be read with the		8															
	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 																	ĺ
	2. Interpretation assistance by EXP is required before use by others.		9															
			9															ĺ
																		ĺ
			10															
			11															
			12											++-				

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 13, 2024	no free water 1.530 2.175	open

	Log	of Boi	ehole BH/N	IW	/-304			
Project No.	GTR-23006349-E1				Drawing No.		19	
Project:	Phase Two ESA				Sheet No.	_1	of	1
Location:	420 & 468 South Service Ro	oad, Oakville,	ON					
Date Drilled:	August 9, 2024	Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sar	nple	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•		
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	,		`	,

V	Soil Description	ELEV. m	DUPTH			N Va	alue			Con	nbust	ible Va	pour	Read	ing (ppr	n) F	4	ANALYS-S
7-		104.27	н 0		20	40)	60			25	5	50		75	5		
k,	Direct auger to 7.01 m depth below grade.																	
		_																
	L –	_	1															
	<u> </u>	_														Ħ		
	<u> </u>	_	2															
	-	_																
	-	_	3															
	1 F	-														+		
]																		
		-	4															
	1 -	-																
																Ħ		
	1 -	_	5															
	1															Ħ		
Ľ.	. –	_																
ŀ																		
	1 -	_	6															
] –	-																
ŀ																		
-	Borehole terminated at 7 01 m depth		7															
	Borehole terminated at 7.01 m depth below grade.																	
	NOTES:																	
	1. This drawing is to be read with the subject report and project number as		8															
	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 																	
	2. Interpretation assistance by EXP is																	
	required before use by others.																	
			9													Ħ		
			10															
									\blacksquare									
			11															
											HT							
				+++	+++	$+ \square$	$++\mp$		$+ \square$	ΗT	$+ \square$		HT	$+\square$	$++\mp$	+		

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 12, 2024	no free water 2.470 2.530	open

	Log	of Bor	ehole BH/N	IW	/-305			
Project No.	GTR-23006349-E1				Drawing No.		20	
Project:	Phase Two ESA				Sheet No.	_1	of	1
Location:	420 & 468 South Service Ro	ad, Oakville,	ON					
Date Drilled:	August 9, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•		
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum Hy Volatile Orgar		`	· ·

SY M B O L	Soil Description	ELEV. m	DEPTH			Value		Combu	ustible	e Vap	our Re	eading	g (ppm)	DAMPLES	% RECOV	SAMP LE	
	Direct auger to 7.01 m depth below	103.06	0	20) .	40	60		25		50	75		ร	V	D	┝
4	grade.																
		1															
		1	1														
	Γ	1															
	L _		2														
			1														
	L	4															
		-	3														
									#	╞╞┼╴		Ħ					
同		-															
[]									+								
		1	4											11			
<u>}</u>																	
ŀ	Γ -	1															
	L _		5														
			ľ														
	L _	-															
		-	6														
		-															
		~96.1															
*	Borehole terminated at 7.01 m depth	~96.1	7														
	below grade.																
	NOTES:																
	1. This drawing is to be read with the		8														
	1. This drawing is to be read with the subject report and project number as																
	presented above.																
	2. Interpretation assistance by EXP is required before use by others.																
			9														
			10							H							
														1			
			11						\blacksquare								
1																	
														1			
	1	1	1											1			1

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641 *e>

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 12, 2024	no free water 2.400 2.480	open

	Log of B	orehole BH/MV	V-306			
Project No.	GTR-23006349-E1		Drawing No.		21	
Project:	Phase Two ESA		Sheet No.	_1	_ of	1
Location:	420 & 468 South Service Road, Oakv	ille, ON				
Date Drilled:	August 9 2024	hemical Analysis TEX Benzene, Toluene, Ethylbenzene and Xvlene	es * Dupli	cate Sa	ample	

Drill Type: <u>Geoprobe 3230DT</u> Datum: <u>Geodetic</u>
 ING
 Metals and Inorganics
 PCB

 MET
 Metals
 PHC

 PAH
 Polycyclic Aromatic Hydrocarbons
 VOC

 PEST
 Organochlorine Pesticides
 V

* Duplicate Sample Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Volatile Organic Compounds

G W L	SYMBOL	Soil Description	ELEV. m	DEPTH	Combustible Vapour Reading (ppm)	SAMPLES	% RECO	SAMPLE -0	ANALYSI
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ	SYEBOL	Soil Description Direct auger to 2.44 m depth below grade. Borehole terminated at 2.44 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		Претин 1 1 2 3 3 4 5 6 7 7 8 8 9 9 10	Combustible Vapour Reading (ppm) 25 50 75	SAMPLERS	% Rucoy	SARPLE -D	
environmental-exp BH I				10					

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 0.875 1.020	open

	Log of Borehole BH/MW-307								
Project No.	GTR-23006349-E1		Drawing No.		22				
Project:	Phase Two ESA		Sheet No.	_1	of	_1			
Location:	420 & 468 South Service Road, Oaky	ille, ON							
Date Drilled:		: hemical Analysis :TEX Benzene, Toluene, Ethylbenzene and Xylene	s * Duplic	cate Sa	Imple				

Drill Type:	Geoprobe 3230DT
Datum:	Geodetic

BTEX	Xylenes	
ING	Metals and Inorganics	PCB
MET	Metals	PHC
PAH	Polycyclic Aromatic Hydrocarbons	VOC
PEST	Organochlorine Pesticides	

Du Polychlorinated Biphenyls

- Petroleum Hydrocarbons (F1-F4) Volatile Organic Compounds

SYMBOL NALYS DEP A M P N G W L ELEV. RECOV Soil Description N Value Combustible Vapour Reading (ppm) Ė m E H 101.57 0 П Direct auger to 2.44 m depth below grade. 2 ~99.1 Borehole terminated at 2.44 m depth below grade. 3 NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 5 ENVIRONMENTAL-EXP_BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24 9 10


Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 0.530 0.600	open

Log of Borehole	BH/MW-308D
-----------------	-------------------

Project No.	GTR-23006349-E1					Drawing No.	2	3
Project:	Phase Two ESA					Sheet No.	_1_ of	_2_
Location:	420 & 468 South Service Ro	oad, Oa	akville,	ON				
Date Drilled:	July 30, 2024		Chemic BTEX	al Analysis Benzene, Toluene, Ethy	Ibenzene and Xylene	es * Duplio	ate Sample	2
Drill Type:	Geoprobe 3230DT		ING	Metals and Inorganics	PCI	,		
Datum:	Geodetic		MET PAH PEST	Metals Polycyclic Aromatic Hyd Organochlorine Pesticid				` '
S G W	Soil Description	ELEV.	D	N Value	Combustible Vapour	Reading (ppm)	% SA MP	A N A L

G W L	SYMBOL	Soil Description	ELEV. m	DEPTH			N	Value	9	с	ombus	tible	Vapoi	ur Rea	ding (ppm) AMPLES	RECOV	SAMP LE	
	Ľ		101.13			20)	40	60		2	5	50)	75	ES	, Õ	ľ	
		Direct auger to 12.8 m depth below grade.	101.15	0		H				HT			H			H			
- 4999999999999999999999999999999999999		arade														Ħ.			
																H			
							++++									H			
		L	4	1															
																E .			
							++++									H			
			-																
			-	2			++++									Н			
			-													H			
							++++									H			
		F -	1	3															
																	1		
																Н	1		
		-		1	+++	\square				+ + +			$+ \mp 1$			H			
										\square				+++		F	1		
		L	4	4												Ħ	1		
				1.												H			
								_								H			
		L	_													Ħ.			
																Ħ.			
																H.			
			_	5			++++	_			+++-					Н			
																H			
			-																
							++++									H			
			1	6															
							++++									H			
		Γ -														R			
																Ħ.			
				7												E .			
				1			++++									H			
		L	_													H.			
1																E .			
•																H	1		
			-	8												Н			
1.1					- + +	H				+++				\square		H			
ŀ														+++		Ħ	1		
·]			1	1												Ħ.			
H				1												H			
1				1	+++	\square	++++	H		HT		H	+ + + + + + + + + + + + + + + + + + +		++++	H			
1				9	\square	+				H		\square				F	1		
																	1		
1		<u> </u>	4	1												H			
1						Ŧ	+++7			HF		HF	╁╁┠			H	1		
:						T		\square		+++		\square	\square	\square		H	1		
1		<u>⊢</u> -	-1	10						\square				+++		H	1		
				1												Ħ.			
				1												H			
			-	1		\square				\square			H			H			
				1												Ħ			
				1												H			
ŀ			-	11		H				HF		HF				Н			
ŀ.					+ + +					H		H				H			
																Ħ			
:			1													H	1		
				1						\square						Н			
.1				1.5		T				+	\square	\square		+++		H			
· I.		Continued Next Page		-' 12				_						2 I I		_			_

Continued Next Page

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 5.855 7.225	open

Log of Borehole BH/MW-308D

GTR-23006349-E1 23 Project No. Drawing No. 2 Phase Two ESA 2 of Project: Sheet No. % A A L Y SYMBOL AMP DEPTH ELEV. G W L RECOV N Value Soil Description Combustible Vapour Reading (ppm) Ė m ş 40 89.13 60 20 12 -88.3 Borehole terminated at 12.8 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others. 15

18

21

23

25

26

4

[%] exp.	exp Services Inc. Brampton, Ontario Telephone: 905-793-9800
•	Facsimile: 905-793-0641

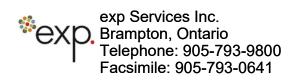
Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 5.855 7.225	open

	Log of Borehole BH/MW-308I												
Project No.	GTR-23006349-E1				Drawing No.		25						
Project:	Phase Two ESA				Sheet No.	1	of	1					
Location:	420 & 468 South Service R	oad, Oakville,	ON										
Date Drilled:	July 30, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	mple						
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•							
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	,		Irocarbons (F1-F4) ic Compounds						

G W L	SYMBOL	Soil Description	ELEV. m 101.13		D P P H 20 40 60	Combustible Vapour Reading (ppm) 25 50 75	SAMPLES	% RECOV	SAMP IN -D	AZALYS-S
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24		Direct auger to 6.4 m depth below grade.	- 101.13	C C C C C C C C C C C C C C C C C C C	0 20 40 60 1 1 2 2 40 60 1 3 3 40 60					

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 1.610 2.050	open

T **A**AAA


Pr	oject	No.	GTR-23006349-E1										[Drawing N	lo.		24	
Pr	oject	:	Phase Two ESA										_	Sheet N	lo.	_1	_ of	_
Lo	catio	n:	420 & 468 South Service F	Road, O	ak	ville,	ON											
					_													
Da	te D	rilled:	July 30, 2024		_	Chemica BTEX	-		oluene, E	thvlbe	nzene a	and Xvl	enes	* [Dupli	cate S	ample	
Dr	ll Ty	pe:	Geoprobe 3230DT		_	ING	Metals	s and	Inorganic				PCB	Polychic	orinat	ted Bip	henyls	
Da	tum:		Geodetic		_	MET PAH	Metals Polycy		romatic H	lydroc	arbons		PHC VOC	Petroleu Volatile				
					_	PEST	Organ	ochlo	rine Pesti	cides								
G W L	SYMBOL		Soil Description	ELEV.	D E P T H		N۱	/alue			Combust	hle Var	iour Re	eading (ppm)	S A M P	% P	S A M P	í
Ľ	B O L			m 101.13		2		10	60		25		50	75	LES	RECOV	Ē	
		Direc grade	t auger to 2.28 m depth below		0													
			5.	-														
÷		_			1													
					1.													
		_		-														
		_		~98.9	2													
			hole terminated at 2.28 m depth	- 50.5														
		Delov	w grade.															
		NOT			3													
		subje	is drawing is to be read with the ect report and project number as															
		prese	ented above.															
		z. m reaui	erpretation assistance by EXP is red before use by others.		4													
		•	,															
					5													
					ľ													
											++++							
					6						++++							
					7													
					8										1			
				1														[

9

10

11

ENVIRONMENTAL-EXP_BH LOGS - 300 SERIES PART 2_CH.GPJ_9/16/24

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 0.880 0.920	open

Log of Borehole BH/MW-309										
Project No.	GTR-23006349-E1		Drawing No.	lo						
Project:	Phase Two ESA				Sheet No.	1	of	1		
Location:	420 & 468 South Service Roa	ad, Oakville,	ON							
Date Drilled:	August 9, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	mple			
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•				
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum Hy Volatile Orgar		`	,		

G M B O L	Soil Description	ELEV. m	DEPTH	N Value					Combustible Vapour Reading (ppr					g (ppm)	SAMPLES	% RECOV	S A MP LE		
	Direct auger to 7.01 m depth below grade.	101.82	0	20	0	40		60		2	5	50		75		S	V	D	
		_																	
		_	1																
		_	2																
			3																
y.																			
			4																
		-																	
		-	5																
		-																	
		-	6																
	Borehole terminated at 7.01 m depth	~94.8	7																
	below grade.																		
	NOTES: 1. This drawing is to be read with the subject report and project number as		8																
	subject report and project number as presented above.																		
	2. Interpretation assistance by EXP is required before use by others.																		
			9																
			10																
			11																
			12																

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 1.650 1.810	open

Log of Borehole BH/MW-310								
Project No.	<u>GTR-23006349-E</u> 1	Drawing No.		27		_		
Project:	Phase Two ESA	Sheet No.	1	of	_1			
Location:	420 & 468 South Service Road, Oakville, ON					-		

August 9, 2024 Date Drilled: Geoprobe 3230DT Drill Type: Geodetic Datum:

Chemical Analysis

BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes
ING	Metals and Inorganics	PCB
MET	Metals	PHC
PAH	Polycyclic Aromatic Hydrocarbons	VOC
PEST	Organochlorine Pesticides	

Duplicate Sample Polychlorinated Biphenyls Petroleum Hydrocarbons (F1-F4)

Volatile Organic Compounds

G M B O L	Soil Description	ELEV. m	DUPTH	N Value				Combustible Vapour Reading (ppm)					(ppm)	SAMPLES	% RECOV	SAMPLE -			
2	Direct auger to 2.44 m depth below grade.	101.82	0		20		40	6	50		25	5	50	75		Š	Ŭ.	D	
Л		-																	
	Ļ	_	1																
		1	2				Ħ												
1.	Borehole terminated at 2.44 m depth below grade.	~99.4																	
	NOTES:		3																
	1. This drawing is to be read with the subject report and project number as																		
	presented above		4																
	2. Interpretation assistance by EXP is required before use by others.		4																
			5																
			6																
			7																
			8																
			9																
							Ħ												
			10																
			11																
			12													1			

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 8, 2024	no free water 1.160 1.240	open

	Log of Borehole BH/MW-311														
Project No.	GTR-23006349-E1			I	Drawing No.		28								
Project:	Phase Two ESA				Sheet No.	_1_	of	1							
Location:	420 & 468 South Service Ro	ad, Oakville,	ON												
Date Drilled:	August 9, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplica	ate San	nple								
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•									
Datum:	Geodetic	MET PAH	Metals Polycyclic Aromatic Hydrocarbons	PHC VOC	Petroleum Hy Volatile Organ		``	,							

PEST Organochlorine Pesticides

G ♥L	SYMBOL	Soil Description	ELEV. m	DEPTH	60	Combustible Vapour Reading (ppm)	SAMPLEO	% RECOV	SAMP LE -C	ANALYS
9/6/24	SYMBOL	Soil Description Direct auger to 2.44 m depth below grade. Borehole terminated at 2.44 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		рертн н 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 8 8		Combustible Vapour Reading (ppm) 25 50 75 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	OAXP-JUO	% REUCOV	SAMA-LE -D	
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ				9 10 11						

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 1.910 2.090	open

Project No.	<u>GTR-23006349-E</u> 1			[Drawing No.		29	
Project:	Phase Two ESA				Sheet No.	_1	of _	2
Location:	420 & 468 South Service Road,	Oakville,	ON					
Date Drilled:	July 30, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	Xvlenes	* Dunlic	ate Sam	ole	
Drill Type:	Geoprobe 3230DT	ING MET	Metals and Inorganics Metals	PCB PHC	Polychlorinate Petroleum Hy	ed Bipher	nyls	E4)
Datum:	Geodetic	PAH PEST	Netars Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	VOC	Volatile Orga		`	
G M	ELEV	, D			S A M	% R	6 M	A N A

G W L	SY M B L	Soil Description	ELEV. m					с	Com	busi	ible	Va	pou	r Re	adin	ıg (p	pm)	AMPLES	RECOV	SAMPLE	NALYSIS								
	Ľ		102.79			I		20)	40			60					2	5		50		7	5		Ē	Ŏ	l D	I S
1	5	Direct auger to 12.8 m depth below grade.	102.70	0	٥E											H													
Ę.	E A	grade.			F						H									-									
	ŝ		1		E																								
					E																								
			-	1	1	\pm																							
	ž.				F				+		Ħ	Ħ	Ŧ			H				-									
÷.	ŝ		-		E																								
					E																								
÷.	ž.		-	2	2											H													
					F	+			++		H									-					++-				
					E																								
					F																								
					.F	#			++		Ħ					H				-									
∋D 9/16/24 2010-0000-0000-0000-0000-0000-0000-0000		F -	1	3	٩F	\pm			\pm		Ħ		H		H	H				+						ł			
	ŝ				E	\blacksquare			\square		H		E			\square													
Ë	ž.		1		F	\pm			Ħ		Ħ					Ħ								ļ					
	ž				F	#			#		Ħ																		
i i			-	4	4 E						H					\square				-						1			
					E																								
			4		F											H													
					F				++		Ħ				Ħ														
Ë	3			5	Ē	\pm										\square													
ŝ		Г		5	°E																								
					F				++		Ħ																		
		-	1		F				++		Ħ		Ŧ	+		H				-									
					E	\pm					\square																		
Ë	2		-	6	6 -						H																		
÷.	ŝ				F						Ħ					H													
			-		F				+		H					H				-									
7					E																								
16/			_	7	7																								
6	3			1	È	#			#		H																		
2	2				E					_	H		Ŧ			\square				-									
Ū,					E																								
리	·				F				++																				
2.			1	8	₿⊨				++		Ħ	Ħ	Ŧ	H		Ħ			-	-									
₩.	:				E																								
<u>e</u>	5		-		F																								
ЩI.	1				F						Ħ					H				-									
Ш	·.		-	9	9 F			-	++		H					H				-									
ğ					E																								
Ξ.	· 1		_		F																								
8					F	+			+		Ħ		Ŧ	+	\vdash	H				-									
<u>Ō</u> !.	·			10	۰E	\pm					\square					\square													
핆ㅑ		-		10	Ϋ́Ε	\pm		I	H		Ħ	H	E		H	H	T			F									
e l'E	l:				F	#			#		Ħ	\downarrow		Ħ	#	Ħ				+				\mp	++-				
μĻ	:	F -	1		F	\mp	-	Ħ	+		Ħ	Ħ	Ħ	Ħ	Ħ	Ħ				+		-		+	++-				
₹ŀE	1				F	Ħ			Ħ		H	H	H	H	H	H				-				#		j			
Ξ.	ŀ		-	11	i1E											\square													
≝[E	:				F	\pm			\ddagger		Ħ	\parallel		\models	\parallel	Ħ													
<u>ģ</u> i:	:]		4		F	#			#		Ħ	Ħ	Ħ	Ħ	Ħ	Ħ				+									
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH GPJ					F	Ħ			#		H	Ħ	Ħ	H	H	H				-		H				j			
Ш.	•			12	ъЕ	\square			+		\square					\mathbb{H}													
		Continued Next Page		12	2						_													_		_			

Continued Next Page

** exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 13, 2024	no free water 6.530 6.675	open

Project No. GTR-23006349-E1

Drawing No.

rojec	t: Phase Two ESA				 								_		S	she		2	of	_
SYMBOL	Soil Description	ELEV. m	DEPTH				/alue			Corr	nbust	ible V	apo	ur R	eadir	ng (p	pm) PLES	% RECOV	SAMP LE -	
		90.79	12		20	4	0	60)		25	5	50)	7	5	Ī	Ŭ,	D	+
				H		HT	HŦ						+	Ħ	H	H				
·		-		E																
		~90.0		H																
•	Borehole terminated at 12.8 m depth below grade.		13	3																
	below grade.			H										++	++-		\mp			
	NOTES:																			
	1. This drawing is to be read with the																			
	subject report and project number as presented above.		14	۴E																
	2. This borehole was drilled																			
	telescopically from the first 7.62			E																
	metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others.		15	E																
	required before use by others.			Έ																
1	, , , , , , , , , , , , , , , , , , , ,			E			H							\mp	H	Ħ				
				E										\mp	Ħ					
			16	sH			H									H				
				E											F					
				E										Ħ	Ħ	Ħ				
				H										+	Ħ					
			17	ľ										++						
				E																
			18	Ē										++						
			10	Έ																
				E																
				E																
			19	÷																
				E																
				E																
			20	머										++						
				Ε																
			21	.H										++						
			21	Έ																
				Ε																
				Ε																
			22	2																
				E																
				E																
			23	3																
				E			H								Ħ					
1			24	Ë			Ħ													
			24	Ħ			Ħ			Ħ	H		Ħ	Ħ	Ħ	Ħ				
				E						Ħ				Ħ	Ħ	Ħ				
				E										+	Ħ					
			25	5																
				H			HŦ			HT			#	Ħ	Ħ					
1				E			Ħ							\mp	Ħ	Ħ				1
				E											Ħ					1
			26	허			Ħ						Ħ	+	\parallel					
1		1	1															1	1	1

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 13, 2024	no free water 6.530 6.675	open

	Log of 2	Bor	ehole BH/M	IW	-329			
Project No.	<u>GTR-23006349-E</u> 1				Drawing No.		30	
Project:	Phase Two ESA				Sheet No.	_1	of	1
Location:	420 & 468 South Service Road, Oa	kville,	ON					
		Chemica	al Analysis					
Date Drilled:	July 30, 2024	BTEX	Benzene, Toluene, Ethylbenzene and		* Duplic		•	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•		
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum Hy Volatile Orgar		```	· ·

SYMBOL	Soil Description	ELEV. m	D E P T H		N Va	lue		Combu	stible	Vapou	ur Rea	ading (pp	om) [% RECOV	SAMPLE	
	Direct auger to 6.4 m depth below	101.08	0	20	40		50		25	50)	75			Ŀ	-
	grade.	-														
		-	1													
		_														
			2													
1																
			3													
		1														
		-	4													
		-														
		-	5													
		_														
			6													
	Borehole terminated at 6.4 m depth	~94.7														
	below grade.															
	NOTES: 1 This drawing is to be read with the		7													
	1. This drawing is to be read with the subject report and project number as presented above.															
	2. Interpretation assistance by EXP is required before use by others.		8													
			9													
			10													
			11													

Time	Water Level (m)	Depth to Cave (m)
on completion August 9, 2024 August 12, 2024	no free water 1.650 1.890	open

Project No.	<u>GTR-23006349-E</u> 1													Dra	wing I	No.		34	-
Project:	Phase Two ESA												_	5	Sheet I	No.	_1	of	
ocation:	420 & 468 South Service F	Road, C)ał	ville,	٥N	1													
)ate Drilled:	 July 18, 2024			Chemic		-													
orill Type:	Geoprobe 3230DT		_	BTEX ING			e, Tol and Ir		e, Ethy inics	lbenz	ene a	and Xy	lenes PCB		* Polychle			Sample phenyls	5
) Datum:	Geodetic		_	MET PAH		etals lvcvcl	lic Ard	omati	ic Hyd	rocar	bons		PHC VOC		Petrole Volatile				
			_	PEST					esticid							- 0			
S Y M B O L	Soil Description	ELEV. m	DEPTH			N Va				Con	nbusti	ble Va			ng (ppm)	SAZP-JES	% RECOV	SAMPLE -	
	NCRETE: (~100 mm thick)	~105.6	0		20	40		60			25		50		/5		V 67	SS1	
FILI	_: sand, brown	_															67	331	L
		_	1														75	SS2	
																2			
S GR/	AVEL:	_~104.0 /_~104.0															100	SS3A	
	TY SAND: black/dark grey	~103.9	2													2	82	SS3B	(H)
SIL grey	FY CLAY: dark grey, some sand / below 2.33 m bgs	_															71	SS4	4 (I
		_	3													4			
som som	ne gravel, moist to wet below 3.05																83	SS5	
	• FY CLAY: silty clay with															4			
:////wea	thered shale, pockets of gravel, /, wet to moist	-	4													0	46	SS6	
	le bedrock (refer to rock coring	− ^{101.3}																	
ilog) ii ⊢		_	5																
		7																	
		-	6																
		_																	
			7																
		7	[′]																
		-																	
		_	8																
		-	9																
		-																	
			10																
		1																	
		-	11																
13																1		1	

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641 *ex

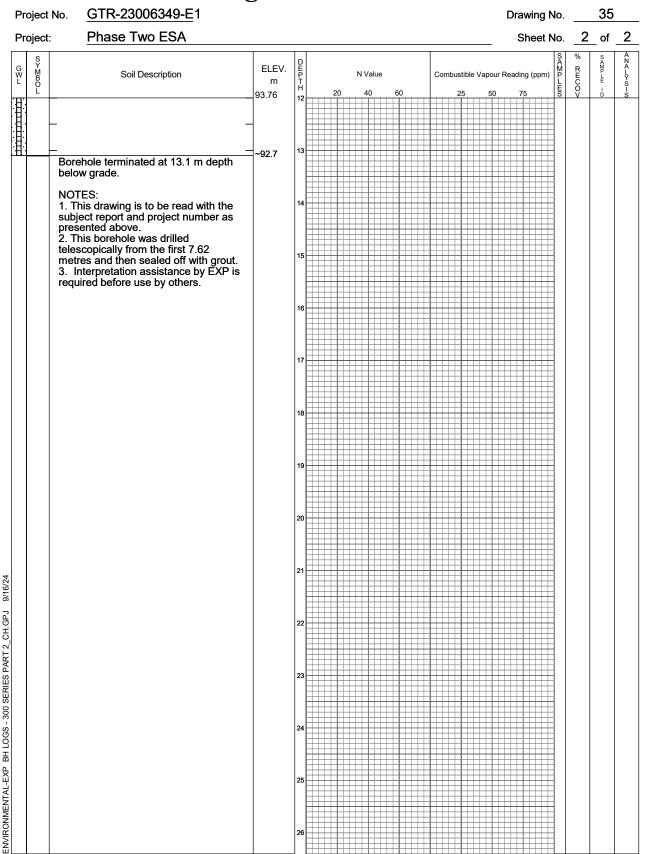
Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.860 5.900	open

٥i	ject: Phase Two ESA																ç	Sheet I	No	2	of	
-	-		T	1														neeri		%		T
	S Y B Soil Description	ELEV.	DEPTH				NV	alue				Con	abu	etibla	Vanc	ur P	Poadi	ng (ppm)	SAMPLES		S A M P	
		m	T									Con	ibu	suble	vapo		leauii	ng (ppm)	Ľ	RECOV	Ē	
		93.70	12		2	0	4	0	6	50			2	25	5	0	7	'5 	Š	Ŭ.	I D	╞
				Ħ				++			++								1			
	—	_		H															3			
				Ħ															3			
	Borehole terminated at 13.1 m depth		13	ľ															3			
	below grade.			Ħ				++			++								11			
				H]			
	NOTES:		14																1			
	 This drawing is to be read with the subject report and project number as presented above. 			Ħ																		
	presented above.			Ħ																		
	2 This borehole was drilled			Ħ															3			
	telescopically from the first 7.62 metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others.		15	۶Ħ															1			
	3. Interpretation assistance by EXP is			Ħ															3			
	required before use by others.			Ħ															3			
				H		H			Ŧ		Ŧ		Ħ		Ŧ		Ŧ					
			16	Ϋ́															3			
				H																		
				Ħ																		
			17	۰Ħ															3			
				H															3			
				Ħ																		
				Ħ																		
			18	۶Ħ															3			
				Ħ															3			
				Ħ															3			
			10																			
			19	'⊟															3			
				Ħ															3			
				Ħ							++								3			
			20	ıĦ																		
				Ħ															-			
				Ħ															3			
				H															1			
			21	Ħ							++								1			
				Ħ															3			
				H															1			
			22	,Ħ															1			
			22	H																		
				H															3			
				Ħ															1			
			23	ıĦ																		
				Ħ				++			++								1			
				H															3			
				Ħ																		
			24	H						Ħ						Ħ			1			
				Ħ			Ħ	\square	Ħ	Ħ	#	Ħ	Ħ	Ħ	Ħ		+		11			I
				Ħ				⋕		Ħ			Ħ									
			25	H				⋕	#							曲						I
			20	Έ				Ħ					Ħ									
				H																		
				H					#													
			26	;]			Ħ		Ŧ		Ŧ		F	F I	Ŧ		\mp		11			
				Ħ								1		1			++	<u> </u>	1			L

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.860 5.900	open

Pro	oject l	No. <u>(</u>	GTR-23006349-E1						D	rawing No.		33	
Pro	oject:	ļ	Phase Two ESA							Sheet No.	1	_ of	1
Loc	catior	1: <u>4</u>	420 & 468 South Service	Road, O	ak	ville,	ON						
Da	te Dri	- illed: /	August 9, 2024		_	Chemic BTEX	al Analysis Benzene, Toluene, Ethy	Ibenzene and Xvlen	es	* Duplica	ate Sa	ample	
Dri	ll Typ	e: (Geoprobe 3230DT			ING	Metals and Inorganics	PC	В	Polychlorinate	d Bip	henyls	
Da	tum:	- (-	Geodetic		_	MET PAH PEST	Metals Polycyclic Aromatic Hyd Organochlorine Pesticid			Petroleum Hy Volatile Organ		`	,
G W L	SY MBO-		Soil Description	ELEV. m	DUPTH		N Value	Combustible Vapou	ır Rea	ading (ppm)	% RECO	SAMP LE -	A N A L Y S -

V V	V	Ь ВО L	Soil Description	ELEV.	E P T H	5	N Value			Combustible Vapour Reading (ppm					m)	M P L E S	RECOV	PLE	Ľ														
	-	Ľ		105.70	Ĥ 0				2	0		4()		60)					2	5		5	50	7	75			Ē	ŏv	l D	LYS-S
			Direct auger to 3.96 m depth below			'日	Ħ														Ħ								-				
			_grade.			E	Ħ									+					+			+	H		\square						
						H	Ħ			+						+			+		\pm			+	Ħ		\ddagger	\pm	-				
					1	ıĦ	Ē			+			-			+			-		Ħ			+	H		Ħ	+	\mp				
					1'	'₿	\vdash																										
						Ħ	F			+			+		Ħ	+			+		Ħ			+	Ħ	+	Ħ	\mp	+				
				1		Ε	\pm									-					\square			-	\square		\square						
						H	Ħ			+						+			+		\pm			+	Ħ				\pm				
					2	2 E	Ē			-			-		Ħ	+			+		Η			+	Ħ		Ħ	+					
-						H	H																										
				-		Ħ	F			+						+			+		Ħ			+	Ħ				\mp				
- E	<u>]:</u>]					Ε	\pm									-					\square			-									
		F		-	3	3	Ħ			+						+			+		Ħ			+	Ħ								
						E	H			+			-			+			+		H			+	H		\square	+					
- lit	<u>i</u> :	┝		-		B	Ħ	F		Ŧ	Ē	T	Ŧ		Ħ	Ŧ		H	F		Ħ	Ŧ			Ħ		Ħ	Ŧ	\mp				
				1 101 -		Ħ	Ħ			+	Ħ		\mp			+	+		+		Ħ			-	Ħ	Ħ	Ħ	\mp	\mp				
j.∎	<u>ا ۱</u>		Borehole terminated at 3 96 m depth	~101.7	4	1 🗄	\blacksquare									-					+			+	\square		\square						
			Borehole terminated at 3.96 m depth below grade.			H	F			+						+			+		Ħ			+	Ħ				\pm				
						E	Ħ			+			+		H	+			-		Ħ			+	H		+	+	+				
			NOTES:			F	F									-								-									
			 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 		5	5日	ф.			+						+			+		\pm			+	Ħ								
			subject report and project number as			E	H						-			+					H			-	\square		\square	+					
			presented above.			B	╞																										
			2. Interpretation assistance by EAP is required before use by others			Ħ	F			+			+		H	+			+		Ħ			+	Ħ				\mp				
			required before use by outers.		6	۰E	\pm														+							-					
					ľ	′⊨	Ħ			+						+			+					+	Ħ				\pm				
						E	E			+			-			+			+		H			+	H	-	\square	+	+				
.							\vdash																										
9/16/24					7	_ H	F			+						+			+		Ħ			+	Ħ		Ħ	\mp	\pm				
9/1					1	Έ	\pm														\square			+	H		H						
						H	Ħ			+						+			+					+	╞								
ß						Ħ	F			+			+			+			-		Ħ			+	Ħ		Ħ	+					
핑						₽	\vdash																										
~					8	비	F			+			+			+			+		Ħ			+	Ħ		Ħ		\pm				
AR						E	\blacksquare						-			-					\square			-	H		\square	-	-				
9						H	Ħ									+			+		Ħ			+	Ħ								
Щ.						E	Ħ			+			-		H	+			+		Ħ		-	+	H	-	Ħ	+	+				
別					9	∍⊟	H																										
8						H	H-			+						+			+		Ħ			+	Ħ		Ħ						
						E	H									+			-		H			-	H		H						
S						Η	Ħ			-						-								+					_				
ᅴ					10	٥F	Ħ									-					Ħ				Ħ				\pm				
						E	H			-						+					\square			+	\square		\square	\pm	\pm				
Ϋ́						Ħ	+			+						+		H	+		Ħ	H		+	#	\vdash	\ddagger	+	+				
빌						F	Ħ			Ŧ	H		H			+	-	H	F		Ħ	Ħ		+	Ħ	F	Ħ	+					
4TA					11	1	Ŧ						T		H	F		H			Π			T	H		Ħ	T	\mp				
Ψ					1	Ή	F			+			+		Ħ	+			+		$^{+}$			+	Ħ	+	\ddagger	+	\pm				
ENVIRONMENTAL-EXP_BH LOGS - 300 SERIES PART 2_CH.GPJ						E	Ħ														Ħ				Ħ		Ħ		\pm				
Я́						P	Ħ	H		Ŧ	Ħ	Ħ		Ħ	Ħ	f		H	f	Ŧ	Ħ	H		f	Ħ		Ħ		Ŧ				
Σ					40	片	Ħ			+	Ħ		+			+		H	+		Ħ	H		+	Ħ	Ħ	Ħ	\mp	\mp				
				•	- 12	2 <u>–</u>	<u> </u>		-			-			-											 				_			-

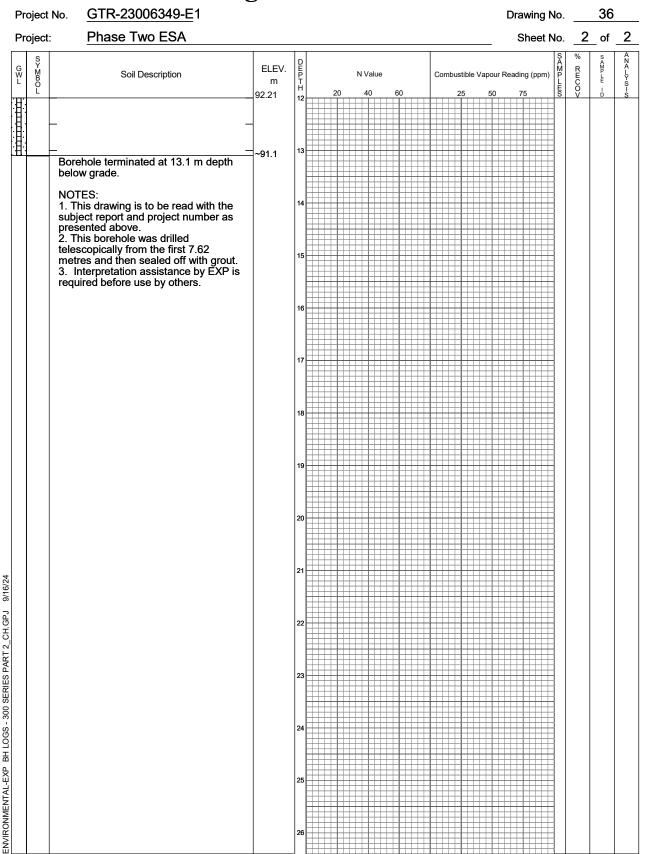

Time	Water Level (m)	Depth to Cave (m)
on completion August 12, 2024 August 13, 2024	no free water 2.880 2.930	open

	L	log of Borehole BH/MW	V -333	
Project No.	<u>GTR-23006349-E</u> 1	0	Drawing No.	35
Project:	Phase Two ESA		Sheet No.	_1_ of _2_
Location:	420 & 468 South Service	ce Road, Oakville, ON		
Date Drilled:	July 18, 2024	Chemical Analysis BTEX Benzene, Toluene, Ethylbenzene and Xylenes	s * Dupli	cate Sample
Drill Type:	Geoprobe 3230DT	ING Metals and Inorganics PCB	,	ed Biphenyls
Datum:	Geodetic	MET Metals PHC PAH Polycyclic Aromatic Hydrocarbons VOC PEST Organochlorine Pesticides		ydrocarbons (F1-F4) nric Compounds
s			ş	% s A

G W L	SYMBO.	Soil Description	ELEV. m	DUPLE	N Value	Combustible Vapour Reading (ppm)	SAZP-THS	% RECOV	SAMP-LE .	ANALYS-
	L 	CONCRETE: (~140 mm thick)	105.76 ~ 105.6	0	20 40 60	25 50 75	IS	<u>й</u> 67	SS1	Ś
GPJ 9/16/24 затазната стала на полнана полнана полнана полнана полнана полнана полнана полнана полнана полна с за такота се се се се се се се се се се се се се				1				92	SS2	
			~104.2	2				71	SS3	
		wet	~102.9					58	SS4	
		WEATHERED SHALE: highly – weathered shale with pockets of grey _clay, moist to wet		3				100	SS5	
			-	4				42	SS6	
	 		~100.6	5				83	SS7	
		Shale bedrock (refer to rock coring –log) –	-							
				6						
.GPJ 9/16/24 			-	7						
- 2_ CH.GP			-	8						
RIES PART			-							
S - 300 SE			-	9						
ENVIRONMENTAL-EXP_BH LOGS - 300 SERIES PART 2_CH.GPJ			-	10						
VIRONMENTAL-EXP			-	11						
			-							
шЕ		Continued Next Page	I	- 12	2					

** exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 3.920 4.285	open


Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 3.920 4.285	open

	Log	of l	Bor	ehole B	H/MV	V-334			
Project No.	GTR-23006349-E1					Drawing No		36	
Project:	Phase Two ESA					Sheet No	1	_ of	2
Location:	420 & 468 South Service Roa	id, Oał	kville,	ON					
Date Drilled: Drill Type: Datum:	July 16, 2024 Geoprobe 3230DT Geodetic		Chemic: BTEX ING MET PAH PEST	al Analysis Benzene, Toluene, Ethyl Metals and Inorganics Metals Polycyclic Aromatic Hydr Organochlorine Pesticide	PC PH rocarbons VO	B Polychlorin C Petroleum	Hydroca	, henyls arbons ((F1-F4)
G W L O	Soil Description E	ELEV.	•	N Value	Combustible Vapour	Reading (ppm)	% RECO	SAMPLE -	ANALYS-

G W L	Y B O L	Soil Description	ELEV. m	E P T				N۷	/alue	e			Cor	nbus	tible	Vap	oour	Read	ding	(ppr	n)		RECOV	CMP LE	
	Ľ		104.21	H H			20	4	10	6	60			2	25		50		75			Ē S	Ŏ V	L D	ļ
	xxx	CONCRETE: (~130 mm thick)	~104.1	ľ																		$\langle \rangle$	~~		
$ \otimes$	▓	FILL: sand, brown															\square				+		63	SS1	
$ \otimes$	⋙																					14			-
∥₿	88	-SILTY CLAY: grey, trace gravel	~103.4								Ħ						Ħ								
	W	-SILT CLAT. grey, trace graver		1																		$\langle \rangle$	54	SS2	
V																						14			
E	W	_	-																			7			-
																	+					\mathcal{A}	42	SS3	
E	W	_	-	2	:																+				
																						₩			_
	W	_intermittant weathered shale below	_														+				\mp		33	SS4	
		2.33 m bgs															\square					$\langle \rangle$	33	334	
ľÉ		WEATHERED SHALE: highly	~101.3	3																		14			┢
		\weathered shale																				74	100	SS5	
		Shale bedrock (refer to rock coring															\square		H						
		log)			Ħ	± 1							HŦ				+								
		5,		.	Ħ			++-			Ħ			++-		\parallel	\ddagger	++			\mp				
	Γ	_		4													\square								
	F	-	-																						
																	+				+				
	ŀ	_	-	5																					
																					\pm				
	F	_	_								#										\mp				
																	\square								
	Ļ	_		6																					
				ľ																	\pm				
		_																							
																					-				
																					\pm				
	F	-	-	7	. 🖽	++											+	++-			\mp				
	F	-	-																						
1.																									
<u> </u>]	F	_		8													\square								
																					\pm				
	-	_	_														++								
1.	Ļ	_		9	, 🖽																				
								++-			#			#			\mp	#			\mp				
		_																							
ŀ																									
H:	F	_	-	10	<u>ا</u>						H						Ħ				\pm				
ВI						Ŧ			Ħ						Ħ		H		H	H	Ŧ				
H:I	ŀ	_	-		Ħ				Ħ				HŦ				+								
E:					Ħ												\ddagger				\mp				
H.1	┝	_	_	11	1											₽	Ħ								
Н٩									H												\pm				
				1			+					+++	+++	++	\square		++			+++	+	4 I			1
	Ļ	_	_		\square									++-			++			+++	+	1			
	-	_	-																						

** exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.840 7.420	open

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.840 7.420	open

roject No.	GTR-23006349-E1											I	Dra	wing N	lo.		37	,
roject:	Phase Two ESA											Sheet N		۱o.	_1	_ of	_	
ocation:	420 & 468 South Servic	e Road, C)akville, ON															
ate Drilled:	July 17, 2024			Chemic		-	Taba		41		1 X 1-							
rill Type:	Geoprobe 3230DT			BTEX ING	Meta	als ar		ganic:		penzene and	P	СВ		Polychlo	orina	ted Bi		5
atum:	Geodetic		_	MET PAH		cyclic				ocarbons		HC OC		Petroleu Volatile				
s			Τ_	PEST	Orga	anoch	nlorine	Pesti	cide	S					Ş	%	s	Т
S Y B O	Soil Description	ELEV. m	DEPTH		Ν	l Valu	e			Combustible	e Vapo	our Re	eadir	ng (ppm)	Â M P L	RECOV	SAMPLE	
	CRETE: (~330 mm thick)	104.21	0		20	40	6	0		25	5	0	7	5	LE S			┢
	: sand, brown, wet	~103.9														42	SS1	
																		+
			1												Ø	54	SS2	
		-																F
*** -		4	2													46	SS3	
																		F
WEA	THERED SHALE:	~101.7													0	42	SS4	
log)	e bedrock (refer to rock coring	-	3												77	0	SS 5	ŧ
		_																
			4															
		_																
		_	5															
		_	6															
		_																
		7	7															
		4																
_		_	8															
		7																
-		-	9															
		4																
		1	10															
1 –		-																
		_	11															

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641 *ex

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.600 5.400	open

GTR-23006349-E1 37 Project No. Drawing No. Phase Two ESA 2 of 2 Project: Sheet No. % ANALY SYMBOL AMP ELEV. G W L RECOV Soil Description N Value Combustible Vapour Reading (ppm) Ė m ТН ş 92.21 40 6(Η 12 ~91.1 Borehole terminated at 13.1 m depth below grade. NOTES: NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. This borehole was drilled telescopically from the first 7.62 metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others required before use by others. ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ 9/16/24 25 26



Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 12, 2024	no free water 5.600 5.400	open

	Log	of Bor	ehole BH/N	IW	'-336			
Project No.	GTR-23006349-E1				Drawing No.		38	
Project:	Phase Two ESA				Sheet No.	_1	of	2
Location:	420 & 468 South Service Roa	ad, Oakville,	ON					
Date Drilled:	July 30, 2024	Chemic	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	ate Sa	mple	
Drill Type:	Geoprobe 3230DT	ING	Metals and Inorganics	PCB	Polychlorinate	•		
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum Hy Volatile Orgar		`	· ·

GWL	S N N B C		ELEV. m 102.24	DEPTH	N Value 20 40 60	Combustible Vapour Reading (ppm)	% RECOV	SAMPLE -D	ANALYSIS
-		Direct auger to 12.8 m depth below grade.	102.24	0					
			-	1					
			-						
811111111				2					
000000000000000000000000000000000000000			-	3					
31111111	111111		-						
9/16/24 				4					
10101010101			-	5					
19191919191			-						
1919393933	1000			6					
9/16/24				7					
			-						
ART 2_CI	· · ·		-	8					
SERIES P			-	9					
S - 300 S			-						
BH LOC			-	10					
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH GPJ				11					
IRONME			-						
N⊓ N⊓		Continued Next Page		12					

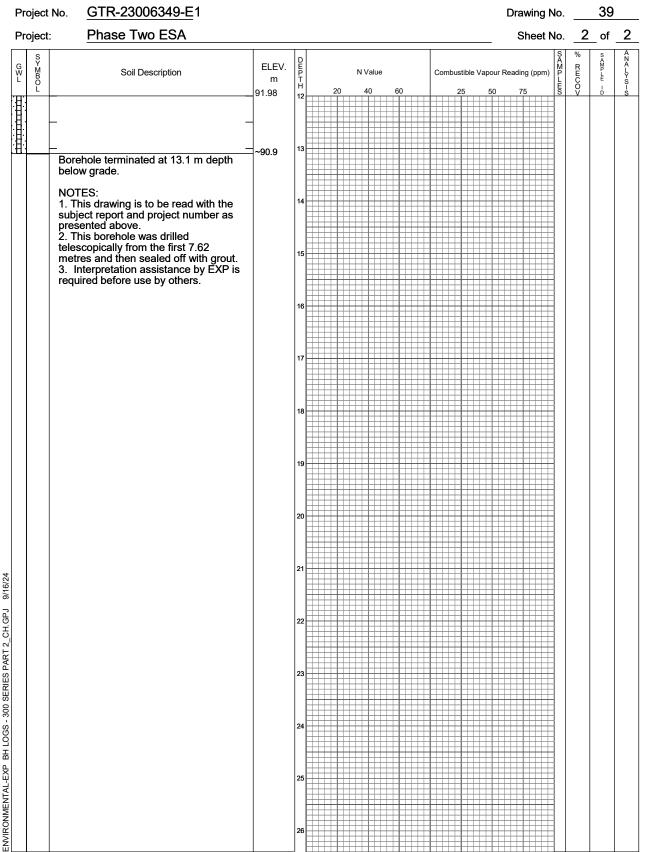
Continued Next Page

Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 6.564 6.620	open

Project No. GTR-23006349-E1

Drawing No.

Projec	t: Phase Two ESA						 	 	 _	 			 sne	et No		<u> </u>	of	
SYMBOL	Soil Description	ELEV. m	DUPTH		2	20	/alue	60	Cor	stible 25	e Vap	our	ing (p 75	opm) F	% RECOV		SAMPLE -D	
		90.24	12														U	
£	Borehole terminated at 12.8 m depth below grade.	~89.4	13	5														
	NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. This borehole was drilled		14															
	telescopically from the first 7.62 metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others.		15															
			16															
			17															
			18															
			19															
			20															
			22															
			23															
			24															
			25															
			26	j														


Time	Water Level (m)	Depth to Cave (m)
on completion August 8, 2024 August 12, 2024	no free water 6.564 6.620	open

	Log	g of	F	Bor	eho	le B	H/M	IW	-337	7			
Project No.	GTR-23006349-E1								Drawing N	lo.		39	
Project:	Phase Two ESA								Sheet N	lo.	_1	of	2
Location:	420 & 468 South Service Ro	oad, Oa	ak	ville, (ON								
			-										
Date Drilled:	July 23, 2024		_	Chemical BTEX		Toluene, Ethy	lbenzene and	Xylenes	* D	Juplica	ate Sa	mple	
Drill Type:	Geoprobe 3230DT		_	ING		d Inorganics		PCB	Polychlor		•	-	
Datum:	Geodetic		-	MET PAH PEST		Aromatic Hyd orine Pesticid		PHC VOC				`	· · ·
G Y M B O L	Soil Description	ELEV. m 103.98	DEPTH	20	N Value 40	60	Combustible 25	Vapour R 50	Reading (ppm) 75	SAMPLES	% RECOV	SAMP LE ID	ANALYS-S

M L	BOL	Soil Description	m	P T H		N Value		Combustible Vapour Reading (ppm)					KECOV	L	L Y S		
	L		103.98			20	4() (50	25	50		75) P LES	Ň	Ŀ	s I S
- 1	1		~103.8	0	Έ												Ŭ
	W	SILTY CLAY: reddish brown, moist			F										79	SS1	
	M		~103.4		F										1		
	XX	SILTY CLAY: reddish brown, some black staining, slight hydrocarbon			E									7			
	XX	odour	-	1	þ										50	SS2 ^P	HC/BTEX
	XX				F	+++++			7 (H) 90	(1)					1		
	XX	arov bolow 1 50 m bao	_		E												НС/ВТЕХ
i i		grey below 1.52 m bgs	~102.2		E				I (H) 55 (İ	₽					100	SS3'	IIC/DILX
	8		_/_/~102.1	2	١F	+++++++++++++++++++++++++++++++++++++++								Ħ			
		Shale bedrock (refer to rock coring			E												
		_log)	_		Þ												
	ŝ				F	++++++								Ħ			
				3	E									H			
Ë				ľ	E												
	8				F	+++++								Ħ			
					E	++++++								B			
	8				F		++1							Ħ			
СН.GPJ 9/16/24 		F	-	4	ŀ									Ħ			
	ŝ				E									Ħ			
		-	-		E												
					F									Ħ			
		–	_	5	١Ē									Ħ			
	8				E												
		–	_		Þ									Ħ			
					E									H			
			_	6	E												
	2				F												
					E									Ħ			
+	8				E												
6/2					F	++++++								Ħ			
9/1				7	E									Ħ			
_	Č.				E		_										
9	ŝ	–	-		E	++++++								Ħ			
핑	-				E									Ħ			
~		-	-	8	۱Ŀ												
RT.					F	+++++++++++++++++++++++++++++++++++++++								Ħ			
A		<u>–</u>	_		E												
Щ <u>Ш</u>					E												
Щ.	-	–	_	9	۱È	+++++++								Ħ			
gii					E												
ю.	, i		_		F	+++++++++++++++++++++++++++++++++++++++											
<u>ଞ୍ଚ</u> ା					F	++++++								Ħ			
<u>Ō</u>	•		_	10	ЪЕ									E			
BH LOGS - 300 SERIES PART 2				10	Έ		$+ \square$							Ħ			
ъĤ					F									Ħ			
ΨĒ	:	Γ			E									Η			
AENTAL-E					E												
		F	-	11	۱þ	+++++++								Ħ			
₹					F	+++++								Ħ			
<u>Ö</u>		<u>–</u>	-		E	++++++								H			
ENVIRONMENTAL-EXP	÷				F									Ħ			
ωĒ	•	Continued Next Page		_ ₁₂	2E									H	I		

** exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.180 7.465	open

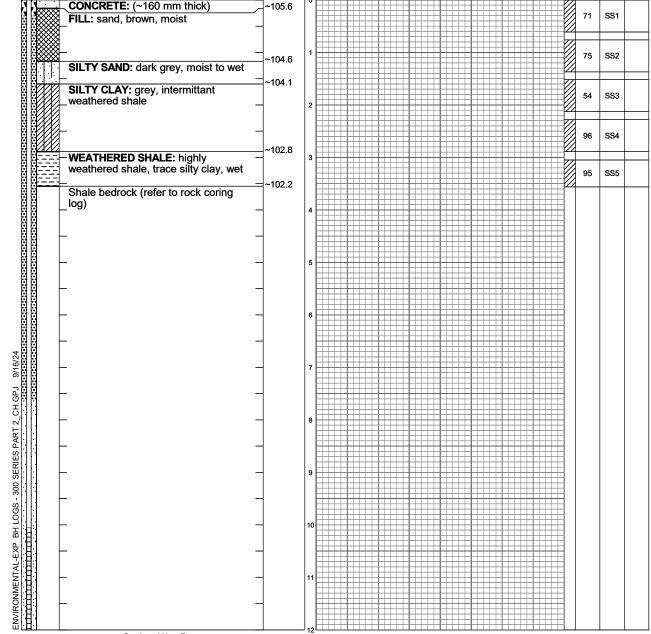
Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 7.180 7.465	open

Log of Borehole BH/MW-338

	<u>GTR-23006349-E</u> 1												Dra	awing	g No.		40	
Project:	Phase Two ESA												5	Shee	t No.	_1	_ of	_
ocation:	420 & 468 South Service	Road, C	Dał	ville,	٥N	I												
			Chemic	al An	alysi	s												
	July 22, 2024		_	BTEX						enzene	and X			*		icate S		
Drill Type:	Geoprobe 3230DT		_	ING MET		etals	and in	organics	5			PC PH				ited Bip Iydroca		
Datum:	Geodetic		_	PAH PEST				matic H e Pestio	•	ocarbons s		VO	С	Volat	ile Org	anic Co	ompoui	nd
S Y G M B D	Soil Description	ELEV. m				N Va	alue			Combust	tible V	apou	r Read	ing (pp	m) SAMPLES	% RECOV	SAMPLE	
TOPS	OIL: (~200 mm thick)	103.98	0	1 1	20	40)	60		25	5	50		75	Š	V	D	
	SAND: reddish brown, some															96	SS1	
SILTY mottlii 	ng, moist																	t
		-	1													79	SS2	
		~102.3																╞
SILTY	f CLAY: grey, trace I/cobble	- 102.3	2													71	SS3	
		~101.7														100	- 884	
VEA	THERED SHALE: grey, pockets y, trace rock, very wet	_																
			3															
Shale	bedrock (refer to rock coring	~100.8														100	555	t
log)		_																
		_	4															
		_																
log)		_	5															
		_																
			6															
		_																
		_	7															
		_																
		_	8															
		_																
		_	9															
		_																
		1	10	, and the second														
		-																
		_	11															
		-				Ħ												
11															\pm			

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641 *ex

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.260 7.190	open


	bject No. <u>GTR-23006349-E</u> 1																ing N		<u> </u>	40	
-	pject: Phase Two ESA													-		She	eet N				-
	S Y B Soil Description	ELEV.	DE															SAMPLES	% R	S A M P	
	M Soil Description	m	DEPTH			N	Value	Э			Com	ibustil	ole Vap	oour F	Read	ling ((ppm)	P L	RECOV	Ĺ E	
	Ľ	91.98	H 12		20)	40		60			25		50		75		ŝ	0 V	l D	
				H			+														
	_	_																			
ĺ																					
l			13	H																	
	Borehole terminated at 13.1 m depth																				
	below grade.																				
	NOTES:			H																	
	1. This drawing is to be read with the		14																		
	1. This drawing is to be read with the subject report and project number as presented above.			Ħ																	
	presented above.			Ħ																	
	2. This borehole was drilled																				
	metres and then sealed off with grout.		15	Ħ		$+ \square$			Ħ	HF	HE	Ħ	HF		H	Ħ					
	telescopically from the first 7.62 metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others.			Ħ			+		\square												
	required before use by others.			Ħ											Ħ	+					
				Ħ			T	Ħ	Ħ		Ŧ			Ħ	\blacksquare	Ħ					
			16																		
			17	Ħ																	
			17	H																	
			18																		
				Ħ																	
				Ħ					Ħ							\square					
				Ħ			\pm														
			19	Ħ			Ŧ	Ħ	Ħ		Ŧ			Ŧ	Ħ	Ħ					
				Ħ																	
1				Ħ			+	H								Ħ					
				Ħ					Ħ							Ħ					
1			20	Ħ					Ħ												
				H								Ŧ				Ħ					
l				Ħ												Ħ					
				Ħ				H								Ħ					
			21	Ħ			+		₽												
				Ħ												\pm					
				Ħ			\square		Ħ							Ħ					
				Ħ					\square												
			22	Ħ			$+ \Box$	H	Ħ	HF	HE	Ħ	HF		H	Ħ					
				Ħ				Ħ	Ħ							Ħ					
				Ħ																	
				Ħ			Ŧ		Ħ		Ŧ			Ħ	\blacksquare	Ħ					
			23						Ħ												
				Ħ	+++1		Ŧ		H		H	Ŧ				Ħ	$\pm\pm$				
				Ħ			\pm		Ħ							\blacksquare					
				Ħ					#							#					
			24	Ħ					Ħ					Ħ		Ħ					
				Ħ																	
				Ħ			Ŧ		Ħ		Ħ	Ŧ				Ħ	$+ \square$				
			25	Ħ																	
			25	Ħ			Ŧ		H			Ħ				Ħ					
				Ħ			+		₽							\mp					
1				Ħ												+					
ł			26	Ħ			T	Ħ	Ħ		Ŧ			Ħ	Ħ	Ħ					
1			1	\vdash			++-	+++							\mapsto	++					1

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.260 7.190	open

Logo	of Bo	oreho	le B	BH/M	IW-	-33	39	
					_			

Pr	oject N	No.	GTR-23006349-E1							Drawing No.		41	
Pr	oject:		Phase Two ESA						_	Sheet No.	1	_ of	2
Lo	cation	:	420 & 468 South Servic	e Road, O	ak	ville, (ON						
Da	ate Dril	lled:	July 22, 2024		-	Chemica BTEX	I Analysis Benzene, Toluene, Ethy	lbenzene and X	lenes	* Dup	licate S	ample	
Dr	ill Typ	e:	Geoprobe 3230DT			ING	Metals and Inorganics		PCB	Polychlorin			
Da	atum:		Geodetic		-	MET PAH PEST	Metals Polycyclic Aromatic Hydr Organochlorine Pesticide		PHC VOC	Petroleum Volatile Org	,		` '
G W L	S Y M B O L		Soil Description	ELEV. m 105.72	DEPTH	20	N Value) 40 60	Combustible V	apour R 50	eading (ppm) 75 S	% RECOV	SAMP LE -D	A N A L Y S - S
		<u> </u>	CRETE: (~160 mm thick) sand, brown, moist	~105.6	0						71	SS1	

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.430 6.59	open

	No. <u>GTR-23006349-E</u> 1														-			J No.	_	41	
oject	E Phase Two ESA			_										_		S	nee				-
S Y M B O		ELEV.	P															n) SAMPLES	% R	S A M P	
B	Soil Description	m	DEPTH			Ν	l Valı	ue		0	Coml	bustil	ble Va	apou	ır Re	ading	g (ppr	n) P L	RECOV	L E	
Ĕ		93.72	H 12		20)	40		60			25		50		75		E S	Ŷ	Ŀ	
		-																			
		~92.6	13	۱H																	
	Borehole terminated at 13.1 m depth below grade.																				
				Ħ																	
	NOTES:		14															Ħ			
	1. This drawing is to be read with the subject report and project number as presented above.																				
	presented above.			Ħ				++						#							
	2 This horehole was drilled			Ħ																	
	metres and then sealed off with arout.		15	iĦ														Ħ			
	telescopically from the first 7.62 metres and then sealed off with grout. 3. Interpretation assistance by EXP is required before use by others.			Ħ				#							Ħ			Ħ			
	required before use by others.			Ħ																	
			16	Ħ														\pm			
				Ħ					I	H		H									
			17	Έ																	
			1.0	Ħ																	
			18	ľ																	
				Ħ																	
			19	, <u> </u>																	
				\pm																	
			20	1																	
				Ħ																	
																		Ħ			
			21																		
				Ħ																	
				Ħ																	
			22																		
				Ħ																	
			23	s 🗄																	
				Ħ				Ħ	Ħ	Ħ		Ħ		Ħ	F						
				Ħ			Ħ								F			Ħ			
				Ħ				+							\parallel			Ħ			
			24	Ħ				#							Ħ			Ħ			
				Ħ																	
				Ħ																	
			25	; F				Ħ	F			Ŧ		Ŧ	F			Ħ			
				Ħ														Ħ			
				Ħ											H			Ħ			
				Ħ														Ħ			
	1	1	26	1 I.			1 I I			1.1				1.1	1.1		1 1 1	1.1	1	1	1

Time	Water Level (m)	Depth to Cave (m)
on completion July 30, 2024 August 13, 2024	no free water 6.430 6.59	open

	Lo	og of	Bor	ehole BF	I/MV	V-340			
Project No.	<u>GTR-23006349-E</u> 1	U				Drawing No.		42	
Project:	Phase Two ESA					Sheet No.	_1	of	1
Location:	420 & 468 South Service	Road, Oa	akville,	ON					
Date Drilled:	August 12, 2024		Chemic BTEX	al Analysis Benzene, Toluene, Ethylbe	nzene and Xylene	s * Dup	icate Sa	ample	
Drill Type:	Geoprobe 3230DT		ING	Metals and Inorganics	PCE	,	•		
Datum:	Geodetic		MET PAH PEST	Metals Polycyclic Aromatic Hydroc Organochlorine Pesticides	PHC arbons VOC		,	```	· · ·
S Y M	Soil Description	ELEV.	DEP	N Value C	ombustible Vapour	Reading (ppm) P	% R	S A P	A N A L

G W L	M B O	Soil Description	ELEV. m	E P T H	5	ı	Valı	ae	Con	nbustible	Vapour	Read	ing	(ppm)	MPLES	RECOV	PLE	A L Y S
-	Ľ			Ĥ 0		20	40	60		25	50		75		Ē	ŏ	Ŀ	1
	****	$\overline{ASPHALT}$: (~50 mm thick)	105,98 ~105.9	0	Έ											72	SS1	
		FILL: sand and gravel fill	~105.5												-12	12	331	
	XX	SILTY CLAY:reddish brown, trace	100.0		E											72	SS2	OCPs
	XX	_ gravel	~105.1													12	332	
		SHALE: red shale	~105.1	1	1								Ħ		-			
		Direct auger to 7.01 m depth below													3			
		-grade	-															
					Η								\square		3			
	-		-	2	2										-			
					E								Ħ	+++				
	-		-												3			
															4			
	-		-	3	3 🗄								₽		1			
													Ħ		4			
			-		H													
					E				H				Ħ		3			
. .			4	4	₄Ħ										4			
					E													
			4		E		ŧΠ		Ħ					$+ \square$	4			
:H:1					E										11			
(H)				5	<u>,</u> E										3			
				ľ	Ĕ										4			
:H:					Ξ										3			
8																		
					. H								Ħ		-			
:H:				6	°E										3			
														+++				
	Ī		1		Ε								\square		3			
9/16/24			00.0															
16		Borehole terminated at 7.01 m depth	~99.0	7	7 🗄								Ħ	+++				
		below grade.													3			
9 9																		
Э		NOTES:													3			
2		1. This drawing is to be read with the		8	B								\ddagger		-			
⁴ R1		nresented above													3			
P P		2 Interpretation assistance by FXP is																
ШЩ М		 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 			H								Ħ		11			
SEF		. ,		9	۶⊟													
8					H										11			
° - 3					H								Ħ		3			
80															4			
늬				10	٥H				##									
					E								Ħ		3			
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ					H				Ħ						4			
빌					H								Ħ					
ATA				11	1								Ħ					
ME				1	H								Ħ		11			
ž					E										3			
λ. K													Ħ		4			
Σ					Ë				##				Ħ		1			

exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641 *exi

Time	Water Level (m)	Depth to Cave (m)
on completion August 12, 2024 August 13, 2024	no free water 3.240 3.370	open

		Log	g of	F	Bor	eho	ole B	3H-104	A			
oject	No.	GTR-23006349-E1							Drawing No.		1	
oject		Phase Two ESA							Sheet No.	_1	of	_1_
ocatio	n:	420 & 468 South Service Re	oad, O	ak	ville,	ON						
		August 9, 2024 Geoprobe 3230DT		-	BTEX ING	Benzene Metals a	e, Toluene, Eth	PCB	Polychlorin	ated Bi	phenyls	
atum:		Geodetic		_	PAH PEST	Polycycl		drocarbons VOC				` '
SYMBOL		Soil Description	ELEV. m	DEPTH	20		ue 60		3 /	% RECOV	SAMP LE ID	AZALY0-0
	FILL mois mois	: sand, trace gravel, brown, t t to wet		1						92 92 92 100 100 100	SS1A SS1B S31C SS2A SS2B SS2C	- рн - рн - рн - рн - рн - рн
	roject ocatio ate D fill Ty atum:	S M B C Fill mois -	oject No. <u>GTR-23006349-E</u> 1 oject: <u>Phase Two ESA</u> ocation: <u>420 & 468 South Service Re</u> ate Drilled: <u>August 9, 2024</u> ill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u>	oject No. <u>GTR-23006349-E</u> 1 oject: <u>Phase Two ESA</u> ocation: <u>420 & 468 South Service Road, O</u> ate Drilled: <u>August 9, 2024</u> iill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u> <u>Soil Description</u> <u>FILL: sand, trace gravel, brown, moist to wet</u>	roject No. <u>GTR-23006349-E1</u> roject: <u>Phase Two ESA</u> focation: <u>420 & 468 South Service Road, Oak</u> ate Drilled: <u>August 9, 2024</u> ill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u> <u>Soil Description</u> <u>CONCRETE: (~100 mm thick)</u> <u>FILL: sand, trace gravel, brown, moist to wet</u> 1	oject No. <u>GTR-23006349-E1</u> oject: <u>Phase Two ESA</u> ocation: <u>420 & 468 South Service Road, Oakville, o</u> ate Drilled: <u>August 9, 2024</u> iill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u> <u>Soil Description</u> <u>CONCRETE: (~100 mm thick)</u> FILL: sand, trace gravel, brown, moist to wet	roject No. <u>GTR-23006349-E1</u> roject: <u>Phase Two ESA</u> focation: <u>420 & 468 South Service Road, Oakville, ON</u> <u>420 & 468 South Service Road, Oakville, ON</u> <u>420 & 468 South Service Road, Oakville, ON</u> <u>August 9, 2024</u> <u>BTEX Benzene</u> <u>BTEX Benzene</u> <u>ING Metals a</u> <u>MET Metals</u> <u>August 9, 2024</u> <u>BTEX Benzene</u> <u>ING Metals a</u> <u>MET Metals</u> <u>PAH Polycycl</u> <u>PEST Organoc</u> <u>Soil Description</u> <u>FILL: sand, trace gravel, brown, moist to wet</u>	oject No. <u>GTR-23006349-E1</u> oject: <u>Phase Two ESA</u> cation: <u>420 & 468 South Service Road, Oakville, ON</u> <u>August 9, 2024</u> ill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u> <u>Soil Description</u> <u>Soil Description</u> <u>Concrette: (~100 mm thick)</u> <u>FILL: sand, trace gravel, brown, moist to wet</u>	oject No. <u>GTR-23006349-E1</u> oject: <u>Phase Two ESA</u> pocation: <u>420 & 468 South Service Road, Oakville, ON</u> ate Drilled: <u>August 9, 2024</u> iill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u> <u>Soil Description</u> <u>Concrette: (~100 mm thick)</u> <u>FillL: sand, trace gravel, brown, moist moist to wet</u> <u>Concrette: (~100 mm thick)</u> <u>FillL: sand, trace gravel, brown, moist to wet</u>	roject: Phase Two ESA Sheet No. Phase Two ESA	oject No. <u>GTR-23006349-E1</u> Drawing No oject: <u>Phase Two ESA</u> Sheet No. <u>1</u> boation: <u>420 & 468 South Service Road, Oakville, ON</u> ate Drilled: <u>August 9, 2024</u> ill Type: <u>Geoprobe 3230DT</u> atum: <u>Geodetic</u> <u>Chemical Analysis</u> BTEX Benzene, Toluene, Ethylbenzene and Xylenes * Duplicate 3 ING Metals and Inorganics PCB Polychlorinated Bi MET Metals PHC Petroleum Hydroc PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic C PEST Organochlorine Pesticides	oject No. <u>GTR-23006349-E1</u> Drawing No. <u>1</u> oject: <u>Phase Two ESA</u> Sheet No. <u>1</u> of acation: <u>420 & 468 South Service Road, Oakville, ON</u> <u>420 & 408 South Service Reading (pm)</u> <u>500 Soil Description</u> <u>500 Soil Descripti</u>

2

3

5

6

7

8

9

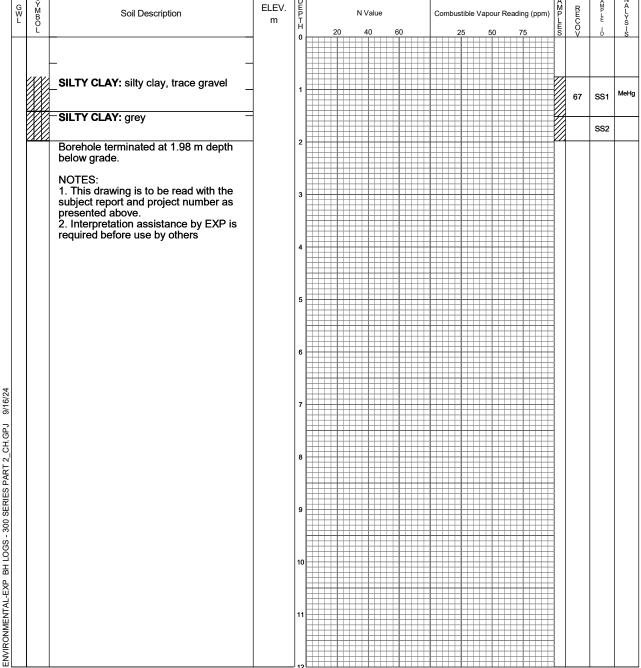
10

11

9/16/24	
CH.GPJ	
S PART 2	
0 SERIES	
LOGS - 30	
XP BH	
ONMENTAL-E	
ENVIR	

below grade.

 This drawing is to be read with the subject report and project number as presented above.
 Interpretation assistance by EXP is required before use by other


required before use by others.

NOTES:

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

		Log of	Boi	ehole BH-1	U8 4	4			
Project No.	GTR-23006349-E1	_				Drawing No.		2	
Project:	Phase Two ESA					Sheet No.	_1	of	1
Location:	420 & 468 South Serv	vice Road, Oa	akville,	ON					
Date Drilled:	August 2, 2024		Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenzene and	l Xylenes	* Duplic	cate Sa	mple	
Drill Type:	Geoprobe 7822		ING	Metals and Inorganics	PCB	Polychlorinat	•		
Datum:	Geodetic		MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum H Volatile Orga	·		,
G M		FLEV	P			S A M	% R	S A M	A N A

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

	Log	01 .	Roi	ehole BH	L-114	E		
Project No.	GTR-23006349-E1					Drawing No.		4
Project:	Phase Two ESA					Sheet No.	_1_0	of <u>1</u>
Location:	420 & 468 South Service Roa	ad, Oa	kville,	ON				
Date Drilled:	August 2, 2024		Chemic BTEX	al Analysis Benzene, Toluene, Ethylbenz	zene and Xylenes	s * Duplie	cate Sam	ble
Drill Type:	Geoprobe 7822		ING MET	Metals and Inorganics	PCB PHC	,	•	
Datum:	Geodetic		PAH PEST	Metals Polycyclic Aromatic Hydrocar Organochlorine Pesticides				` '
G Y M	Sail Description	ELEV.	D	N Valua Car	mbustible Vensur	S A M	% §	

G W L	У М В О L	Soil Description	ELEV. m	D E P T H				N Va	lue		Con	nbusti	ble Va	pour	Rea	ding (ppm)	AMPLES	RECOV	PLE	N A L Y S
	Ľ			Н 0		2	20	40		60		25		50		75		E S	Ŷ	L D	Î S
				ľ	ΪĦ																
					Ħ																
	xxxx	\neg FILL: sand and gravel fill			H														05	SS1	MeHg
		SILTY CLAY: dark grey trace			. Ħ										++			\mathcal{U}	85	551	
		-SILTY CLAY: dark grey, trace - organics and gravel		1	H													\mathcal{D}	67	SS2	
					Ħ														07	332	
		\neg light grey below 1.42 m bgs \neg			Ħ																
		Borehole terminated at 1.52 m depth			H																
		below grade.		2	: 🛱													1			
		NOTES:			\square													3			
		1. This drawing is to be read with the			H																
		subject report and project number as			Ħ				++-						++			1			
		presented above.		3	۶Ħ													3			
		2. Interpretation assistance by EXP is required before use by others.			Ħ									Ħ				1			
		required before use by others.			Ħ				++-						++			1			
					Ħ]			
				4	ıĦ					HE	HŦ				+	H					
				1.	Ħ		+++											1			
					H													3			
					H																
				_	. #																
				5	ΥĦ												+++	1			
					\square													3			
					Ħ																
					Ħ												+++	1			
				6	; []													3			
					Ħ																
					Ħ										++-		+++	1			
2					\square																
9/16/24				7	,Ħ																
					Ħ												+++				
2					\square]			
<u>0</u>					Ħ																
히					,甘				++-						++	Ħ		1			
12				8	ΉĦ													3			
AR					Ħ		HŦ	HT			HT	HŦ			+	HŦ		1			
S D					Ħ													1			
Щ,					Ħ]			
Ы.				9	¦ ⊟													3			
8					Ħ																
۳ :					Ħ										++		+++	1			
S					\square													3			
의				10	₀⊨										++			11			
퓖					Ë												+++	1			
£					H																
ΨÌ					Ħ										++			1			
E					井										++	Ħ		1			
ЦЦ ЦЦ				11	'⊞]			
≧					Ħ							HT			+	HF		1			
2					Ħ										++			1			
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ					Ħ										++-			1			
யட				112	۰Ħ													- i		1	

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

			LO	og of	ł	301	eho	le B	H-I	141	N				
Pı	roject	No.	<u>GTR-23006349-E</u> 1								Drawing No	b .		3	
Pı	roject	:	Phase Two ESA								Sheet No	D .	1	_ of	_1
Lo	ocatio	n:	420 & 468 South Service	Road, O	ak	ville,	ON								
D	ate D	rilled:	August 2, 2024		_	Chemic BTEX	al Analysis Benzene, T	oluene, Ethy	Ibenzene and	Xylenes	* Dı	uplic	ate Sa	ample	
D	rill Ty	pe:	Geoprobe 7822		_	ING MET	Metals and	Inorganics		PCB	Polychlori		•	,	
D	atum:		Geodetic		_	PAH PEST	, ,	romatic Hyd rine Pesticid		PHC VOC	Petroleun Volatile O				· /
G W L	SYMBOL		Soil Description	ELEV. m	DEPTH 0	2	N Value	60	Combustible	Vapour R 50	/	SAMPLES	% RECO>	SAMPLE -D	A N A L Y S I S

	Ŵ	M B C L	Soil Description	m	P T H				N١	/alue			Co	mbus	stible	Vapo	our Re	eadi	ng (p	pm)	P LES	KECO>	P L E	L>-0-0
	_	L			Ĥ 0			20	4	40	6	0		2	25	5	60	7	75		Ē	ŏ V	L D	3-S
		L				Ħ																		
	k	~~~~	FILL: sand and gravel fill																		┢	93	SS1	MeHg
	Ē	XX	-SILTY CLAY: grey, trace oragnics,		1	Ħ															И	93	331	
	k	XX	moist		l '																Ø	71	SS2	
	F	XX				Ħ															\square	••	002	
	Ī		Borehole terminated at 1.52 m depth																					
			below grade.			Ħ					++							++-		++	1			
			NOTEO		2]			
			NOTES:			Ħ																		
			subject report and project number as																					
			1. This drawing is to be read with the subject report and project number as presented above.			Ħ							H		H		Hf				11			
			 Interpretation assistance by EXP is required before use by others. 		3	Ħ										\pm				\pm	1			
			required before use by others.			H									HT		H			Ŧ	11			
						Ħ														++	1			
						H										Ŧ			Ħ		1			
					4	Ħ					++-							#		++	11			
						Ħ														++	1			
					5	H																		
						Ħ					++-									++	1			
]			
						Ħ																		
					6																			
						Ħ					++-									++	1			
						H																		
24						Ħ																		
9/16/24					7																			
<u> </u>						Ħ															11			
Ë						H				Ħ														
2					8	Ħ					++-									++	11			
RT						Ħ												+		+]			
PA						Ħ															1			
ES						Ħ															1			
ЯЩ К					9	Ħ							H				HŦ	Ħ		$+ \mp$	1			
80					Ľ	Ħ															11			
- 30						Ħ				Ħ						Ŧ		Ħ	Ħ		1			
ß						Ħ					++			++				++-		+	11			
2					10	βĦ									H]			
핆					"	Ή														++	1			
Ψ						H															1			
Ξ						Ħ					Ŧ						HŦ			$+ \mp$	1			
IAI						Ħ					++			++				++-		++	11			
ЦЦ					11	'⊞									H		H]			
N N						Ħ											H							
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						Ħ															1			
N S						Ħ	$+ \square$		HT		Ŧ					Ħ	HŦ	Ŧ		$+\top$	1			
шЦ					- ¹ 12	2														1.1				

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

		Log	g of	Е	Sorehole	BH-	114	5			
Pr	oject No.	GTR-23006349-E1	_				I	Drawing No.		5	
Pr	roject:	Phase Two ESA						Sheet No.	_1	_ of	1
Lo	ocation:	420 & 468 South Service R	Road, O	ak	ville, ON						
	ate Drilled: rill Type:	August 2, 2024 Geoprobe 7822		_	Chemical Analysis BTEX Benzene, Toluene ING Metals and Inorga MET Metals		and Xylenes PCB PHC	* Dupl Polychlorina Petroleum H	•	henyls	
Da	atum:	Geodetic		_	PAH Polycyclic Aromat PEST Organochlorine P	,	VOC	Volatile Org	anic Co	mpoun	ds
G W L	S Y M B O	Soil Description	ELEV. m	D E P T H	N Value	Combust	ible Vapour Re	eading (ppm)	% Ruco	SAMP LE .	ANALYS-

G W L	M B O L	Soil Description	ELEV. m	E P T H	5			N Va	lue			Comb	oustibl	e Va	apour f	Read	ling ((ppm)	NP-TEO	RECOV	PLE	ALYS-S
	Ľ			H 0			20	40		60			25		50		75		E S	0 V	P	Š
				0	ΉŦ												+	+++				
					H												+		-			
					Ħ	##											\square		-			
	XXX	¬FILL: sand and gravel fill			H												+			51	SS1	MeHg
		- SILTY CLAY: grey, trace gravel -			. 🕀												\square		W	01		
	1 MA	- SILTI CLAT. grey, trace graver -		1	' []	##										\square	+		-1/1			
					H	##										\square				100	SS2	
		_dark grey below 1.34 m bgs			Ħ	##													-124			
		Borehole terminated at 1.52 m depth			Ħ	##													1			
		below grade.			. 🖽	##													1			
		9		2	' [‡	##													1			
		NOTES:			H	##										\square			1			
		1 This drawing is to be read with the			Ħ	###											#		-			
		subject report and project number as			Ħ	###											\mp		1			
		1. This drawing is to be read with the subject report and project number as presented above.			. 🖽	###													1			
		2 Interpretation assistance by EYD is		3	'甘	\mp								+		Ħ	+		1			
		2. Interpretation assistance by EXP is required before use by others.			Ħ	\mp										H	+		1			
		required before use by others.		1	Ħ	###				Ħ				++		Ħ	\mp		1			
				1	Ħ	###				Ħ				++		Ħ	\mp		1			
				1.	.井	###										\square	\mp		1			
				4	'甘	##		\square						++		Ħ	\ddagger		1			
				1	Ħ	###											\ddagger	+++	1			
					Ħ	##		++	\square							Ħ	\mp		1			
					Ħ														-			
					. #	###													1			
				5	١Ħ	###													1			
					Ħ	###											\mp		1			
					Ħ	###											#		-			
					Ħ	###													1			
					. 🖽	###													1			
				6	' 🛱	##										\square	+		-			
					Ħ	##											\square		-			
					H	##										+++	+		-			
4					H												+		-			
9/16/24				-	, FF											\square	+		-			
9/1				1	H	=											+		7			
ц,					\square														3			
ΞÌ				1	H												H		-			
ပ				8	ιĦ												H					
12				ľ	Έ	$\pm \pm$				ΗŦ			ΗE	H			Ħ					
Å				1	H											H						
<u> </u>				1	H																	
100				1	H																	
出 				9	٦Ħ						$\pm\pm$					H			11			
<u>N</u>				1	Έ						$\pm \pm$					H	Ħ		11			
ğ				1	Ħ																	
					Ħ											H			1			
ğ					Ħ												#					
늬				10	₀⊨												\pm		1			
핆				1.2	ΞĦ												#					
<u>م</u>					Ħ												#					
Щ					Ħ														1			
┟				1	Ħ														1			
È				11	ı⊭														1			
Έ				1	Ή												\ddagger		1			
Ž				1	Ħ																	
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ					Ħ														1			
≩					Ħ	###											#		1			
<u>ش</u>				12	₂世																	

Γ

Time	Water Level	Depth to Cave
	(m)	(m)
on completion	no free water	open

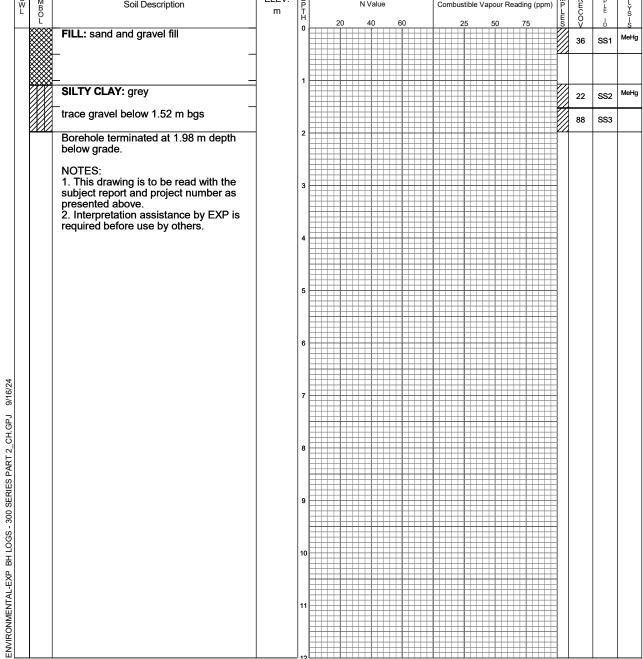
		Lo	g of	ł	3 or	ehol	e B	H-1	17/	4			
Proje	ct No.	<u>GTR-23006349-E</u> 1	_							Drawing No.	_	6	
Proje	ct:	Phase Two ESA								Sheet No.	_1	_ of	1
Locat	ion:	420 & 468 South Service I	Road, O	ak	ville,	ON							
	Drilled: -	August 12, 2024		-	Chemica BTEX ING	I I Analysis Benzene, Tolu Metals and In		benzene and	Xylenes PCB	* Dupli Polychlorina		ample	
Drill T	ype:	Geoprobe 3230DT		-	MET	Metals	organioo		PHC	Petroleum H		,	F1-F4)
Datur	n:	Geodetic		-	PAH PEST	Polycyclic Aro Organochlorin			VOC	Volatile Orga	anic Co	ompoun	ds
G SY MBO L		Soil Description	ELEV. m	DEPT H	20	N Value	60	Combustible	Vapour R 50	eading (ppm)	% RECOV	SAMP LE -D	ANALYS-s
	ASP	HALT: (~150 mm thick)	7	0							96	SS1A	pH pH
- KXX		Loopd and groval fill trace brick	1	1					++++		96	SS1B	P.1

1	Ŵ	B O	Soil Description	m	Р Т Н				ΝV	alue	e			Combu	stibl	le Va	apou	r Rea	adin	ng (ppm	PLES	KIII CO	L	L Y Ş
	-	Ľ					:	20	4	0	60			:	25		50		7	5	Ē	ŏ	Ļ	1
			ASPHALT: (~150 mm thick) FILL: sand and gravel fill, trace brick		0	H		1 H							Ť		H		\square			96	SS1A	pН
			FILL: sand and gravel fill trace brick			\square															-72	96	SS1B	рН
		****																				96	SS1C	рн
			Borehole terminated at 0.61 m depth									#									-			
			below grade.		1							++									=			
									-						+						-			
			NOTES:												+									
			1. This drawing is to be read with the																					
			subject report and project number as																					
			presented above.		2																			
			 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 						++-			++									- 1			
			required before use by others.				++					++			Ħ						-			
										-					+				+		-			
					3	\square													+		-			
					ľ																			
						Ħ				+					Ħ									
						Ħ				Ħ		++			Ħ						1			
						Ħ	#			+		\mp			Ħ						=			
					4	H				-		++			H									
																					3			
																					=			
					5										\uparrow						-			
						Ħ				-					+									
															+						-			
					6																			
					ľ																-			
																					-			
												++			\square						-			
124							++			-		++			+				\square		-			
9/16/24					7																3			
2																					-			
빗																								
히										+		#									-			
2					8					-					+				+		-			
¥.						\square															3			
<u> </u>																								
<u>Щ</u>																								
Ë.					9							#									-			
စ												#									- 1			
8															+						-			
ģ						\square									\square						-			
ö																								
ᅴ					10	Ħ				+		Ħ	Ħ						Ħ		4			
ā						Ħ				+		#			#				\ddagger		=			
5						H+				+		#			#						=			
3						H+	++	+++	++-	+		+	++		\square	+	H				11			
₹					11	H	-			-					$\left \right $						-			
<u>ا</u>					11					-									\square		3			
≧						Ħ			T			T	T		H	T	I F	HT	H		-			
2						Ħ													\pm		=			
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						Ħ						++			#						=			
ΰL					12	Ш																		

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

		Log	g of	ŀ	3 or	et	10	le B	SH-120	A				
Pr	oject N	o. <u>GTR-23006349-E</u> 1								Drawing	No.		8	
Pr	oject:	Phase Two ESA								Sheet	No.	_1	_ of	1
Lo	cation:	420 & 468 South Service R	Road, O	ak	ville,	ON								
Da	ite Drill	ed: August 9, 2024		_	Chemic BTEX			Γoluene, Eth	ylbenzene and Xylene	s *	Dupli	cate S	ample	
Dr	ill Type	E Geoprobe 3230DT		_	ING MET			I Inorganics	PCE	,		•	ohenyls	
Da	itum:	Geodetic		_	PAH PEST		cyclic A	Aromatic Hy orine Pestici	drocarbons VOC			·	arbons (ompoun	· /
G ₩ L	S Y B O	Soil Description	ELEV. m	DEPTH		N 20	Value 40	60	Combustible Vapour	0.11	I) SAMPLES	% RECO	SAMP LE I	A N A L Y S -
		CONCRETE: (~130 mm thick)	-	0			40		25 50	75			SS1A SS1B	S pH pH pH
		Borehole terminated at 0.46 m depth below grade.											SS1C SS1D	рН
	:	NOTES: 1. This drawing is to be read with the subject report and project number as presented above		1										

3


4	1.7	TT					_	CΤ									1											
	E	++	\rightarrow	-	1				-	-		1 1	_				1	-	+		-	-	+	+	-	-		
	H	++	-	-		-	+-	-	-	-	_	⊷	-			_	+	-		-	-	+	-	+	-	+	+	
•								1														_						
																		- 1										
		\square			i l		-					i t					1						-	-		-		
	E	+	\rightarrow	-	t t		+	\rightarrow	-	-	-	t t	-				1	-	+	+	-	-	+	+		+	+-	
	H	+ +	\vdash	+	+ +		+	\leftarrow	+	-	_	++	-	\vdash			+	-	-	+	-	-	-	-	-	+	+	\vdash
	L	-		_	-		+	(_	-		. →	_				_		-			_	_	-		-	-	
	L				L		1	1									1					_				1		
	г	TT	T					ΓT				LΤ					Т	T			T			T	Т			
	E	+		-	i l		+		-		-	i 🕇	-		i H		1		+			-	+	+		-	-	
	H	++		-	1		-		-	-	_	++	-			-++	+	-	-	-	-	-	-	-	-	+	+-	
	H	-		_	1		+	-	-	-	_	⊢	-				+	_	-	+	_	\rightarrow	-	+	-	+	+	
5	L							1														_				1		
5		T						CT.									Т						Т	Т	Т	Т	T	
	í T				\square							\mathbf{T}					1							-	1			
	E	+		-	1 1		+-	\rightarrow	-	-	_	1 1	-				1	-	-	-	-	-	+	+	-	+	+-	
	F	+	\mapsto	-	1		+	\mapsto	+	-	-	⊢	-	\vdash		-++	+	-	+	+	-	-	+	+	-	+	+	\vdash
				_	-		+		_		_		_				-	_	_	+	_	_	_	-	-	-	-	
								1														_						
																		- 1										
	Г	\square					_	CT.									1						T		Т			
	E	++		-	1 1		+-		-	-	_	1 1	-				1	-	-	-	-	-	+	+		+	+-	
	H	++		-	1			\vdash	-	-	_	++	-			-++	+	-	-	-	-	-	-	-	-	+	+-	
	H	-		_	1		+	-	-	-	-	⊢	-				+	_	-	+	_	\rightarrow	-	+	-	+	+	
6	L							1	_													_				1		
U	E			T				(T	T				T			TT	_		T		_1	_	T	Т	Т	T		
	É			1	\square			CT.				\mathbf{T}					1					-	-	T		T		
		+		-	11		+-		-			i – t	-				1		-			-	-	-		+	-	
	F	+	\mapsto	+	1	-	+	+	+	+	-	⊢	-	\vdash			+	-	+	+	-	+	+	+	-	+	+	\vdash
	H			-	-			-	-	-	-	⊢	-				+	-	-	+	-	\rightarrow	-	-	-	+	+-	
	_							1														_						
	Ľ		LE	1	Ш	ШĒ		í [1	1.1		LΙ				_ I T	1		17		I		1			1	11	
	Г	\square						ΠÌ									Т						-			T		
	E	+	+	-	t t	-	+-	Ηt.	-	\square	-	i 🕂	-				†		-	+	-	-	+	+	-	+	\pm	
	F	+	\vdash	+	t t		+	\leftarrow	+	-	-	t t	-			-++	+	-	+	+	-	-	+	+		+	+	
	H	+	\vdash	-	+		-	\leftarrow	+	-	-	⊢	-				+	-	+	+	-	\rightarrow	-	+	-	+	+	
7																						_		_				
1	L				LI			í Í		1		LĪ					1		1				1			1		
	1	IT	ΙТ	Ē	LΠ	ιT		ĹΤ	Ē	17		IΤ	- C				1	T	Г		Т	- T	Г	T	Т	Ē	17	
								C T									1						-				T	
	E	+		-	i l		+		-	-	-	i 🕇	-		i H		1		+			-	+	+		-	-	
	F	+		-	1		+	\leftarrow	-	-	-	1	-	\vdash		-++	+	-	-	+	-	+	+	+	-	+	+	
	F	+ +		+	+ +	-	+	\leftarrow	-	-	-	⊢	-				+-	-	-	+	_	+	-	+	-	+	+-	
	L	+	\vdash	_	1		+	(-	-		\vdash	_	\vdash	\square		+			+		_	-	-		-	-	
	L	LI			LI			í. I																_				
	Г			T		T		ιŤ	T		T		T			TT		T	T		1	T	T	Т	T	T		
	É	$ \rightarrow $					\neg	CŤ.									i -						-	+				
	E	+	\rightarrow	-	i H		+	\rightarrow	-		-	i 🕂	-				t i	-	-	+	-	\pm	+	+	+	+	\pm	
8	F	+	\mapsto	+	+ +	-	+	\mapsto	+	-	-	++	-			++	+	-	+	+	-	+	+	+	-	+	+-	
, 1	L	-		-	+		+		-	-		⊢	-				+	_	_	+	_	-				+	-	
							1.1													1.1				-+-				
	L	17						-									_	_			_		_			_		
												H											+	+		+		
	É	+	+	+	H	+	H	Ħ	+	Ħ	-	Ħ	+			++	t		-	H		+	+	+		t	+	
	F	Ħ		+				Ħ	+				+				F			Π		+	_				-	
	E																					-						
	E																											
	E																											
9																												
9																												
9																												
9																												
9																												
9																												
9																												
9																												
9																												
9																												
9																												
9																												



2. Interpretation assistance by EXP is required before use by others.

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

		Lo	g of		Bor	ehol	le B	H-142	A					
Project	No.	GTR-23006349-E1	_							wing N	No.		10	
Project:		Phase Two ESA							S	heet N	٩o.	_1	_ of	1
Locatior	ו:	420 & 468 South Service F	Road, O)ał	kville,	ON								
Date Dr Drill Typ		August 2, 2024 Geoprobe 7822		_	BTEX ING	I I Analysis Benzene, To Metals and I		lbenzene and Xylen PC	В	Polychlo	orina	•	, ohenyls	
Datum:		Geodetic		_	MET PAH PEST	Metals Polycyclic A Organochlor	,			Petroleı Volatile		•		· /
GWL L		Soil Description	ELEV. m	DEPTH	•	N Value	60	Combustible Vapou	r Readin 7!	,	SAMPLES	% RECOV	SAMP LE -D	ANALYS-C
	FILL	sand and gravel fill		0							Ø	36	SS1	MeHg
	_		_	1										
	SILT	Y CLAY: grey									0	22	SS2	MeHg
	trace	gravel below 1.52 m bgs										88	SS3	
		hole terminated at 1.98 m depth <i>w</i> grade.		2										

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

	Log	g of 1	Roi	ehole Br	1-203	A			
Project No.	GTR-23006349-E1	-				Drawing No.		11	
Project:	Phase Two ESA					Sheet No.	1	of	1
Location:	420 & 468 South Service Re	oad, Oa	kville,	ON					
Date Drilled:	August 9, 2024		Chemic BTEX	al Analysis Benzene, Toluene, Ethylbe	nzene and Xylene	s * Dupli	cate Sar	nple	
Drill Type:	Geoprobe 3230DT		ING MET	Metals and Inorganics	PCE	,	•	-	-4 - 4)
Datum:	Geodetic		PAH PEST	Metals Polycyclic Aromatic Hydroc Organochlorine Pesticides			-	``	
G Y W B	Soil Description	ELEV.	DEP	N Value C	Combustible Vapour	Reading (ppm)	% R	SAMPL	A N A L Y

	G W L	SYMBOL	Soil Description	ELEV. m	DEPTH)			N Valu	e		Combus	tible \	/apo	ur Rea	adin	g (ppm)	SA⊠₽-LES	% RECOV	SA MP LE	ANALYS-
	_				Ĥ 0		20)	40	6	60	2	5	50)	75	5	Ē	Ŏ V	I D	3
		****	CONCRETE: (~190 mm thick)		ľ	Ħ												1			
			FILL: brown sand, moist			H														SS1A	pН
																		\mathcal{H}			
			_SILTY SAND: some clay and gravel, _		1	Ē														SS1B	pН
			moist			Ħ														SS1C	рН
						Ħ														3310	
			Borehole terminated at 1.52 m depth			Ħ															
			below grade.		2	<u>,</u>									+++		++++	-			
			NOTES:			H															
			1. This drawing is to be read with the subject report and project number as presented above.			Ħ												1			
			subject report and project number as			Ħ															
			presented above.		3	, -												-			
			2. Interpretation assistance by EXP is required before use by others.			H															
						Ħ												1			
						Ħ		Ŧ]]			
					4	ıĦ												11			
						H															
						Ħ												1			
						H															
					5	; ⊨												-			
						H															
						Ħ												1			
						Ħ												3			
					6	;															
						H															
						Ħ												1			
24						Ħ												3			
9/16/24					7	' 🗄															
						Ħ															
<u> </u>						H												3			
E.						H															
5					8	۱ <u>⊢</u>												3			
RT						Ħ												1			
PA						H												-			
E E						Ħ															
Ш.					9	ا		+													
8						Ħ															
						H															
ğ						Ħ									+++						
Ĭ					10	θ															
Ξ						Ħ															
Ш						Ħ															
- AL-						Ħ												11			
Ľ					11	1⊞		+													
μ						Ħ												11			
ģ						Ħ												11			
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						Ħ												11			
ΠL					12	2世												1			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

			Lo	og of	ł	3 or	ehol	le B	H-2	04	A				
Pr	roject	No.	GTR-23006349-E1	-							Drawing No) .		12	
Pr	oject:		Phase Two ESA								Sheet No) .	1	_of	1
Lc	ocatior	n:	420 & 468 South Service	Road, O	ak	ville, (ON								
_	ate Dr rill Typ		August 9, 2024 Geoprobe 3230DT		-	Chemica BTEX ING MET	I Analysis Benzene, To Metals and I Metals		lbenzene and	Xylenes PCB PHC	Polychlori	nate	d Bip	,	F1-F4)
Da	atum:		Geodetic		-	PAH PEST	Polycyclic A Organochlor			VOC	Volatile O	rgan	ic Co	mpoun	ds
G W L	SYMBOL		Soil Description	ELEV. m		20	N Value	60	Combustible	Vapour F	Reading (ppm)	A M	% RECOV	SAMPLE -D	A N A L Y S - S
	XXXX		CRETE: (~180 mm thick)	~									63	SS1A	pH*

W	B	Soil Description	m	P T H				N Va	alue		Com	bustil	ble V	apour	Rea	ading	g (ppm) P	KII COV	P L F	L Y S
	B O L					2	20	40)	60		25		50		75) ₽_L Ш S	ŏ	Ŀ	5-0
		CONCRETE: (~180 mm thick) FILL: brown sand, moist		0																-	
		FILL: brown sand, moist													++			H	63 63	SS1A SS1B	pH*
	××××																		63		рп
		Borehole terminated at 0.61 m depth																	00	0010	
		below grade.		1	Ħ																
		NOTES:																			
		1. This drawing is to be read with the																			
		subject report and project number as																			
		presented above.		2																	
		 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 																			
		required before use by others.																			
															++						
				3																	
					Ħ		HT	+TT		\square		T	H		Ħ	Ŧ					
					Ħ		Ħ								#		+++				
					H																
				4	Ħ																
					Ħ		Ħ								+	1					
				5	Ħ										++						
				6																	
				ľ																	
					Ħ										++						
9/16/24																					
316				7											++						
					#										++						
<u> </u>																					
Ξ.																					
				8	Ħ										++						
F																					
A																					
ŝ															++						
R				9																	
00				ľ																	
õ															++						
ώ					Ħ										++						
ö																					
土				10	/₩											++					
<u></u>					Ħ	++									+	++					
놂					H																
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						H						Ŧ			+ +	Ŧ					
É				11	ı##										++						
Ψ					H+										++						
Ζİ																					
Ř					Ħ		H	$\pm\pm$			++1										
Σ					Ħ										+						
				-' 12		1.1		1 1	1 1						1.1	1.1	1 I I	_		_	

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

	Lo	g of	BO	reho	le B	H-2]	2 <i>A</i>				
Project No.	GTR-23006349-E1	_					0	Drawing No.		14	
Project:	Phase Two ESA						_	Sheet No.	_1	of	1
Location:	420 & 468 South Service F	Road, O	akville	ON							
Date Drilled: Drill Type:	August 9, 2024 Geoprobe 3230DT		- Chemi - BTEX ING - MET		⁻ oluene, Ethy Inorganics	lbenzene and λ	(ylenes PCB PHC	* Duplic Polychlorinate Petroleum Hy	•	nenyls	F1-F4)
Datum:	Geodetic		PAH PEST	• •	Aromatic Hyd orine Pesticid		VOC	Volatile Orga	nic Co	mpoun	ds
G S S S S S S S S S S S S S S S S S S S	Soil Description	ELEV. m	D E P T H	N Value	60	Combustible V	apour Re	ading (ppm)	% RECO	SAMP LE -	A N A L Y S -

	G W L	S Y M B O L	Soil Description	ELEV. m	DEPTH)			N	Valu	ie		Со	mbusi	tible \	/apou	ır Rea	ading	g (ppm)	Ă M P L	RECO	SAMP LE	N A L Y S
		Ľ			H 0			20		40		60		2	5	50		75	i	L E S	0 V	Ł	Š
Γ			CONCRETE: (~110 mm thick)		0	'日														2		SS1A	pH
			FILL: brown sand, trace gravel, moist			H	###													纽		SS1B	pH pH
			Borehole terminated at 0.46 m depth			H				+												SS1C	рН
			below grade.																			SS1D	
					1		<u> </u>																
			NOTES:				##			+	++-				++-					1			
			1. This drawing is to be read with the																				
			presented above				###													1			
			 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 		2	2 🗖	++++			+										1			
			required before use by others.																				
						Ħ	###																
							Ħ																
					3	₅⊨																	
					1	H	##													11			
						F	Ħ			T		Ŧ						\square		1			
						Ħ	##						H							11			
					4	Ē	曲					\blacksquare											
					4	Έ																	
							###													1			
						Η	Ħ																
						H																	
					5	• 🗖	<u> </u>			++										11			
							Ħ																
						H	##																
						Η																	
					6	; 🗖	+++																
						Ħ	#			++										11			
24							##																
9/16/24					7	١Ħ				+													
<u> </u>						Ħ	++++																
Ξ																							
U S					8	3 H	###																
L2					1		##			++	++-												
Å																							
S						H	##																
					9	、Ħ	##																
3 S					Ja a	'⊟	Ħ																
30 S						H	##																
Ś						Ħ	##		+++														
Ö						E	Ħ																
Ξ					10	비	Ħ			+			H										
<u>_</u>						Ħ	##				++-									11			
ä						E	Ħ																
						H	#																
É					11	1	#																
ME						E	Ħ			\square													
NO N						H	Ħ						H										
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						Ħ	#													1			
Ы					12	,⊟	\square			\square													

	Water	Depth to Cave
Time	Level (m)	Cave (m)
on completion	no free water	open

		Lo	og of	ł	3 or	ehole B	H-214	4/	4			
Proje	ect No.	GTR-23006349-E1	_					[Drawing No.	_	15	
Proje	ect:	Phase Two ESA						_	Sheet No.	_1	of	1
Loca	tion:	420 & 468 South Service	Road, O	ak	ville,	ON						
	Drilled: Type:	August 9, 2024 Geoprobe 3230DT		-	Chemica BTEX ING	I Analysis Benzene, Toluene, Ethy Metals and Inorganics	,	enes PCB	* Dupli Polychlorina		Sample phenyls	
Datu		Geodetic		-	MET PAH PEST	Metals Polycyclic Aromatic Hyd Organochlorine Pesticid	rocarbons \	PHC VOC	Petroleum H Volatile Orga	·		· · ·
G N W E L L		Soil Description	ELEV. m	DEPTH	20	N Value) 40 60	Combustible Vap	our Re	eading (ppm)	% RECOV	SAMP LE -D	A N A L Y S - S
· . 888		CRETE: (~150 mm thick)	7	0						99	SS1A	-pH

CONCRETE: (-150 mm thick) CONCRETE: (-150 mm thick) Borehole terminated at 0.61 m depth before yrate Borehole terminated at 0.61 m depth before yrate NOTES: 1 1 2 1 2 1 2 1 3 3 4 4 5 6 7 6 7 8 9		G W L	В О L	Soil Description	ELEV. m	P T H				N Va	ue			Comb	ustib	le Va	apou	r Read	ding	g (ppm) M P 	RECOV	P	L Y S-
CONCRETE: (-150 mm thick) FILL: brown sand, moist		-	0 L					2	20	40	(60			25		50		75	;	E S	ö		S L
FILL: brown sand, moist 33 3515 1 Borehole terminated at 0.61 m depth below grade. 99 \$510 99 \$510 NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2 2 2 2 1 1 1 1 1 1 1 3 4 1	t			CONCRETE: (~150 mm thick)		0	Έ			H		ĪH			Ē		Ť		H		Ē		004	- PH
Borchole terminated at 0.61 m depth below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 3 4 5 6 7				FILL: brown sand, moist			Η														Ħ		SSIA	pH pH
Pologinal de la contra depun below grade. NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7			××××+				Ħ																SSIC	pH
Delow grade. 1 NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 3 4 5 6 7				Borehole terminated at 0.61 m depth			H																	
1. This drawing is to be read with the subject report and project number as presented above. 2 2. Interpretation assistance by EXP is required before use by others. 2 3 4 4 5 6 7				below grade.		1	H																	
1. This drawing is to be read with the subject report and project number as presented above. 2 2. Interpretation assistance by EXP is required before use by others. 2 3 4 4 5 6 7				NOTES			Ħ									++								
				1 This drawing is to be read with the			Η																	
				subject report and project number as			H																	
				presented above.		2	! H																	
				2. Interpretation assistance by EXP is			H														B			
				required before use by others.			H																	
							Ħ																	
						5	H																	
						ľ	'⊟										E		I	T	BI			
							Ħ											\parallel		+++	H I			
							H														ΕI			
							E													Ħ	ΒI			
						4	١Ħ																	
							Ħ																	
							Η														8			
							H																	
P0906						5	;																	
P0906							Η														ΒI			
P0906							H																	
P0906							Ħ																	
P0906						6	\square														ΕΙ			
						ľ	Ή																	
							Ħ																	
	_						\square														B			
	3/24						H																	
	316					7	ΪĦ																	
							H																	
	ĥ						H																	
	Ë						Ħ									++								
ENVIRONMENTALEXP BH LOGS - 300 SERIES PAT	2					8	١Ħ																	
PUBLIC PARTICIPAL PROVINCI PROVINCIAL PROVINCIAL PROVINCIAL PROVINCIAL PROVINCIAL PROVIN	보						H																	
E-NIGONMENTALEX	PA						Ħ									++								
	S						H																	
	R					9	,⊟																	
	so					ľ	Ħ																	
	8						Ħ																	
	ဖွ						Η														BI			
	ğ						H																	
	퓠					10	비								\square	+					Ħ			
	ا س						H												H		BI			
	Х						H										Ħ		H		HI			
	٦						Ħ														H			
	É					11	1日												H					
	Ψ						H														E			
	N						H						+		H						HI			
	₿						Ħ																	
	ЙЦ					1,2	,Ħ										+				F			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

	Log	5 of	Boi	ehole B	H-222	A			
Project No.	GTR-23006349-E1					Drawing No.		16	
Project:	Phase Two ESA					Sheet No.	1	_ of	_1
Location:	420 & 468 South Service Ro	oad, Oa	akville,	ON					
Date Drilled: Drill Type:	August 9, 2024 Geoprobe 3230DT		Chemic BTEX ING MET	al Analysis Benzene, Toluene, Ethyl Metals and Inorganics Metals	benzene and Xylene PCI PH	B Polychlorin	•	henyls	
Datum:	Geodetic		PAH PEST	Polycyclic Aromatic Hydr Organochlorine Pesticide	ocarbons VO		-		` '
G Y M G M W B L	Soil Description	ELEV. m	D E P T	N Value	Combustible Vapour	Reading (ppm)	% REC	SAMP LE	ANALY

	G W L	Ŷ М В О L	Soil Description	ELEV. m	DEPTH) 			N١	/alu	e			Combus	tible \	√apou	ır Re	ading	g (ppm)		RECON	A P L E	ALYS
		Ľ						20	4	10	60)		2	5	50		75	5	E S	0 V	L D	š
Γ		Þ.	CONCRETE: (~300 mm thick)		0	Έ																	
			_FILL: brown sand, trace gravel moist			H															100	SS1A	pH pH
		****	$\$ coarse sand w/ trace gravel below Γ			Ħ														14	100	SS1B	pH
			0.56 m bgs			H														11	100	SS1C	
			Borehole terminated at 0.61 m depth		1	۰H																	
			below grade.			H														11			
			below grade.			Ħ														11			
			NOTES:			Ħ		++									H			11			
			1. This drawing is to be read with the		2	, Е																	
			subject report and project number as		2	·日]			
			subject report and project number as presented above.			H														11			
			2. Interpretation assistance by EXP is required before use by others.			Ħ														11			
			required before use by others.			Ħ														11			
			. ,		3	١Ħ				H							H]			
						H	H										F			11			
						H	ĦĦ				╞┼┼╂						Ħ			11			
						Ħ									#					11			
					.	.甘	###	\mp		H					#		Ħ			1			
					4	ŕĦ				H]			
						\square																	
						H																	
						H														11			
					5	; 🗖														11			
						Ħ														11			
						H																	
						\square]			
						H														11			
					6	; 🗖														1			
						Ħ														11			
						H	+++													11			
7						Η														3			
9/16/24					7	,日														11			
6/					1.	H														11			
						Ħ														11			
8						Ħ														1			
핑						H	\blacksquare													-			
~					8	<u>،</u> []														-			
뷥						H														1			
A						Ħ														11			
S						Ħ														11			
R					9	、Ħ	\square										H			11			
S					a a	Έ	\blacksquare													3			
g						H																	
						Ħ														11			
ğ						Ħ														11			
Э					10	٥Ħ	\square					+++							++++	11			
副						H														3			
₽						H	μĦ		$\pm \Pi$	H			Ŧ		H	HT	HE	+ T		11			
ΨÌ						H	HH			Ħ					#					11			
IAI						.甘			+++	Ħ					#				++++	1			
Z					11	'甘	 			Ħ			+		Ħ		H		+++	1			
ΣZ						H											H]			
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						H	Ħ	Π		H							F						
Ž						H	⊨‡‡‡										\square			1			
Ш					12	,⊟																	

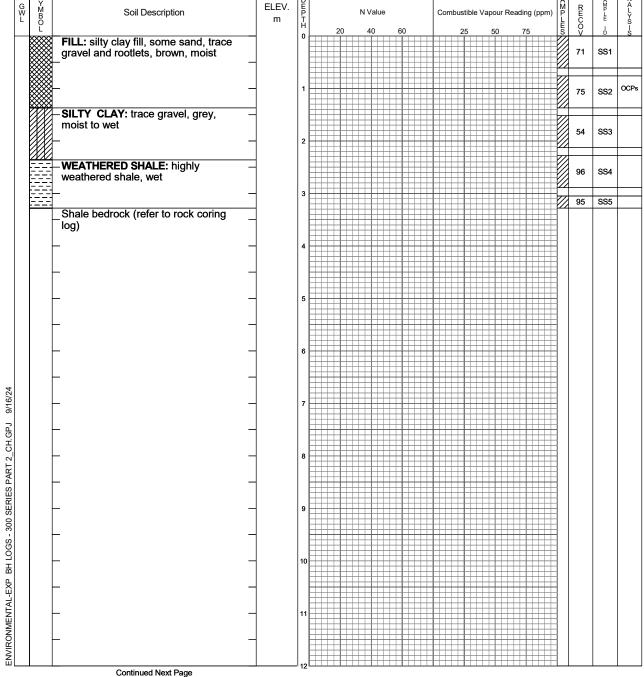
Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

			L	og of		Bor	ehole B	H-330				
Pr	oject	No.	GTR-23006349-E1	C					Drawing No		31	
Pr	oject		Phase Two ESA						Sheet No	1	l_of	1
Lc	ocatio	on:	420 & 468 South Service	Road, O	ał	ville,	ON					
Da	ate D	rilled:	August 2, 2024		_	BTEX	al Analysis Benzene, Toluene, Ethy	,			Sample	
Dr	ill Ty	pe:	Geoprobe 7822		_	ING MET	Metals and Inorganics Metals	PCB	,			
Da	atum:	:	Geodetic		_	PAH PEST	Polycyclic Aromatic Hyd Organochlorine Pesticid					. ,
G W L	S Y B O L		Soil Description	ELEV. m	DEPTH 0	2	N Value 0 40 60	Combustible Vapour	Reading (ppm) 75 S		S A M P L E I D	A N A L Y S - S
			: sand and gravel fill							93	SS1	MeHg
	XX	_ SILI	Y CLAY: brown, trace gravel	_	1					71	SS2	MeHg

Ľ		Ĥ O	20	4	10	60		2	25	50	 75		Ē S	Ŏ V	L D	
													3			
~~~~	L															<b>.</b>
Ŵ	FILL: sand and gravel fill													93	SS1	м
X	FILL: sand and gravel fill SILTY CLAY: brown, trace gravel															м
X		1												71	SS2	1.
	red below 1.12 m bgs Borehole terminated at 1.22 m depth below grade.															
	Borehole terminated at 1.22 m depth															
	below grade.															
		2											1			
	NOTES:												1			
	1. This drawing is to be read with the												-			
	subject report and project number as											+++	-			
	<ol> <li>This drawing is to be read with the subject report and project number as presented above.</li> <li>Interpretation assistance by EXP is required before use by others.</li> </ol>												3			
	2. Interpretation assistance by EXP is	3											-			
	required before use by others.															
													-			
												+++	1			1
												+++	1			1
		4											1			
												+++	1			
													3			
		5											1			
		ľ														
													1			
													1			
													11			
		6											-			
												+++	-			
													3			
													-			
		7											1			
													1			
													-			
												+++	-			
		8											-			
		°											3			
													1			
													1			
													1			
		9										+++	1			
													-			
													-			
												+++	1			
		10											3			
							HE						11			
													4			1
													1			1
												+++	1			1
		11										+++	1			1
												+++	1			
						++++						+++	11			
		12							HE							



Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open


	Log	; <b>01</b> .	Boi	ehole BH-	331				
Project No.	GTR-23006349-E1					Drawing No.		32	
Project:	Phase Two ESA					Sheet No.	_1	of	1
Location:	420 & 468 South Service Ro	ad, Oa	kville,	ON					
Date Drilled:	August 2, 2024		Chemic BTEX	<b>al Analysis</b> Benzene, Toluene, Ethylbenzene	and Xylenes	s * Duplic	ate Sa	nple	
Drill Type:	Geoprobe 7822		ING MET	Metals and Inorganics Metals	PCB PHC	,	•		=1 = 1)
Datum:	Geodetic		PAH PEST	Polycyclic Aromatic Hydrocarbon Organochlorine Pesticides		-			,
G Y	Cail Deceription	ELEV.	D			S A M	% R	S A M P	A N A

1	G N L	Р М В О	Soil Description	ELEV. m	DEPTH	,		Ν	Value			Combus	tible \	/apou	ur Rea	ading	g (ppm)	AMPLES	RECOV	A P L E	A L Y S
		Ľ			н 0		2	20	40	60		2	5	50	)	75	5	E S	0 V	L D	Ĭ
	X	***	FILL: sand and gravel fill		ľ	Ħ															
	6	<u> </u>	_SILTY SAND: some clay, trace			Ħ													74	SS1	MeHg
			gravel, brown															$\mathcal{U}$			
		11	-			Ħ												Ø			MeHg
	ŀ.	: :  ⁻			1														72	SS2	Wicing
			Borehole terminated at 1.22 m depth																		
			below grade.			Ħ												-			
			NOTEO																		
			NOTES:		2	:  +												11			
			1. This drawing is to be read with the subject report and project number as																		
			presented above.			Ħ												11			
			2. Interpretation assistance by EXP is			H															
			<ul><li>2. Interpretation assistance by EXP is required before use by others.</li></ul>		3	۶Ħ			$\square$				HŦ	HŦ		Ħ		1			
						Ħ												]			
						Ħ			$\square$									11			
						Ħ												11			
					4	۰Ħ												-			
						Ħ															
						Ħ				+++++								1			
						I												3			
					5	; ⊨												11			
						Ħ												1			
						Ħ												3			
					6	, H															
					1	Ħ												11			
4						Ħ												1			
9/16/24					7	, III									+++			-			
9/1					ľ	Ħ												3			
						Ħ												11			
٣.																		3			
징						Ħ												11			
12					8	Ē												]			
AR						Ħ					÷Π			HŦ		Ħ		11			
SP						Ħ												1			
믭						Ħ												-			
S					9	1															
õ						Ħ												3			
						H												3			
ğ						Ħ															
귀					10	υ												]			
商						Ħ								HT		Ħ		11			
Ϋ́						Ħ												11			
٦						H												]			
Į					11	1												11			
ME						Ħ												1			
S						H												11			
ENVIRONMENTAL-EXP BH LOGS - 300 SERIES PART 2_CH.GPJ						Ħ												11			
Ž					12	,Œ												1			



Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

	Logo	DI ROI	renoie BH-4	<b>U</b> 3				
Project No.	GTR-23006349-E1			ſ	Drawing No.		43	
Project:	Phase Two ESA				Sheet No.	_1	of	2
Location:	420 & 468 South Service Road	<u>l, Oakville,</u>	ON					
		Chomia	al Analysis					
Date Drilled:	August 1, 2024	BTEX	Benzene, Toluene, Ethylbenzene and	Xylenes	* Duplic	cate Sa	mple	
Drill Type:	Geoprobe 7822	ING	Metals and Inorganics	PCB	Polychlorinate	•	,	
Datum:	Geodetic	MET PAH PEST	Metals Polycyclic Aromatic Hydrocarbons Organochlorine Pesticides	PHC VOC	Petroleum Hy Volatile Orga	·	``	'
s Y					SA	%	S A M	A N A



exp Services Inc. Brampton, Ontario Telephone: 905-793-9800 Facsimile: 905-793-0641

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

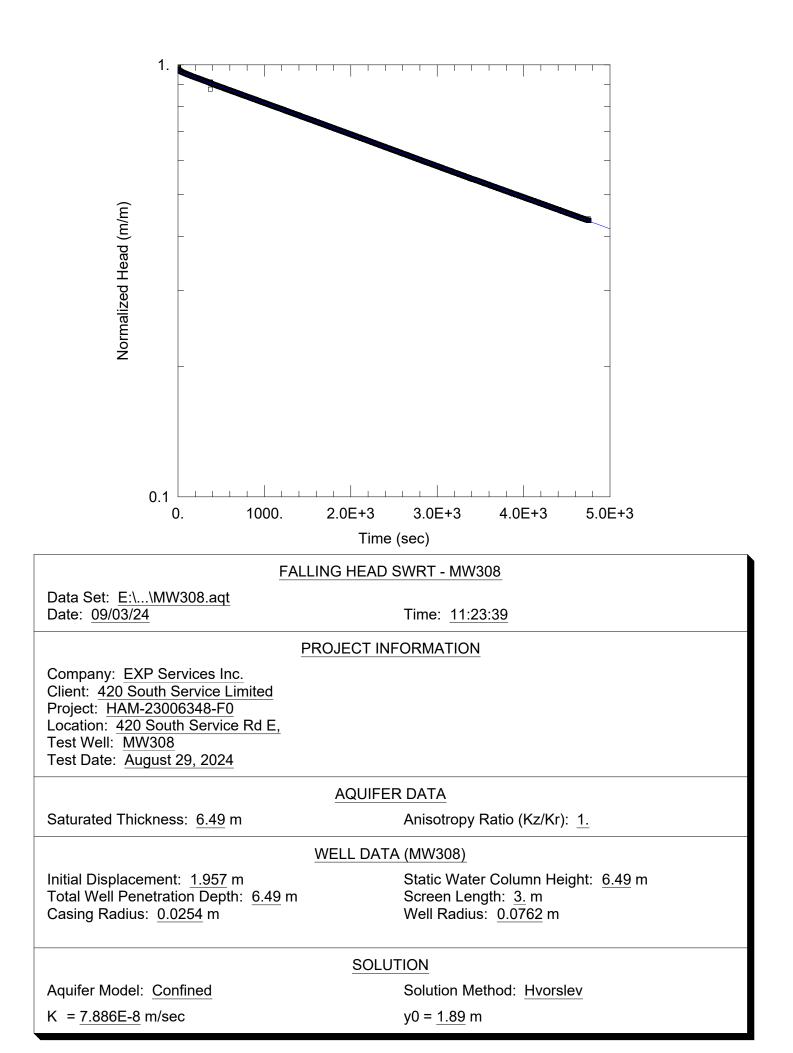
# Log of Borehole BH-403

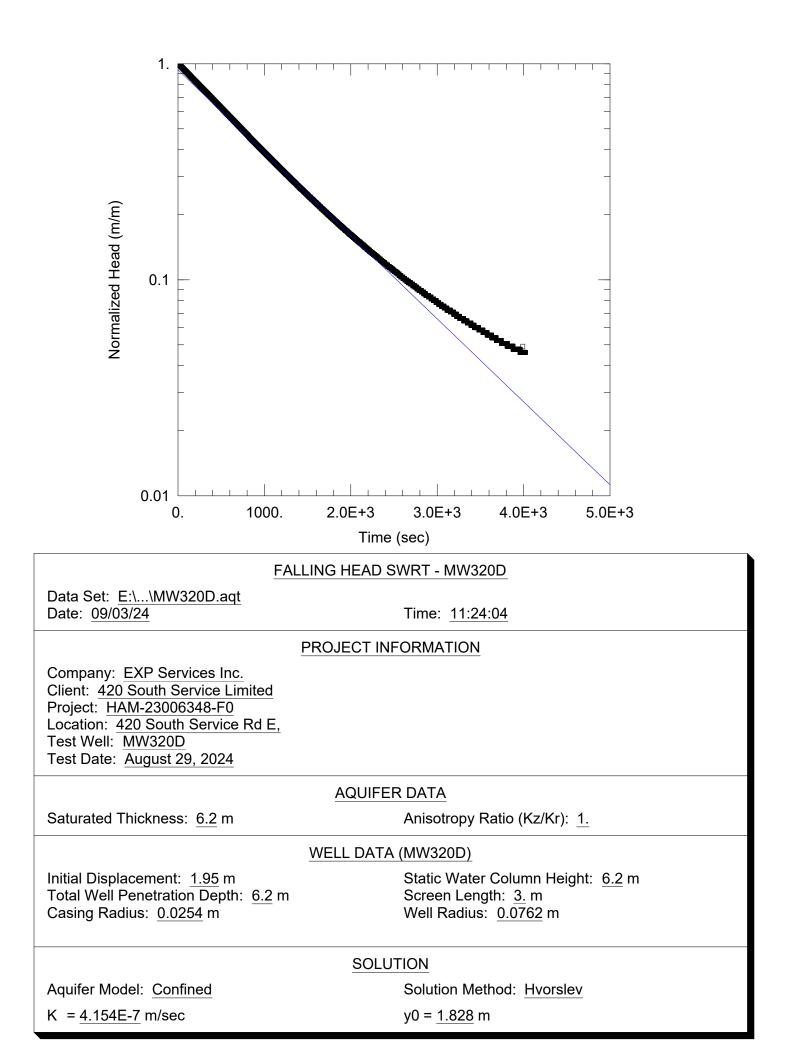
Derei		ML -
Pro	iect	NO.

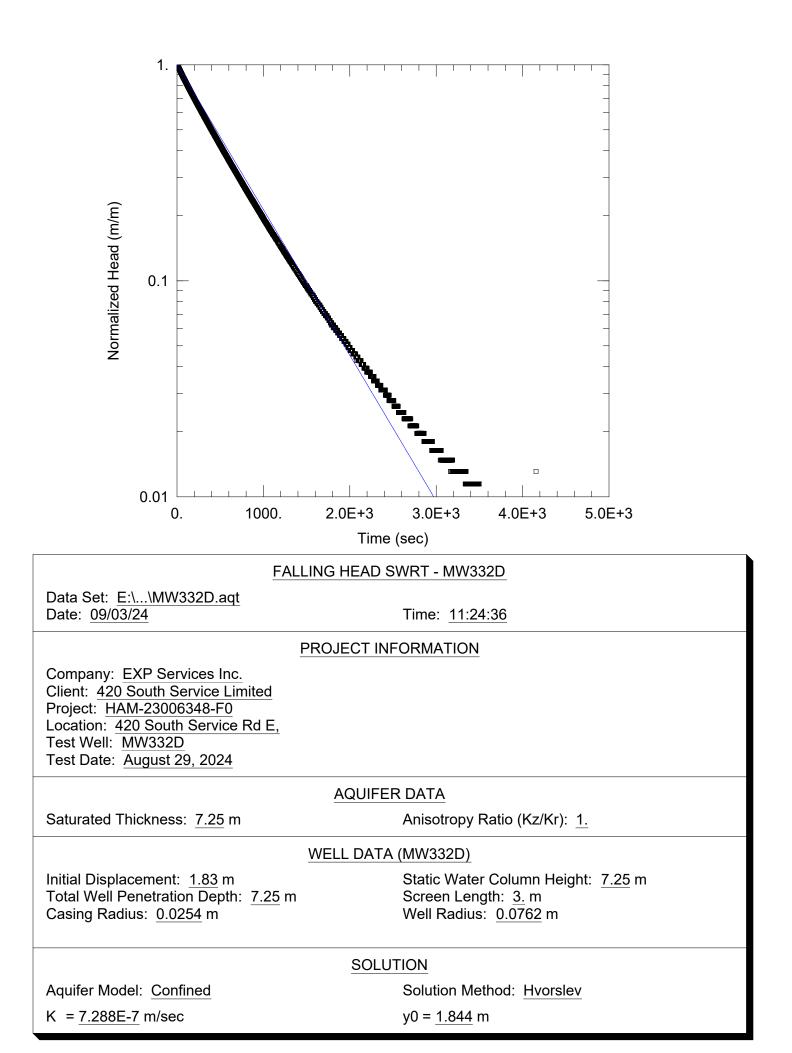
GTR-23006349-E1

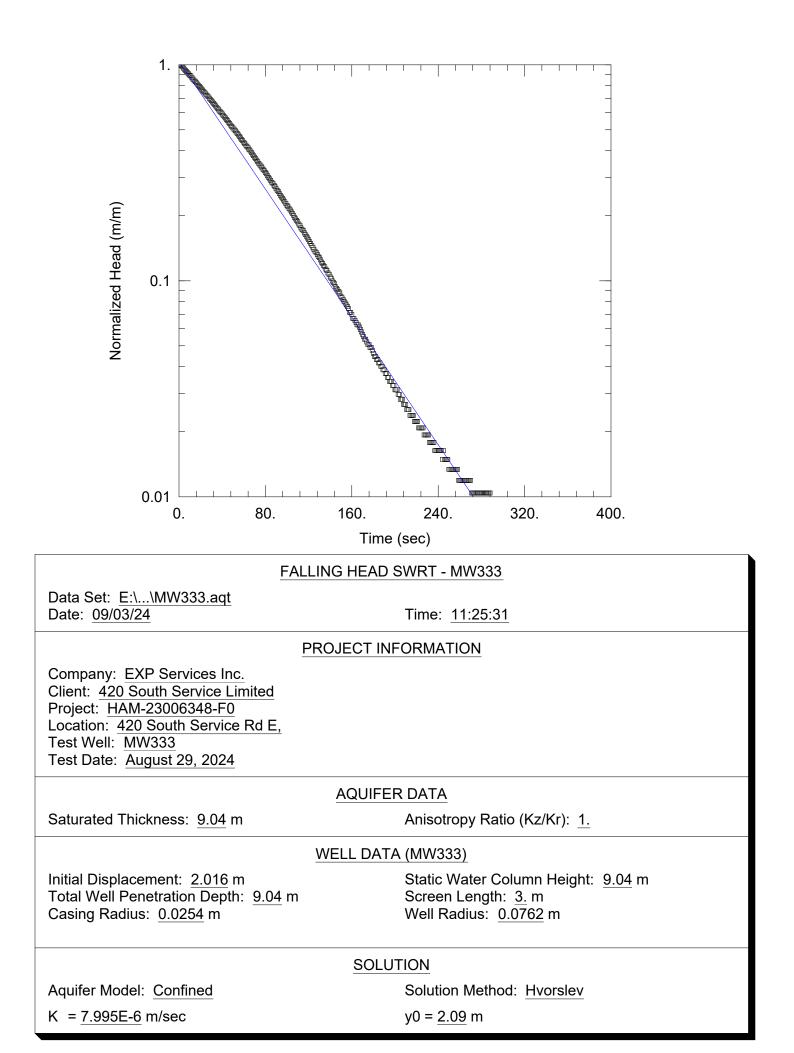
Drawing No. 43

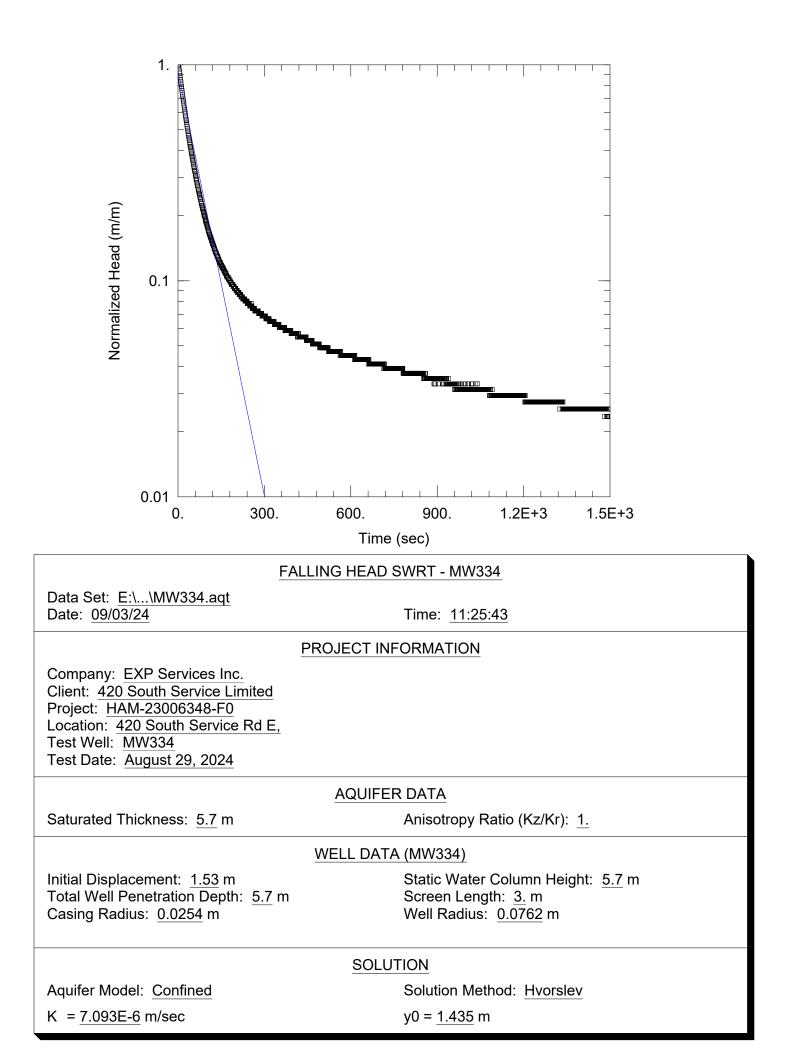
Project	Phase Two ESA					Sheet No.		_ of	_2
GWL GWL	Soil Description	ELEV. m	DEPTH	N Value 20 40 60	Combustible Vapour R	Leading (ppm)	% RECOV	SAMP_LE −D	ANALYS-S
			12					U	
			13						
		-	14						
			15						
	Borehole terminated at 15.34 m depth below grade.								
	NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.		16						
	2. Interpretation assistance by EXP is required before use by others.		17						
			18						
			19						
			20						
			21						
			22						
			23						
			20						
			24						
			25						
			26						

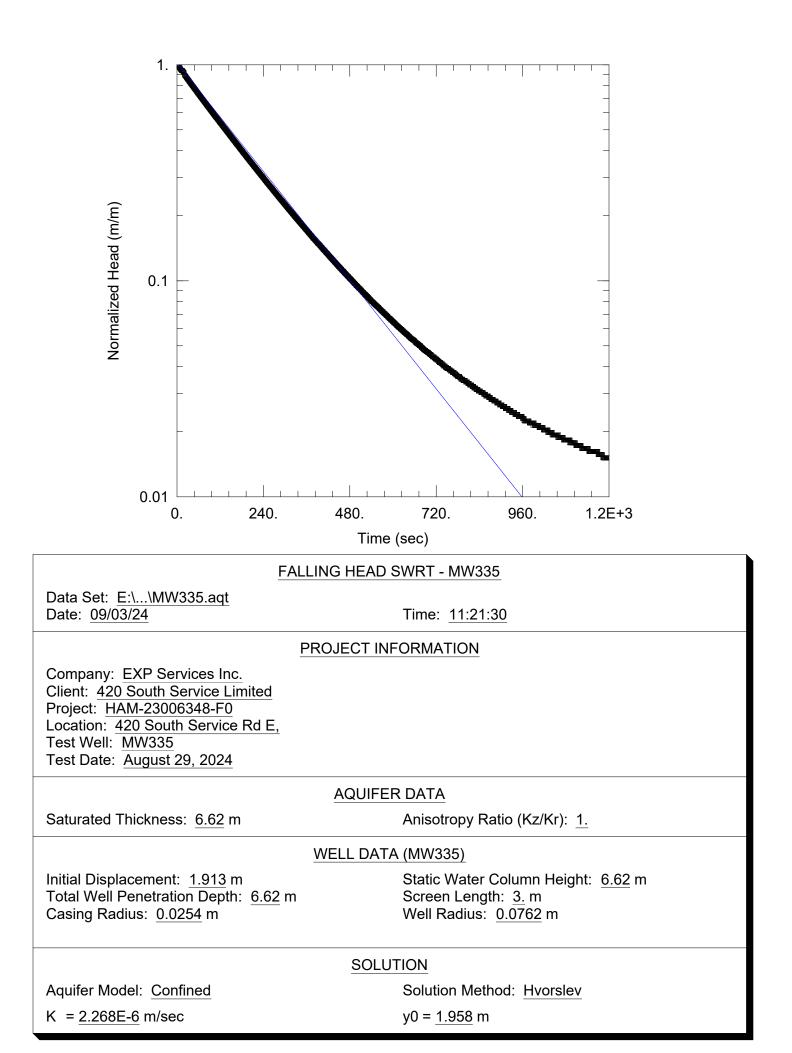


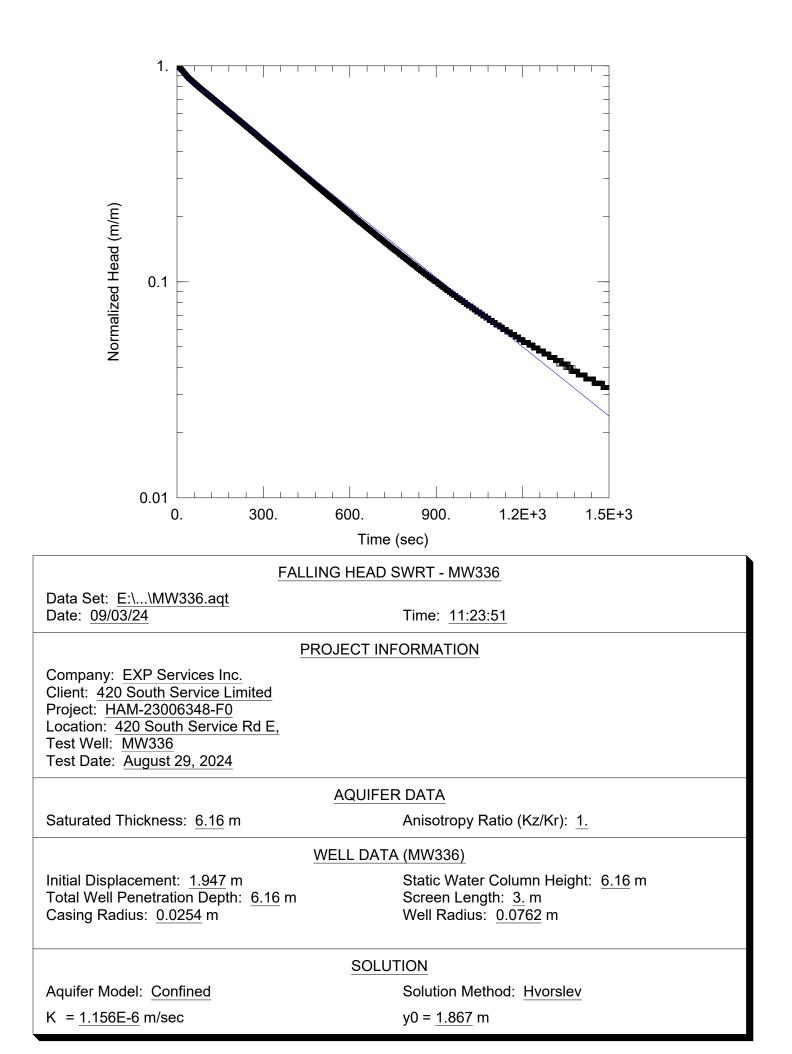


Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	open

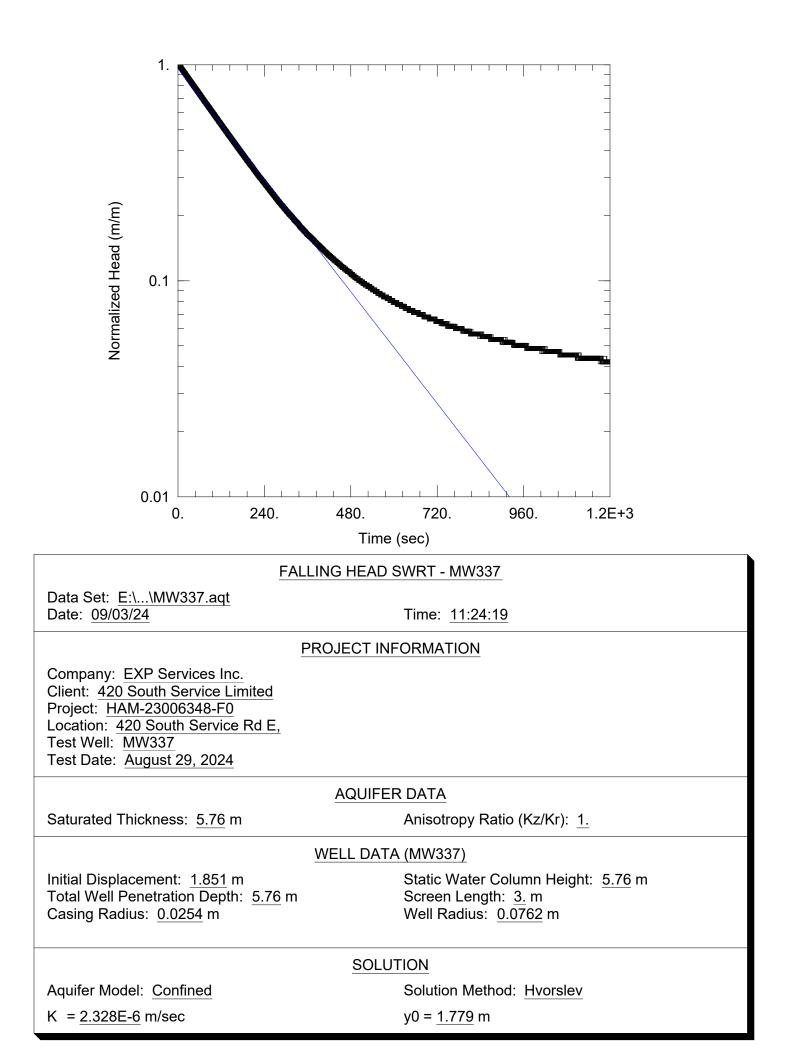

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

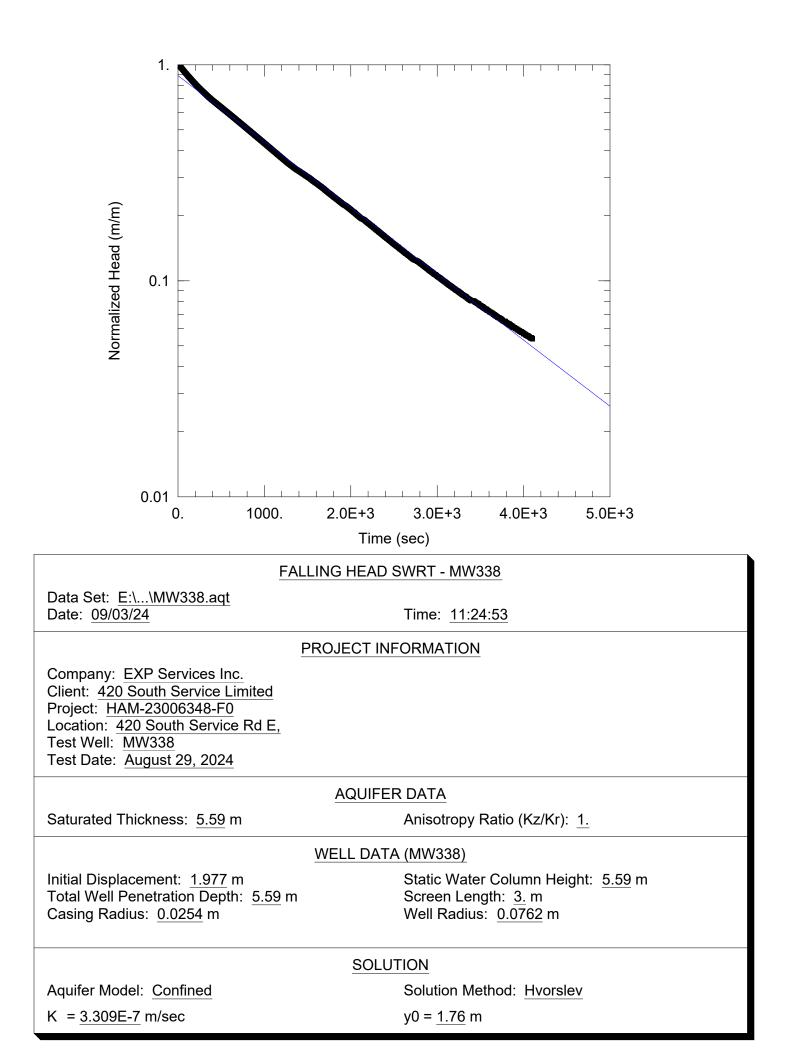

# Appendix C – SWRT Procedures and Results

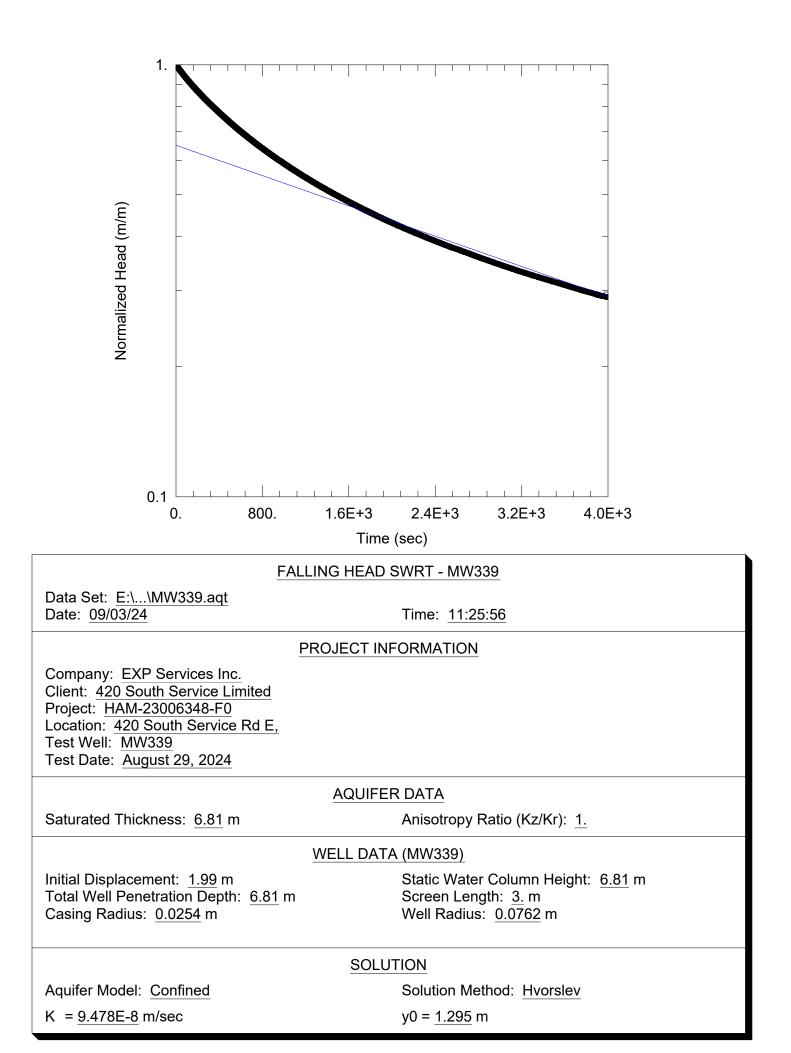


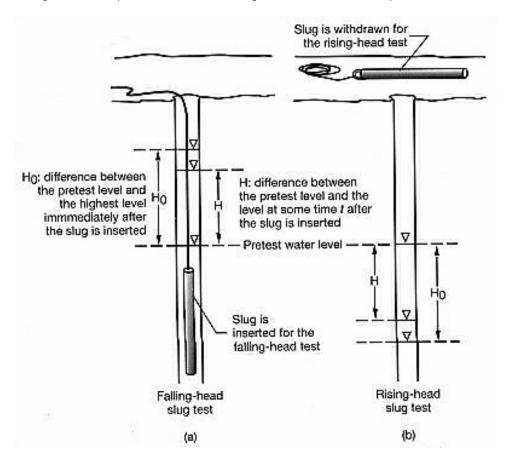












# *exp. Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.





# **Slug Test Procedure**

# **Equipment Required**

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

# **Testing Procedure**

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
  - (Static Water Level Dynamic Water Level).95 + Static Water Level = 95% Recovery Value
- 6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.

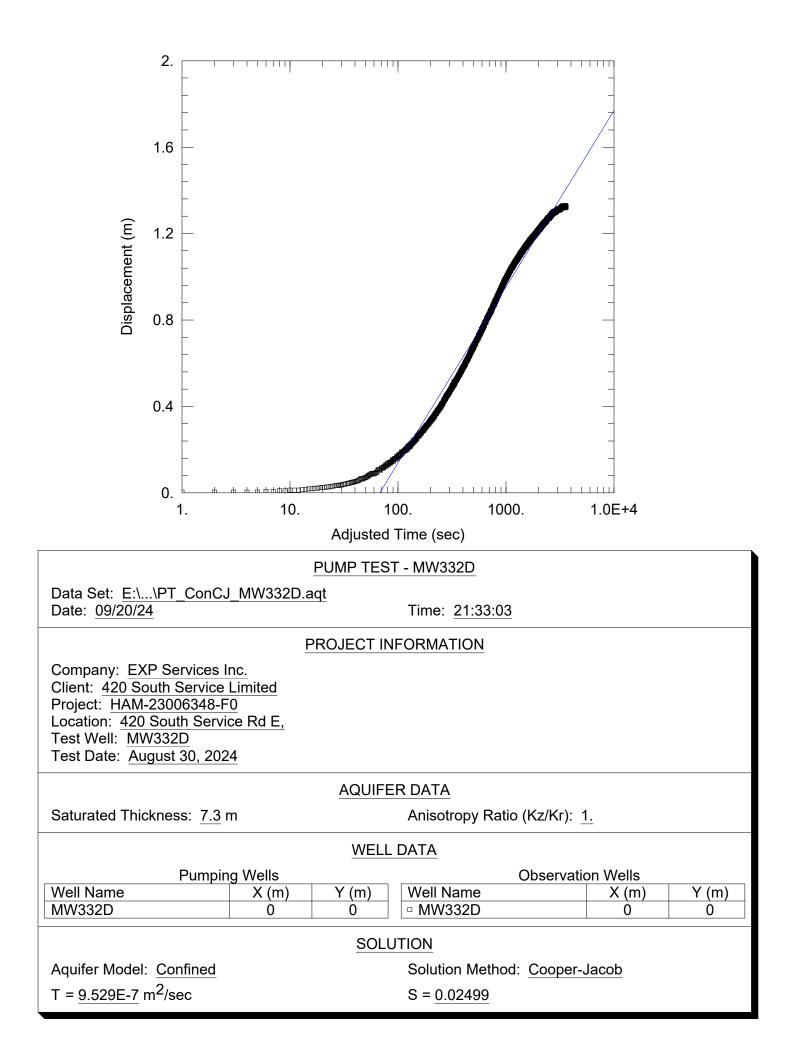


Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

# **Bail Test Procedure**

# **Equipment Required**

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope


# Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a **bailer**:
  - a. Affix the rope to the bailer.
  - b. Remove the waterra tubing and place in garbage bag
  - c. Record static water level measurement again.
  - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
  - e. Quickly lower the bailer into the well and remove.
  - f. Continue this process until the water level will reduce no further.
  - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
  - a. Pump the water into graduated bucket until the water level will reduce no further.
  - b. Record how much water has been removed.
  - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

# Appendix D – Pumping Test Results





EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix E – Laboratory's Certificates of Analysis





Your Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE Your C.O.C. #: 1007185-98-01

#### **Attention: Jennifer Hayman**

exp Services Inc Stoney Creek Branch 1266 South Service Rd Suite C1-1 Stoney Creek, ON CANADA L8E 5R9

> Report Date: 2024/09/30 Report #: R8341293 Version: 2 - Revision

#### CERTIFICATE OF ANALYSIS – REVISED REPORT

#### BUREAU VERITAS JOB #: C4Q4099 Received: 2024/08/23, 18:00

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
1,3-Dichloropropene Sum	1	N/A	2024/08/29		EPA 8260C m
Polychlorinated Biphenyl in Water	3	2024/08/27	2024/08/28	CAM SOP-00309	EPA 8082A m
Polychlorinated Biphenyl in Water	1	2024/08/29	2024/08/29	CAM SOP-00309	EPA 8082A m
Volatile Organic Compounds in Water	1	N/A	2024/08/28	CAM SOP-00228	EPA 8260D

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE Your C.O.C. #: 1007185-98-01

#### **Attention: Jennifer Hayman**

exp Services Inc Stoney Creek Branch 1266 South Service Rd Suite C1-1 Stoney Creek, ON CANADA L8E 5R9

> Report Date: 2024/09/30 Report #: R8341293 Version: 2 - Revision

## CERTIFICATE OF ANALYSIS – REVISED REPORT

#### BUREAU VERITAS JOB #: C4Q4099 Received: 2024/08/23, 18:00

**Encryption Key** 

Patricia Legette Project Manager 30 Sep 2024 11:05:54

Please direct all questions regarding this Certificate of Analysis to: Patricia Legette, Project Manager Email: Patricia.Legette@bureauveritas.com Phone# (905)817-5799

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 13 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



# **O.REG 153 PCBS (WATER)**

Bureau Veritas ID			AAXN60	AAXN61	AAXN62		AAXN63		
Compling Data			2024/08/23	2024/08/23	2024/08/23		2024/08/23		
Sampling Date			15:00	14:30	15:35		16:00		
COC Number			1007185-98-01	1007185-98-01	1007185-98-01		1007185-98-01		
	UNITS	Criteria	MW151	MW305	MW317	QC Batch	MW123	RDL	QC Batch
PCBs									
Aroclor 1242	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687
Aroclor 1248	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687
Aroclor 1254	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687
Aroclor 1260	ug/L	-	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687
Total PCB	ug/L	0.4	<0.05	<0.05	<0.05	9601130	<0.05	0.05	9606687
Surrogate Recovery (%									
Decachlorobiphenyl	%	-	92	82	75	9601130	107		9606687
No Fill	No Exceeda	nce							
Grey	Exceeds 1 c	riteria po	licy/level						
Black	Exceeds bot	th criteria	/levels						
RDL = Reportable Deteo	tion Limit								
QC Batch = Quality Con	trol Batch								
Criteria: The Town of O	akville Storm	Sewer Dis	scharge By Law 2	009-031					

# **O.REG 153 VOCS BY HS (WATER)**

Bureau Veritas ID				AAXN59						
Sampling Date				2024/08/23						
				13:45						
COC Number				1007185-98-01						
	UNITS	Criteria	Criteria-2	MW133A	RDL	QC Batch				
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L	-	-	<0.50	0.50	9599463				
Volatile Organics										
Acetone (2-Propanone)	ug/L	-	-	<10	10	9601462				
Benzene	ug/L	10	2	<0.20	0.20	9601462				
Bromodichloromethane	ug/L	-	-	<0.50	0.50	9601462				
Bromoform	ug/L	-	-	<1.0	1.0	9601462				
Bromomethane	ug/L	-	-	<0.50	0.50	9601462				
Carbon Tetrachloride	ug/L	-	-	<0.19	0.19	9601462				
Chlorobenzene	ug/L	-	-	<0.20	0.20	9601462				
Chloroform	ug/L	40	2	<0.20	0.20	9601462				
Dibromochloromethane	ug/L	-	-	<0.50	0.50	9601462				
1,2-Dichlorobenzene		-	5.6	<0.40	0.40	9601462				
1,3-Dichlorobenzene	ug/L	-	-	<0.40	0.40	9601462				
1,4-Dichlorobenzene	ug/L	80	6.8	<0.40	0.40	9601462				
Dichlorodifluoromethane (FREON 12)	ug/L	-	-	<1.0	1.0	9601462				
1,1-Dichloroethane	ug/L	-	-	<0.20	0.20	9601462				
1,2-Dichloroethane	ug/L	-	-	<0.49	0.49	9601462				
1,1-Dichloroethylene	ug/L	-	-	<0.20	0.20	9601462				
cis-1,2-Dichloroethylene	ug/L	-	5.6	<0.50	0.50	9601462				
trans-1,2-Dichloroethylene	ug/L	-	-	<0.50	0.50	9601462				
1,2-Dichloropropane	ug/L	-	-	<0.20	0.20	9601462				
cis-1,3-Dichloropropene	ug/L	-	-	<0.30	0.30	9601462				
trans-1,3-Dichloropropene	ug/L	-	5.6	<0.40	0.40	9601462				
Ethylbenzene	ug/L	160	2	<0.20	0.20	9601462				
Ethylene Dibromide	ug/L	-	-	<0.19	0.19	9601462				
Hexane	ug/L	-	-	<1.0	1.0	9601462				
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	<2.0	2.0	9601462				
Methyl Ethyl Ketone (2-Butanone)	ug/L	-	-	<10	10	9601462				
Methyl Isobutyl Ketone	ug/L	-	-	<5.0	5.0	9601462				
No Fill No Exceedance						1				
	Exceeds 1 criteria policy/level									
Black Exceeds both criteria/levels										
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
	wer Byla	w (2-03)								
Criteria: Halton Sanitary & Combined Sewer Bylaw (2-03) Criteria-2: The Town of Oakville Storm Sewer Discharge By Law 2009-031										

Page 4 of 13

# **O.REG 153 VOCS BY HS (WATER)**

Bureau Veritas ID					AAXN59				
Sampling Date					2024/08/23				
					13:45				
COC Number					1007185-98-01				
		UNITS	Criteria	Criteria-2	MW133A	RDL	QC Batch		
Methyl t-butyl eth	ner (MTBE)	ug/L	-	-	<0.50	0.50	9601462		
Styrene		ug/L	-	-	<0.40	0.40	9601462		
1,1,1,2-Tetrachlor	oethane	ug/L	-	-	<0.50	0.50	9601462		
1,1,2,2-Tetrachlor	oethane	ug/L	-	17	<0.40	0.40	9601462		
Tetrachloroethyle	ne	ug/L	1000	4.4	<0.20	0.20	9601462		
Toluene		ug/L	16	2	<0.20	0.20	9601462		
1,1,1-Trichloroethane			-	-	<0.20	0.20	9601462		
1,1,2-Trichloroethane			-	-	<0.40	0.40	9601462		
Trichloroethylene	ug/L	400	7.6	<0.20	0.20	9601462			
Trichlorofluorome	ug/L	-	-	<0.50	0.50	9601462			
Vinyl Chloride		ug/L	-	-	<0.20	0.20	9601462		
p+m-Xylene		ug/L	-	-	<0.20	0.20	9601462		
o-Xylene		ug/L	-	-	<0.20	0.20	9601462		
Total Xylenes		ug/L	-	4.4	<0.20	0.20	9601462		
Surrogate Recove	ry (%)								
4-Bromofluorober	nzene	%	-	-	105		9601462		
D4-1,2-Dichloroet	hane	%	-	-	106		9601462		
D8-Toluene		%	-	-	95		9601462		
No Fill	No Exceedance		-						
Grey	Exceeds 1 criteria poli	cy/level							
Black	Exceeds both criteria/	'levels							
RDL = Reportable	Detection Limit								
QC Batch = Qualit									
Criteria: Halton Sa	Criteria: Halton Sanitary & Combined Sewer Bylaw (2-03)								
Criteria-2: The Tov	wn of Oakville Storm Se	ewer Dis	charge B	y Law 2009	-031				



#### **TEST SUMMARY**

Bureau Veritas ID: Sample ID:	MW133A					Collected: Shipped:	2024/08/23
Matrix:	Water					Received:	2024/08/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	9599463	N/A	2024/08/29	Automate	d Statchk
Volatile Organic Compounds in Water		GC/MS	9601462	N/A	2024/08/28	Noel Ram	OS
Bureau Veritas ID: Sample ID: Matrix:	AAXN60 MW151 Water					Collected: Shipped: Received:	2024/08/23 2024/08/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Polychlorinated Biphenyl	in Water	GC/ECD	9601130	2024/08/27	2024/08/28	Debashis S	Saha
Bureau Veritas ID: Sample ID: Matrix:	AAXN61 MW305 Water					Collected: Shipped: Received:	2024/08/23 2024/08/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Polychlorinated Biphenyl	in Water	GC/ECD	9601130	2024/08/27	2024/08/28	Debashis S	Saha
Bureau Veritas ID: Sample ID: Matrix:	AAXN62 MW317 Water					Collected: Shipped: Received:	2024/08/23 2024/08/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Polychlorinated Biphenyl	in Water	GC/ECD	9601130	2024/08/27	2024/08/28	Debashis S	Saha
Bureau Veritas ID: Sample ID: Matrix:	AAXN63 MW123 Water					Collected: Shipped: Received:	2024/08/23 2024/08/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Polychlorinated Biphenyl	in Water	GC/ECD	9606687	2024/08/29	2024/08/29	Debashis S	Saha



#### **GENERAL COMMENTS**

Fach temr	perature is th	he average of	f up to three	e cooler tem	peratures taker	at receipt	
Luch (Chip		ie uveruge or			perutures tuker	uticccipt	

Package 1 14.3°C

Revised Report (2024/09/30): Halton Sanitary and Combined Bylaw and Oakville Storm sewer Bylaw criteria policies have been included in this CofA as per Hammond Lo's request.

#### Results relate only to the items tested.



#### **QUALITY ASSURANCE REPORT**

exp Services Inc Client Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE Sampler Initials: DB

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9601130	Decachlorobiphenyl	2024/08/28	88	60 - 130	80	60 - 130	90	%		
9601462	4-Bromofluorobenzene	2024/08/28	104	70 - 130	102	70 - 130	104	%		
9601462	D4-1,2-Dichloroethane	2024/08/28	104	70 - 130	101	70 - 130	101	%		
9601462	D8-Toluene	2024/08/28	96	70 - 130	98	70 - 130	97	%		
9606687	Decachlorobiphenyl	2024/08/29	92	60 - 130	76	60 - 130	89	%		
9601130	Aroclor 1242	2024/08/28					<0.05	ug/L		
9601130	Aroclor 1248	2024/08/28					<0.05	ug/L		
9601130	Aroclor 1254	2024/08/28					<0.05	ug/L		
9601130	Aroclor 1260	2024/08/28	98	60 - 130	89	60 - 130	<0.05	ug/L		
9601130	Total PCB	2024/08/28	98	60 - 130	89	60 - 130	<0.05	ug/L	NC	40
9601462	1,1,1,2-Tetrachloroethane	2024/08/28	120	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
9601462	1,1,1-Trichloroethane	2024/08/28	112	70 - 130	101	70 - 130	<0.20	ug/L	NC	30
9601462	1,1,2,2-Tetrachloroethane	2024/08/28	106	70 - 130	90	70 - 130	<0.40	ug/L	NC	30
9601462	1,1,2-Trichloroethane	2024/08/28	113	70 - 130	98	70 - 130	<0.40	ug/L	NC	30
9601462	1,1-Dichloroethane	2024/08/28	109	70 - 130	97	70 - 130	<0.20	ug/L	NC	30
9601462	1,1-Dichloroethylene	2024/08/28	113	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	1,2-Dichlorobenzene	2024/08/28	115	70 - 130	103	70 - 130	<0.40	ug/L	NC	30
9601462	1,2-Dichloroethane	2024/08/28	123	70 - 130	106	70 - 130	<0.49	ug/L	NC	30
9601462	1,2-Dichloropropane	2024/08/28	115	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	1,3-Dichlorobenzene	2024/08/28	118	70 - 130	107	70 - 130	<0.40	ug/L	NC	30
9601462	1,4-Dichlorobenzene	2024/08/28	123	70 - 130	112	70 - 130	<0.40	ug/L	NC	30
9601462	Acetone (2-Propanone)	2024/08/28	120	60 - 140	98	60 - 140	<10	ug/L	NC	30
9601462	Benzene	2024/08/28	115	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	Bromodichloromethane	2024/08/28	112	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9601462	Bromoform	2024/08/28	108	70 - 130	98	70 - 130	<1.0	ug/L	NC	30
9601462	Bromomethane	2024/08/28	97	60 - 140	88	60 - 140	<0.50	ug/L	NC	30
9601462	Carbon Tetrachloride	2024/08/28	122	70 - 130	111	70 - 130	<0.19	ug/L	NC	30
9601462	Chlorobenzene	2024/08/28	106	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
9601462	Chloroform	2024/08/28	115	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
9601462	cis-1,2-Dichloroethylene	2024/08/28	121	70 - 130	107	70 - 130	<0.50	ug/L	NC	30
9601462	cis-1,3-Dichloropropene	2024/08/28	111	70 - 130	102	70 - 130	<0.30	ug/L	NC	30

Page 8 of 13



## QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE Sampler Initials: DB

			Matrix Spike		SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9601462	Dibromochloromethane	2024/08/28	116	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
9601462	Dichlorodifluoromethane (FREON 12)	2024/08/28	93	60 - 140	83	60 - 140	<1.0	ug/L	NC	30
9601462	Ethylbenzene	2024/08/28	108	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
9601462	Ethylene Dibromide	2024/08/28	117	70 - 130	101	70 - 130	<0.19	ug/L	NC	30
9601462	Hexane	2024/08/28	122	70 - 130	110	70 - 130	<1.0	ug/L	NC	30
9601462	Methyl Ethyl Ketone (2-Butanone)	2024/08/28	119	60 - 140	97	60 - 140	<10	ug/L	NC	30
9601462	Methyl Isobutyl Ketone	2024/08/28	126	70 - 130	106	70 - 130	<5.0	ug/L	NC	30
9601462	Methyl t-butyl ether (MTBE)	2024/08/28	113	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
9601462	Methylene Chloride(Dichloromethane)	2024/08/28	116	70 - 130	100	70 - 130	<2.0	ug/L	NC	30
9601462	o-Xylene	2024/08/28	114	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
9601462	p+m-Xylene	2024/08/28	109	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
9601462	Styrene	2024/08/28	110	70 - 130	100	70 - 130	<0.40	ug/L	NC	30
9601462	Tetrachloroethylene	2024/08/28	110	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
9601462	Toluene	2024/08/28	110	70 - 130	99	70 - 130	<0.20	ug/L	0.48	30
9601462	Total Xylenes	2024/08/28					<0.20	ug/L	NC	30
9601462	trans-1,2-Dichloroethylene	2024/08/28	124	70 - 130	111	70 - 130	<0.50	ug/L	NC	30
9601462	trans-1,3-Dichloropropene	2024/08/28	118	70 - 130	111	70 - 130	<0.40	ug/L	NC	30
9601462	Trichloroethylene	2024/08/28	119	70 - 130	107	70 - 130	<0.20	ug/L	NC	30
9601462	Trichlorofluoromethane (FREON 11)	2024/08/28	111	70 - 130	101	70 - 130	<0.50	ug/L	NC	30
9601462	Vinyl Chloride	2024/08/28	107	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
9606687	Aroclor 1242	2024/08/29					<0.05	ug/L	NC	30
9606687	Aroclor 1248	2024/08/29					<0.05	ug/L	NC	30
9606687	Aroclor 1254	2024/08/29					<0.05	ug/L	NC	30
9606687	Aroclor 1260	2024/08/29	99	60 - 130	84	60 - 130	<0.05	ug/L	NC	30



## QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: GTR-23006348-E1 (TASK 201) Site Location: SOUTH SERVICE ROAD, OAKVILLE Sampler Initials: DB

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
9606687	Total PCB	2024/08/29	99	60 - 130	84	60 - 130	<0.05	ug/L	NC	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



#### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Supervisor-Afternoon Shift

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4Q4099																				
2024/08/23 18:00	Bureau Veritas 6740 Campobello Ro	oad, Mississauga, Ontario Ca	inada L5N 2L8	Tel:(905) 817-57	00 Toll-free:800-	63-6266 Fax:(	905) 817-5	777 www.b	ovna.com									NONT-2024-08	-5431	Page of
RECOLDERATES	INVOICE TO:				REPOR	RT TO:						PROJECT	T INFORMA	TION:	- 1	- ič	D.		0451	nly:
Company Name: #17492	exp Services Inc		Company Na		ip ser					uotation #	ŧ	C4151	3 Stre	am	3		2 LIK			Bottle Order #:
Pattor trott.	ts Payable		Attention:		nnife				P	.0. #:						-	1.00		T	
Address.	outh Service Rd Suite C1-1 Creek ON L8E 5R9		Address:		elo S.		icer	101		roject:		GTR	-230	063	48-6	51 10	156 201	COC #:		1007185
	73-4000 Fax:		- Tel:	Sin	wycr	Eav				roject Nam ite #:	ne:	OCICU	1 ver	Vice	Roal	~				Project Manager:
100	p.com; Karen.Burke@exp.	com	Email:	Jenr	ifer. h	ayman	wey	cp.cov	0.0	ampled By					ster			C#1007185-98-01		Patricia Legette
SUBMIT Regulation 153 (201		ITAS DRINKING WATE Other Regulations	R CHAIN OF	SUMPTION I CUSTODY Special Ins		circle): 1			ANAL	YSIS REQI	UESTED (	(PLEASE BI	E SPECIFIC	;)			-	Turnaround Tir Please provide advan tandard) TAT: d if Rush TAT is not specifie	ice notice fo	
Table 1 Res/Park	Por RSC	Sanitary Sewer Bylaw Storm Sewer Bylaw Municipality Reg 406 Table				Field Filtered (please circle): Metals / Hg / Cr VI	Bs	C								F	Please note: S days - contact Job Specific	vour Project Manager for d	ts such as BC letails.	DD and Dioxins/Furans are > 5
	Other					d Filt Meta	5	0									Date Required Rush Confirm	t:ation Number:	Time	e Required:
Sample Barcode L	abel Sample (Location		-	Time Sampled	Matrix	Fiel	q	7									# of Bottles			Il lab for #)
		Aug	ust					1											Comme	nts
1 MW133F	+	22	12024	14Spm	GW			X									3			
2 MW151			-	3:00			X										2			
3 MW305	,		0	2:30	1		X										2			
4 MW317				3:25			X									1	2			
5 MW 123				4:00	Q		X										2			
6			Y				,													
7						-														
8																				
9																				
10																				
* RELINQUIS	HED BY: (Signature/Print)	Date: (YY/MM/DD	) Time		RECEIVED B	Y: (Signature/F	Print)		Date: (YY/MM	/DD)	Tin	ne	# jars us	ed and			Laborat	ory Use Only		
Donielle Ba	And Mart	کوربرا دی TED ON THIS CHAIN OF CUS	23 540	CT TO BUREAU	VERITAS'S STAN	ARC S	ALVI	4H 20	STY /08	23	18:	60	not sub		Time Sen:	sitive			Present Intact White: B	ureau Veritas Yellow: Client
• IT IS THE RESPONSIBILITY	OF THE RELINQUISHER TO ENSURI	E THE ACCURACY OF THE C	HAIN OF CUSTO	ODY RECORD. A	N INCOMPLETE C	HAIN OF CUSTO	DDY MAY R	ESULT IN	ANALYTICAL	TAT DELA				AMPLES	MUST BE KE UNTIL I	EPT COOL DELIVERY	( < 10° C ) F TO BUREAU	ROM TIME OF SAMPLING J VERITAS	5	oH ICE

Bureau Veritas Canada (2019) Inc.



# Exceedance Summary Table – Halton Sanitary Sewer

**Result Exceedances** 

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS			
No Exceedances									
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory gu	iidelines.								

# Exceedance Summary Table – Oakville Storm Sewer

**Result Exceedances** 

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS				
No Exceedances										
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to										
applicable regulatory gu	udelines.									



Your P.O. #: ENV-BRM Your Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your C.O.C. #: C#1009944-01-01

#### Attention: Hammond Lo

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

#### Report Date: 2024/09/09 Report #: R8312319 Version: 2 - Revision

#### **CERTIFICATE OF ANALYSIS – REVISED REPORT**

#### BUREAU VERITAS JOB #: C4R1466 Received: 2024/08/30, 13:45

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2024/09/03	2024/09/03	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2024/08/31	2024/09/05	CAM SOP-00427	SM 24 5210B m
Carbonaceous BOD	1	2024/08/31	2024/09/05	CAM SOP-00427	SM 24 5210B m
Chromium (VI) in Water	1	N/A	2024/09/03	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2024/09/04	2024/09/04	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2024/08/31	2024/09/03	CAM SOP-00449	SM 24 4500-F C m
Mercury in Water by CVAA	1	2024/09/04	2024/09/05	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2024/09/06	2024/09/06	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2024/08/30	CAM SOP-00552	SM9222B, MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2024/09/04	2024/09/04	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2024/09/04	2024/09/04	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2024/09/04	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2024/09/04	2024/09/04	CAM SOP-00326	EPA1664B m,SM5520B m
OC Pesticides (Selected) & PCB (1)	1	2024/09/06	2024/09/07	CAM SOP-00307	EPA 8081B/ 8082A
OC Pesticides Summed Parameters	1	N/A	2024/08/31	CAM SOP-00307	EPA 8081B/ 8082A
PAH Compounds in Water by GC/MS (SIM)	1	2024/09/04	2024/09/05	CAM SOP-00318	EPA 8270E
Phenols (4AAP)	1	N/A	2024/09/06	CAM SOP-00444	OMOE E3179 m
рН	1	2024/08/31	2024/08/31	CAM SOP-00413	SM 24th-4500H+ B
Sulphate by Automated Turbidimetry	1	N/A	2024/09/04	CAM SOP-00464	SM 24 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2024/09/03	2024/09/04	CAM SOP-00938	OMOE E3516 m
Total PAHs (2)	1	N/A	2024/09/04	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2024/09/04	2024/09/04	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2024/09/05	2024/09/06	CAM SOP-00428	SM 24 2540D m
Volatile Organic Compounds in Water	1	N/A	2024/09/03	CAM SOP-00228	EPA 8260D

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in

Page 1 of 16



Your P.O. #: ENV-BRM Your Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your C.O.C. #: C#1009944-01-01

#### Attention: Hammond Lo

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2024/09/09 Report #: R8312319 Version: 2 - Revision

#### CERTIFICATE OF ANALYSIS – REVISED REPORT

#### BUREAU VERITAS JOB #: C4R1466 Received: 2024/08/30. 13:45

writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

(2) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Patricia Legette Project Manager 09 Sep 2024 17:44:17 **Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Patricia Legette, Project Manager Email: Patricia.Legette@bureauveritas.com Phone# (905)817-5799

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 16



exp Services Inc Client Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your P.O. #: ENV-BRM Sampler Initials: EC

#### HALTON SANITARY & COMBINED BYLAW (2-03)

Bureau Veritas ID				ABNA08			ABNA08		
Sampling Data				2024/08/30			2024/08/30		
Sampling Date				11:20			11:20		
COC Number				C#1009944-01-01			C#1009944-01-01		
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch	MW332D Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Grease	mg/L	-	150	<0.50	0.50	9610491			
Inorganics	•	•	•		•	•		•	
Total Carbonaceous BOD	mg/L	-	300	<2	2	9611924			
Fluoride (F-)	mg/L	-	10	0.36	0.10	9612418			
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	6.2	0.50	9613859			
рН	рН	6.5:8.5	6.0:10.0	7.23		9611997			
Phenols-4AAP	mg/L	0.008	1	<0.0010	0.0010	9621766			
Total Suspended Solids	mg/L	15	350	15	10	9616728	13	10	9616728
Dissolved Sulphate (SO4)	mg/L	-	1500	1300	5.0	9612435			
Total Cyanide (CN)	mg/L	0.02	2	<0.0050	0.0050	9615722			
Petroleum Hydrocarbons	•	•	•		•	•		•	
Total Oil & Grease	mg/L	-	-	<0.50	0.50	9616246			
Total Oil & Grease Mineral/Synthetic	mg/L	-	-	<0.50	0.50	9616250			
Metals									
Mercury (Hg)	mg/L	0.0004	0.05	<0.00010	0.00010	9616704	<0.00010	0.00010	9616704
Polyaromatic Hydrocarbons	-								
Naphthalene	ug/L	-	140	<0.050	0.050	9616387			
Volatile Organics	-								
Benzene	ug/L	2	10	<0.20	0.20	9612060			
Chloroform	ug/L	2	40	<0.20	0.20	9612060			
1,2-Dichlorobenzene	ug/L	5.6	-	<0.40	0.40	9612060			
1,4-Dichlorobenzene	ug/L	6.8	80	<0.40	0.40	9612060			
cis-1,2-Dichloroethylene	ug/L	5.6	-	<0.50	0.50	9612060			
trans-1,3-Dichloropropene	ug/L	5.6	-	<0.40	0.40	9612060			
Ethylbenzene	ug/L	2	160	<0.20	0.20	9612060			
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	<2.0	2.0	9612060			
1,1,2,2-Tetrachloroethane	ug/L	17	-	<0.40	0.40	9612060			
No Fill No Exceedan	ce								
Grey Exceeds 1 cri	teria poli	icy/level							
Black Exceeds both	criteria,	levels/							
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplicat	5								
Criteria: The Town of Oakville Storm Sev	ver Discl	narge By I	aw 2009-0	31					
Criteria-2: Halton Sanitary & Combined	Sewer By	/law (2-03	3)						

Page 3 of 16



exp Services Inc Client Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your P.O. #: ENV-BRM Sampler Initials: EC

#### HALTON SANITARY & COMBINED BYLAW (2-03)

Bureau Veritas ID					ABNA08			ABNA08		
Sampling Date					2024/08/30 11:20			2024/08/30 11:20		
COC Number					C#1009944-01-01			C#1009944-01-01		
		UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch	MW332D Lab-Dup	RDL	QC Batch
Tetrachloroethylene		ug/L	4.4	1000	<0.20	0.20	9612060			
Toluene		ug/L	2	16	<0.20	0.20	9612060			
Trichloroethylene		ug/L	7.6	400	<0.20	0.20	9612060			
Total Xylenes		ug/L	4.4	-	<0.20	0.20	9612060			
Surrogate Recovery (%)										
D10-Anthracene		%	-	-	108		9616387			
D14-Terphenyl (FS)		%	-	-	108		9616387			
D8-Acenaphthylene		%	-	-	95		9616387			
4-Bromofluorobenzene		%	-	-	102		9612060			
D4-1,2-Dichloroethane		%	-	-	111		9612060			
D8-Toluene		%	-	-	94		9612060			
No Fill	No Exceedance	е								
Grey	Exceeds 1 crite	eria poli	cy/level							
Black	Exceeds both o	criteria/	levels							
RDL = Reportable Detecti	on Limit									
QC Batch = Quality Contr	ol Batch									
Lab-Dup = Laboratory Init	tiated Duplicate									
Criteria: The Town of Oak	wille Storm Sew	er Disch	arge By L	aw 2009-0	31					
Criteria-2: Halton Sanitar	y & Combined S	ewer By	law (2-03	3)						

Bureau Veritas ID				ABNA08					
Sampling Date				2024/08/30					
				11:20					
COC Number				C#1009944-01-01					
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch			
Inorganics									
Total BOD	mg/L	15	-	<2	2	9611926			
Miscellaneous Parameters		•	•		•				
Nonylphenol Ethoxylate (Total)	mg/L	0.01	-	<0.005	0.005	9615363			
Nonylphenol (Total)	mg/L	0.001	-	<0.001	0.001	9615356			
Metals		•			•				
Chromium (VI)	ug/L	40	-	<0.50	0.50	9613310			
Total Aluminum (Al)	ug/L	-	50000	190	4.9	9621193			
Total Antimony (Sb)	ug/L	-	5000	<0.50	0.50	9621193			
Total Arsenic (As)	ug/L	20	1000	<1.0	1.0	9621193			
Total Beryllium (Be)	ug/L	-	5000	<0.40	0.40	9621193			
Total Cadmium (Cd)	ug/L	8	1000	<0.090	0.090	9621193			
Total Chromium (Cr)	ug/L	80	3000	<5.0	5.0	9621193			
Total Cobalt (Co)	ug/L	-	5000	<0.50	0.50	9621193			
Total Copper (Cu)	ug/L	40	3000	<0.90	0.90	9621193			
Total Iron (Fe)	ug/L	-	50000	1700	100	9621193			
Total Lead (Pb)	ug/L	120	3000	<0.50	0.50	9621193			
Total Manganese (Mn)	ug/L	50	5000	180	2.0	9621193			
Total Molybdenum (Mo)	ug/L	-	5000	<0.50	0.50	9621193			
Total Nickel (Ni)	ug/L	80	3000	<1.0	1.0	9621193			
Total Phosphorus (P)	ug/L	400	10000	<100	100	9621193			
Total Selenium (Se)	ug/L	20	5000	<2.0	2.0	9621193			
Total Silver (Ag)	ug/L	120	5000	<0.090	0.090	9621193			
Total Tin (Sn)	ug/L	-	5000	<1.0	1.0	9621193			
Total Titanium (Ti)	ug/L	-	5000	<5.0	5.0	9621193			
Total Zinc (Zn)	ug/L	40	3000	<5.0	5.0	9621193			
Semivolatile Organics		•							
Di-N-butyl phthalate ug/L 15 - <2 2 9613113									
Bis(2-ethylhexyl)phthalate	ug/L	8.8	-	<2	2	9613113			
No Fill No Exceedanc	e								
Grey Exceeds 1 crite	eria policy/le	evel							
Black Exceeds both									
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Criteria: The Town of Oakville Sto	rm Sewer Di	scharge B	y Law 2009	-031					
Criteria-2: Halton Sanitary & Com		-	•						

### OAKVILLE STORM SEWER BYLAW (2009-031)

Page 5 of 16

Bureau Veritas ID				ABNA08		
				2024/08/30		
Sampling Date				11:20		
COC Number				C#1009944-01-01		
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch
3,3'-Dichlorobenzidine	ug/L	0.8	-	<0.8	0.8	9613113
Pentachlorophenol	ug/L	2	-	<1	1	9613113
Phenanthrene	ug/L	-	-	<0.2	0.2	9613113
Anthracene	ug/L	-	-	<0.2	0.2	9613113
Fluoranthene	ug/L	-	-	<0.2	0.2	9613113
Pyrene	ug/L	-	-	<0.2	0.2	9613113
Benzo(a)anthracene	ug/L	-	-	<0.2	0.2	9613113
Chrysene	ug/L	-	-	<0.2	0.2	9613113
Benzo(b/j)fluoranthene	ug/L	-	-	<0.2	0.2	9613113
Benzo(k)fluoranthene	ug/L	-	-	<0.2	0.2	9613113
Benzo(a)pyrene	ug/L	-	-	<0.2	0.2	9613113
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.2	0.2	9613113
Dibenzo(a,h)anthracene	ug/L	-	-	<0.2	0.2	9613113
Benzo(g,h,i)perylene	ug/L	-	-	<0.2	0.2	9613113
Dibenzo(a,i)pyrene	ug/L	-	-	<0.2	0.2	9613113
Benzo(e)pyrene	ug/L	-	-	<0.2	0.2	9613113
Perylene	ug/L	-	-	<0.2	0.2	9613113
Dibenzo(a,j) acridine	ug/L	-	-	<0.4	0.4	9613113
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	<0.4	0.4	9613113
1,6-Dinitropyrene	ug/L	-	-	<0.4	0.4	9613113
1,3-Dinitropyrene	ug/L	-	-	<0.4	0.4	9613113
1,8-Dinitropyrene	ug/L	-	-	<0.4	0.4	9613113
Calculated Parameters						
Total PAHs (18 PAHs)	ug/L	2	-	<1	1	9610649
Aldrin + Dieldrin	ug/L	0.08	-	<0.005	0.005	9609468
Chlordane (Total)	ug/L	40	-	<0.005	0.005	9609468
DDT+ Metabolites	ug/L	-	-	<0.005	0.005	9609468
o,p-DDT + p,p-DDT	ug/L	-	-	<0.005	0.005	9609468
Total PCB	ug/L	0.4	-	<0.05	0.05	9609468
No Fill No Exceedance	ce					
Grey Exceeds 1 crit	eria policy/le	evel				
Black Exceeds both	criteria/leve	ls				
RDL = Reportable Detection Limi	t					
QC Batch = Quality Control Batch	ı					
Criteria: The Town of Oakville Sto	orm Sewer Di	ischarge B	y Law 2009	-031		
Criteria-2: Halton Sanitary & Con	nbined Sewer	r Bylaw (2	-03)			

### OAKVILLE STORM SEWER BYLAW (2009-031)

Page 6 of 16

Bureau Veritas ID				ABNA08		
Sampling Date				2024/08/30 11:20		
COC Number				C#1009944-01-01		
	UNITS	Criteria	Criteria-2	MW332D	RDL	QC Batch
Pesticides & Herbicides						
Aldrin	ug/L	-	-	<0.005	0.005	9621002
Dieldrin	ug/L	-	-	<0.005	0.005	9621002
a-Chlordane	ug/L	-	-	<0.005	0.005	9621002
g-Chlordane	ug/L	-	-	<0.005	0.005	9621002
o,p-DDT	ug/L	0.04	-	<0.005	0.005	9621002
p,p-DDT	ug/L	0.04	-	<0.005	0.005	9621002
Lindane	ug/L	40	-	<0.003	0.003	9621002
Hexachlorobenzene	ug/L	0.04	-	<0.005	0.005	9621002
Mirex	ug/L	40	-	<0.005	0.005	9621002
Microbiological	-					
Escherichia coli	CFU/100mL	200	-	<10	10	9611784
Surrogate Recovery (%)						
2,4,6-Tribromophenol	%	-	-	78		9613113
2-Fluorobiphenyl	%	-	-	76		9613113
D14-Terphenyl (FS)	%	-	-	103		9613113
D5-Nitrobenzene	%	-	-	90		9613113
D8-Acenaphthylene	%	-	-	83		9613113
2,4,5,6-Tetrachloro-m-xylene	%	-	-	77		9621002
Decachlorobiphenyl	%	-	-	104		9621002
No Fill No Exceedan	ice					
Grey Exceeds 1 cri	teria policy/le	vel				
Black Exceeds both	n criteria/level	s				
RDL = Reportable Detection Lim	it					
QC Batch = Quality Control Batc	h					
Criteria: The Town of Oakville St	orm Sewer Di	scharge B	y Law 2009	-031		
Criteria-2: Halton Sanitary & Co	mbined Sewer	Bylaw (2	-03)			

### OAKVILLE STORM SEWER BYLAW (2009-031)



### **TEST SUMMARY**

Bureau Veritas ID: ABNA08 Sample ID: MW332D Matrix: Water					Collected: 2024/08/30 Shipped: Received: 2024/08/30
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	9613113	2024/09/03	2024/09/03	Adriana Zurita
Biochemical Oxygen Demand (BOD)	DO	9611926	2024/08/31	2024/09/05	Amrutha Anilkumar
Carbonaceous BOD	DO	9611924	2024/08/31	2024/09/05	Amrutha Anilkumar
Chromium (VI) in Water	IC	9613310	N/A	2024/09/03	Surleen Kaur Romana
Total Cyanide	SKAL/CN	9615722	2024/09/04	2024/09/04	Prgya Panchal
Fluoride	ISE	9612418	2024/08/31	2024/09/03	Surinder Rai
Mercury in Water by CVAA	CV/AA	9616704	2024/09/04	2024/09/05	Aswathy Neduveli Suresh
Total Metals Analysis by ICPMS	ICP/MS	9621193	2024/09/06	2024/09/06	Indira HarryPaul
E.coli, (CFU/100mL)	PL	9611784	N/A	2024/08/30	Paramjit Paramjit
Total Nonylphenol in Liquids by HPLC	LC/FLU	9615356	2024/09/04	2024/09/04	Dennis Boodram
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9615363	2024/09/04	2024/09/04	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	9610491	N/A	2024/09/04	Automated Statchk
Total Oil and Grease	BAL	9616246	2024/09/04	2024/09/04	Kishan Patel
OC Pesticides (Selected) & PCB	GC/ECD	9621002	2024/09/06	2024/09/07	Mahmudul Khan
OC Pesticides Summed Parameters	CALC	9609468	N/A	2024/08/31	Automated Statchk
PAH Compounds in Water by GC/MS (SIM)	GC/MS	9616387	2024/09/04	2024/09/05	Jonghan Yoon
Phenols (4AAP)	TECH/PHEN	9621766	N/A	2024/09/06	Chandra Nandlal
рН	AT	9611997	2024/08/31	2024/08/31	Kien Tran
Sulphate by Automated Turbidimetry	SKAL	9612435	N/A	2024/09/04	Massarat Jan
Total Kjeldahl Nitrogen in Water	SKAL	9613859	2024/09/03	2024/09/04	Rajni Tyagi
Total PAHs	CALC	9610649	N/A	2024/09/04	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	9616250	2024/09/04	2024/09/04	Kishan Patel
Total Suspended Solids	BAL	9616728	2024/09/05	2024/09/06	Razieh Tabesh
Volatile Organic Compounds in Water	GC/MS	9612060	N/A	2024/09/03	Manpreet Sarao

Sample ID:	ABNA08 Dup MW332D Water					Collected: 2024/08/30 Shipped: Received: 2024/08/30
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury in Water by CVAA	ł	CV/AA	9616704	2024/09/04	2024/09/05	Aswathy Neduveli Suresh
Total Suspended Solids		BAL	9616728	2024/09/05	2024/09/06	Razieh Tabesh



### **GENERAL COMMENTS**

Each t	emperature is the	average of up to t	hree cooler temperatures taken at receipt
	Package 1	19.3°C	
Revise	d Report (2024/09	/09): Oakville Stor	rm criteria policy has been included in this CofA.
Result	s relate only to the	e items tested.	



### **QUALITY ASSURANCE REPORT**

exp Services Inc Client Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9612060	4-Bromofluorobenzene	2024/09/03	102	70 - 130	103	70 - 130	104	%				
9612060	D4-1,2-Dichloroethane	2024/09/03	109	70 - 130	105	70 - 130	108	%				
9612060	D8-Toluene	2024/09/03	101	70 - 130	102	70 - 130	94	%				
9613113	2,4,6-Tribromophenol	2024/09/03	93	10 - 130	97	10 - 130	76	%				
9613113	2-Fluorobiphenyl	2024/09/03	69	30 - 130	68	30 - 130	79	%				
9613113	D14-Terphenyl (FS)	2024/09/03	101	30 - 130	100	30 - 130	102	%				
9613113	D5-Nitrobenzene	2024/09/03	92	30 - 130	97	30 - 130	90	%				
9613113	D8-Acenaphthylene	2024/09/03	80	30 - 130	84	30 - 130	82	%				
9616387	D10-Anthracene	2024/09/04	111	50 - 130	108	50 - 130	121	%				
9616387	D14-Terphenyl (FS)	2024/09/04	111	50 - 130	110	50 - 130	120	%				
9616387	D8-Acenaphthylene	2024/09/04	103	50 - 130	96	50 - 130	101	%				
9621002	2,4,5,6-Tetrachloro-m-xylene	2024/09/07	68	50 - 130	71	50 - 130	76	%				
9621002	Decachlorobiphenyl	2024/09/07	88	50 - 130	95	50 - 130	105	%				
9611924	Total Carbonaceous BOD	2024/09/05					<2	mg/L	7.2	30	102	80 - 120
9611926	Total BOD	2024/09/05					<2	mg/L	NC	30	98	80 - 120
9611997	рН	2024/08/31			102	98 - 103			0.054	N/A		
9612060	1,1,2,2-Tetrachloroethane	2024/09/03	106	70 - 130	102	70 - 130	<0.40	ug/L	NC	30		
9612060	1,2-Dichlorobenzene	2024/09/03	102	70 - 130	103	70 - 130	<0.40	ug/L	NC	30		
9612060	1,4-Dichlorobenzene	2024/09/03	103	70 - 130	104	70 - 130	<0.40	ug/L	NC	30		
9612060	Benzene	2024/09/03	107	70 - 130	108	70 - 130	<0.20	ug/L	NC	30		
9612060	Chloroform	2024/09/03	109	70 - 130	109	70 - 130	<0.20	ug/L	NC	30		
9612060	cis-1,2-Dichloroethylene	2024/09/03	114	70 - 130	113	70 - 130	<0.50	ug/L	NC	30		
9612060	Ethylbenzene	2024/09/03	96	70 - 130	100	70 - 130	<0.20	ug/L	NC	30		
9612060	Methylene Chloride(Dichloromethane)	2024/09/03	107	70 - 130	105	70 - 130	<2.0	ug/L	NC	30		
9612060	Tetrachloroethylene	2024/09/03	101	70 - 130	103	70 - 130	<0.20	ug/L	NC	30		
9612060	Toluene	2024/09/03	102	70 - 130	104	70 - 130	<0.20	ug/L	NC	30		
9612060	Total Xylenes	2024/09/03					<0.20	ug/L	NC	30		
9612060	trans-1,3-Dichloropropene	2024/09/03	113	70 - 130	108	70 - 130	<0.40	ug/L	NC	30		
9612060	Trichloroethylene	2024/09/03	108	70 - 130	110	70 - 130	<0.20	ug/L	NC	30		
9612418	Fluoride (F-)	2024/09/03	92	80 - 120	98	80 - 120	<0.10	mg/L	19	20		

Page 10 of 16



### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9612435	Dissolved Sulphate (SO4)	2024/09/04	103	75 - 125	96	80 - 120	<1.0	mg/L	3.5	20		
9613113	1,3-Dinitropyrene	2024/09/03	95	30 - 130	98	30 - 130	<0.4	ug/L	NC	40		
9613113	1,6-Dinitropyrene	2024/09/03	89	30 - 130	91	30 - 130	<0.4	ug/L	NC	40		
9613113	1,8-Dinitropyrene	2024/09/03	88	30 - 130	88	30 - 130	<0.4	ug/L	NC	40		
9613113	3,3'-Dichlorobenzidine	2024/09/03	100	30 - 130	103	30 - 130	<0.8	ug/L				
9613113	7H-Dibenzo(c,g) Carbazole	2024/09/03	95	30 - 130	97	30 - 130	<0.4	ug/L	NC	40		
9613113	Anthracene	2024/09/03	91	30 - 130	94	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(a)anthracene	2024/09/03	97	30 - 130	98	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(a)pyrene	2024/09/03	105	30 - 130	105	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(b/j)fluoranthene	2024/09/03	95	30 - 130	94	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(e)pyrene	2024/09/03	98	30 - 130	97	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(g,h,i)perylene	2024/09/03	92	30 - 130	93	30 - 130	<0.2	ug/L	NC	40		
9613113	Benzo(k)fluoranthene	2024/09/03	93	30 - 130	92	30 - 130	<0.2	ug/L	NC	40		
9613113	Bis(2-ethylhexyl)phthalate	2024/09/03	100	30 - 130	101	30 - 130	<2	ug/L	NC	40		
9613113	Chrysene	2024/09/03	103	30 - 130	101	30 - 130	<0.2	ug/L	NC	40		
9613113	Dibenzo(a,h)anthracene	2024/09/03	91	30 - 130	92	30 - 130	<0.2	ug/L	NC	40		
9613113	Dibenzo(a,i)pyrene	2024/09/03	39	30 - 130	40	30 - 130	<0.2	ug/L	NC	40		
9613113	Dibenzo(a,j) acridine	2024/09/03	99	30 - 130	100	30 - 130	<0.4	ug/L	NC	40		
9613113	Di-N-butyl phthalate	2024/09/03	103	30 - 130	104	30 - 130	<2	ug/L	NC	40		
9613113	Fluoranthene	2024/09/03	99	30 - 130	99	30 - 130	<0.2	ug/L	NC	40		
9613113	Indeno(1,2,3-cd)pyrene	2024/09/03	92	30 - 130	94	30 - 130	<0.2	ug/L	NC	40		
9613113	Pentachlorophenol	2024/09/03	62	30 - 130	58	30 - 130	<1	ug/L				
9613113	Perylene	2024/09/03	95	30 - 130	96	30 - 130	<0.2	ug/L	NC	40		
9613113	Phenanthrene	2024/09/03	86	30 - 130	90	30 - 130	<0.2	ug/L	NC	40		
9613113	Pyrene	2024/09/03	99	30 - 130	99	30 - 130	<0.2	ug/L	NC	40		
9613310	Chromium (VI)	2024/09/03	99	80 - 120	98	80 - 120	<0.50	ug/L	NC	20		
9613859	Total Kjeldahl Nitrogen (TKN)	2024/09/04	117	80 - 120	102	80 - 120	<0.10	mg/L	8.0	20	106	80 - 120
9615356	Nonylphenol (Total)	2024/09/04	87	50 - 130	102	50 - 130	<0.001	mg/L	NC	40		
9615363	Nonylphenol Ethoxylate (Total)	2024/09/04	79	50 - 130	96	50 - 130	<0.005	mg/L	NC	40		
9615722	Total Cyanide (CN)	2024/09/04	94	80 - 120	101	80 - 120	<0.0050	mg/L	NC	20		

Page 11 of 16



### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9616246	Total Oil & Grease	2024/09/04			98	80 - 110	<0.50	mg/L	0.51	25		
9616250	Total Oil & Grease Mineral/Synthetic	2024/09/04			96	65 - 130	<0.50	mg/L	1.0	25		
9616387	Naphthalene	2024/09/04	100	50 - 130	98	50 - 130	<0.050	ug/L	NC	30		
9616704	Mercury (Hg)	2024/09/05	105	75 - 125	104	80 - 120	<0.00010	mg/L	NC	20		
9616728	Total Suspended Solids	2024/09/06			97	80 - 120	<10	mg/L	14	20		
9621002	a-Chlordane	2024/09/07	86	50 - 130	98	50 - 130	<0.005	ug/L	NC	30		
9621002	Aldrin	2024/09/07	81	50 - 130	93	50 - 130	<0.005	ug/L	NC	30		
9621002	Dieldrin	2024/09/07	92	50 - 130	105	50 - 130	<0.005	ug/L	NC	30		
9621002	g-Chlordane	2024/09/07	86	50 - 130	98	50 - 130	<0.005	ug/L	NC	30		
9621002	Hexachlorobenzene	2024/09/07	76	50 - 130	86	50 - 130	<0.005	ug/L	NC	30		
9621002	Lindane	2024/09/07	86	50 - 130	99	50 - 130	<0.003	ug/L	NC	30		
9621002	Mirex	2024/09/07	73	30 - 130	79	30 - 130	<0.005	ug/L	2.0	40		
9621002	o,p-DDT	2024/09/07	99	50 - 130	112	50 - 130	<0.005	ug/L	NC	30		
9621002	p,p-DDT	2024/09/07	93	50 - 130	107	50 - 130	<0.005	ug/L	NC	30		
9621193	Total Aluminum (Al)	2024/09/06	101	80 - 120	100	80 - 120	<4.9	ug/L	11	20		
9621193	Total Antimony (Sb)	2024/09/06	102	80 - 120	102	80 - 120	<0.50	ug/L	4.3	20		
9621193	Total Arsenic (As)	2024/09/06	98	80 - 120	99	80 - 120	<1.0	ug/L	2.3	20		
9621193	Total Beryllium (Be)	2024/09/06	101	80 - 120	98	80 - 120	<0.40	ug/L	NC	20		
9621193	Total Cadmium (Cd)	2024/09/06	98	80 - 120	98	80 - 120	<0.090	ug/L	NC	20		
9621193	Total Chromium (Cr)	2024/09/06	102	80 - 120	103	80 - 120	<5.0	ug/L	NC	20		
9621193	Total Cobalt (Co)	2024/09/06	101	80 - 120	100	80 - 120	<0.50	ug/L	1.7	20		
9621193	Total Copper (Cu)	2024/09/06	105	80 - 120	106	80 - 120	<0.90	ug/L	2.7	20		
9621193	Total Iron (Fe)	2024/09/06	101	80 - 120	101	80 - 120	<100	ug/L	6.6	20		
9621193	Total Lead (Pb)	2024/09/06	96	80 - 120	95	80 - 120	<0.50	ug/L	4.0	20		
9621193	Total Manganese (Mn)	2024/09/06	97	80 - 120	98	80 - 120	<2.0	ug/L	2.8	20		
9621193	Total Molybdenum (Mo)	2024/09/06	104	80 - 120	103	80 - 120	<0.50	ug/L	2.8	20		
9621193	Total Nickel (Ni)	2024/09/06	96	80 - 120	97	80 - 120	<1.0	ug/L	4.7	20		
9621193	Total Phosphorus (P)	2024/09/06	102	80 - 120	101	80 - 120	<100	ug/L	NC	20		
9621193	Total Selenium (Se)	2024/09/06	101	80 - 120	100	80 - 120	<2.0	ug/L	NC	20		
9621193	Total Silver (Ag)	2024/09/06	97	80 - 120	97	80 - 120	<0.090	ug/L	NC	20		

Page 12 of 16



### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-23006348-F0 Site Location: 420 SOUTH SERVICE RD, OAKVILLE, ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
9621193	Total Tin (Sn)	2024/09/06	100	80 - 120	100	80 - 120	<1.0	ug/L	NC	20		
9621193	Total Titanium (Ti)	2024/09/06	99	80 - 120	100	80 - 120	<5.0	ug/L	8.0	20		
9621193	Total Zinc (Zn)	2024/09/06	98	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
9621766	Phenols-4AAP	2024/09/09	104	80 - 120	98	80 - 120	<0.0010	mg/L	1.6	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Louis A Harding

Louise Harding, Scientific Specialist

Paramjit Paramjit, Analyst I

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

C4R1466			
2024/08/30 13:45 Bureau Ventes 6740 Campobello Road, Mississauge, Ontar	) Canada L5N 2L8 Tel:(905) 817-5700 Toll-free:800-563-6266 Fax:(905) 817-5777 www.bvna.c	m	CHAIN In the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
BURGAU WERDTAS	T		NONT-2024-08-6813
	REPORT TO:	PROJECT INFORMATION:	
Company Name: #30554 exp Services Inc	Company Name: <u>EXP SCHVICES INC</u> Attention: Hammond Lo	Quotation #: C41494 St	trewm2
Attention: Accounts Payable Address: 1595 Clark Blvd		P.0.#.	
Brampton ON L6T 4V1	Address: Edwin, Chussell (O, exp. com Jennifer, Hayman (O, exp. com	Project: HAW-2300348-FU Project Name: Oalcville	1009944 COC #: Project Manager:
Tel: (905) 793-9800 Fax: (905) 793-0641	Tel: Fax:	Site # 420 South Service Rd, C	
Email: AP@exp.com; Karen.Burke@exp.com	Email: hammond.lo@exp.com	Sampled By:	C#1009944-01-01 Patricia Legette
MOE REGULATED DRINKING WATER OR WATER INTENDED FO		ANALYSIS REQUESTED (PLEASE BE SPECIFIC)	Turnaround Time (TAT) Required:
SUBMITTED ON THE BUREAU VERITAS DRINKING W	TER CHAIN OF CUSTODY		Please provide advance notice for rush projects
Regulation 153 (2011) Other Regulations	Special Instructions		Regular (Standard) TAT: (will be applied if Rush TAT is not specified):
Table 1 Res/Park Medium/Fine CCME Sanitary Sewer B	* wei Bylaw ( Cr V		Standard TAT = 5-7 Working days for most tests
Table 2     Ind/Comm     Coarse     Reg 558.     Storm Sewer Byla       Table 3     Agri/Other     For RSC     MISA     Municipality	wer By Comet		Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are > 5 days - contact your Project Manager for details.
Table PWQO Reg 406 Table	Se Se		Job Specific Rush TAT (if applies to entire submission)
Other	Storm Large Storm		Date Required: Time Required:
Include Criteria on Certificate of Analysis (YN)? 🗸 🤄	ie o Sa ≪ I		Rush Confirmation Number: (call lab for #)
Sample Barcode Label Sample (Location) Identification	Anter Sampled Time Sampled Matrix		# of Bottles Comments
1 MW 332D 6	4/8/30 11:20 GW NO XX		21 Please Include
2			coc in final
3			Deport
4			
5			
6			
7			
8			
9			
10			
* RELINQUISHED BY: (Signature/Print) Date: (YY/MM		(Y/MM/DD) Time # jars used and not submitted	Laboratory Use Only
	30 13:41 man the bor	138720 175 not submitted	Time Sensitive Temperature (°C) on Recei
Chussell			
ACKNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS WHICH ARE AVAILABLE FOR V * IT IS THE RESPONSIBILITY OF THE RELINQUISHER TO ENSURE THE ACCURACY OF THE	USTODY IS SUBJECT TO BUREAU VERITAS'S STANDARD TERMS AND CONDITIONS. SIGNING WING AT WWW.BVNA.COMENVIRONMENTAL-LABORATORIES/RESOURCES/COC-TERMS-AND E CHAIN OF CUSTODY RECORD. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANAL BE VIEWED AT WWW.BVNA.COM/ENVIRONMENTAL-LABORATORIES/RESOURCES/CHAIN-CU	CONDITIONS. TICAL TAT DELAYS. SAMPLES MI	AUST BE KEPT COOL ( < 10° C ) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS

Bureau Veritas Canada (2019) Inc.



### Exceedance Summary Table – Oakville Storm Sewer

**Result Exceedances** 

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW332D	ABNA08-09	Total Manganese (Mn)	50	180	2.0	ug/L
The exceedance summary ta	ble is for information purp	oses only and should not be c	considered a compreh	ensive listing or	statement of	conformance to
applicable regulatory guideli	nes.					

### Exceedance Summary Table – Halton Sanitary Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summ applicable regulatory g	ary table is for information purp uidelines.	oses only and should not	be considered a compret	nensive listing or	statement of	conformance to

EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix F – Construction and Post-Construction Flow Rate Calculations



### **APPENDIX G: Long-Term Flow Rate**

420 & 468 Service Road East, Oakville GTR-24006331-A0

Table G-1: Flow from Under-Slab Drain System

Parameters	Unit	Block 1	Block 2	Block 4
Geological Formation	-	Glacial Deposit	Glacial Deposit	Glacial Deposit
Ground Elevation	mASL	105.76	104.99	103.98
Lowest Top Slab Elevation	mASL	95.00	95.00	92.00
Highest Groundwater Elevation	mASL	103.74	103.77	102.50
Lowest Footing Elevation	mASL	93.50	93.50	90.50
Base of the Water-Bearing Zone	mASL	78.00	78.00	78.00
Height of Static Water Table Above the Base of the Water-Bearing Zone	m	25.74	25.77	24.50
Dewatering Target Elevation	mASL	94.50	94.50	91.50
Height of Target Water Level Above the Base of Water-Bearing Zone	m	16.50	16.50	13.50
Hydraulic Conductivity (Geometric K)	m/s	9.0E-07	9.0E-07	9.0E-07
Length of Excavation	m	135.6	138.5	114.8
Width of Excavation	m	125.3	109.5	89.1
Equivalent Radius (equivalent perimeter)	m	83.03	78.94	64.90
Method to Calculate Radius of Influence	-	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob
Time (days)	S	730	730	730
Time (seconds)	S	63072000	63072000	63072000
Specific Yield		0.03	0.03	0.03
Cooper-Jacob's Radius of Influence from Sides of Excavation	m	331.09	331.28	323.01
Radius of Influence	m	414.12	410.22	387.91
Dewatering Flow Rate (unconfined radial flow component)	m³/day	59.35	58.10	57.13
Factor of Safety	-	1.50	1.50	1.50
Dewatering Flow Rate Without Safety Factor	m ³ /day	59	58	57
Dewatering Flow Rate With Safety Factor	m ³ /day	89	87	86

### Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_{w} = \frac{\pi K (H^{2} - h^{2})}{Ln \left[\frac{R_{o}}{r_{e}}\right]}$$

$$r_{e} = \frac{a+b}{\pi} \qquad R_{o} = R_{cj} + r_{e} \qquad R_{cj} = \sqrt{2.25 KDt/S}$$
(Based on the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the

(Based on the Dupuit-Forcheimer Equation)

Where:

 $Q_w$  = Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 $h_{\rm w}$  = Height of target water level above the base of water-bearing zone  $\ (m)$ 

Rcj=Cooper Jacob Radius of Influence (m)

R_o=Radius of influence (m)

re=Equivalent perimeter (m)

### **APPENDIX F: Short-Term Flow Rate**

420 & 468 Service Road East, Oakville GTR-24006331-A0

### Table F-1: Flow from Under-Slab Drain System

Parameters	Symbols	Unit	Block 1	Block 2	Block 4
Geological Formation		-	Glacial Deposit	Glacial Deposit	Glacial Deposit
Nearest Borehole/Monitoring Wells			MW332S	MW302	MW337
Ground Elevation	-	mASL	105.76	104.99	103.98
Lowest Top Slab Elevation	-	mASL	95.00	95.00	92.00
Highest Groundwater Elevation	-	mASL	103.74	103.77	102.50
Lowest Footing Elevation	-	mASL	93.50	93.50	90.50
Base of the Water-Bearing Zone	-	mASL	78.00	78.00	78.00
Height of Static Water Table Above the Base of the Water-Bearing Zone	н	m	25.74	25.77	24.50
Dewatering Target Elevation	-	mASL	92.50	92.50	89.50
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	14.50	14.50	11.50
Dupuit Check (> 45%)		-	56%	56%	47%
Hydraulic Conductivity (Geometric K)	К	m/s	9.0E-07	9.0E-07	9.0E-07
Length of Excavation	-	m	135.6	138.5	114.8
Width of Excavation	-	m	125.3	109.5	89.1
Equivalent Radius (equivalent perimeter)	r _e	m	83.03	78.94	64.90
Method to Calculate Radius of Influence	-	-	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob
Time (days)	t	S	365	365	365
Time (seconds)	t	S	31536000	31536000	31536000
Specific Yield	Sy		0.03	0.03	0.03
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	234.11	234.25	228.40
Radius of Influence	Ro	m	317.14	313.19	293.31
Dewatering Flow Rate (unconfined radial flow component)	Q	m³/day	82.47	80.47	75.82
Factor of Safety	fs	-	2.00	2.00	2.00
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m ³ /day	165	161	152
Precipitation Event	-	25	25	25	25
Volume from Precipitation	-	m³/day	425	379	256
Dewatering Flow Rate Without Safety Factor (including stormwater collection)	-	m ³ /day	507	460	331
Dewatering Flow Rate With Safety Factor (including stormwater collection)	-	m ³ /day	590	540	407

### Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

(Based on the Dupuit-Forcheimer Equation)

Where:

 $Q_w =$  Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 $h_w$  = Height of target water level above the base of water-bearing zone (m)

Rcj=Cooper Jacob Radius of Influence (m)

 $R_{o}\text{=}Radius$  of influence (m)

re=Equivalent perimeter (m)

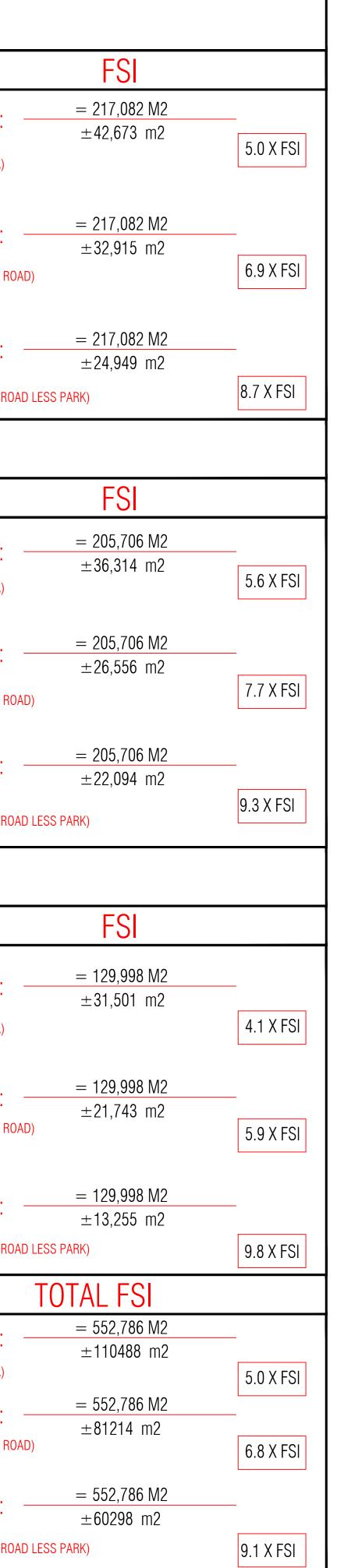
EXP Services Inc. 420 and 468 South Service Road East, Oakville, Ontario Hydrogeological Investigation GTR-23006348-D0 October 2, 2024

Appendix G – Architectural Drawings



*GCA 217,082 M2 PROJECT STATISTICS BLOCK *GCA	
PROJECT STATISTICS BLOCK	
	CK
205,706 M2	
PROJECT STATISTICS BLOCK *GCA	CK
129,998 M2	
TOTAL GCA	
552,786 M2	

*GCA DOES NOT INCLUDE ABOVE AND BELOW GRADE PARKING.


____

UNITS	PARKING (0.7sp./u.)	
		GROSS:
	PROVIDED : 1,829 sp.	(GROSS SITE AREA)
2,832 units		NET:
	REQUIRED : 1,982 sp.	(GROSS SITE LESS ROA
		NET NET:
		(GROSS SITE LESS ROAI

2

UNITS	PARKING (0.7sp./u.)	
	PROVIDED : 1,740 sp.	GROSS: (GROSS SITE AREA) NET:
2,658 units	REQUIRED : 1,861 sp.	(GROSS SITE LESS RO/
		NET NET:
		(GROSS SITE LESS ROA

UNITS	PARKING (0.7sp./u.)	
1,587 units	PROVIDED : 964 sp. REQUIRED : 1,111 sp.	GROSS SITE AREA) (GROSS SITE LESS ROA NET NET: (GROSS SITE LESS ROA
TOTAL UNITS	TOTAL PARKING (0.7sp./u.)	
7,077 units	PROVIDED : 4,533 sp. (0.64 sp/unit) REQUIRED : 4,954 sp.	GROSS SITE AREA) (GROSS SITE LESS ROA NET NET: (GROSS SITE LESS ROA



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.	
THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.	
CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:	
ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.	
<ul> <li>GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:</li> <li>ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.</li> <li>2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.</li> </ul>	

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.




PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

STATS

_____



THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

_____

SIDEWALK

LANDSCAPE

105.38 m FF

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

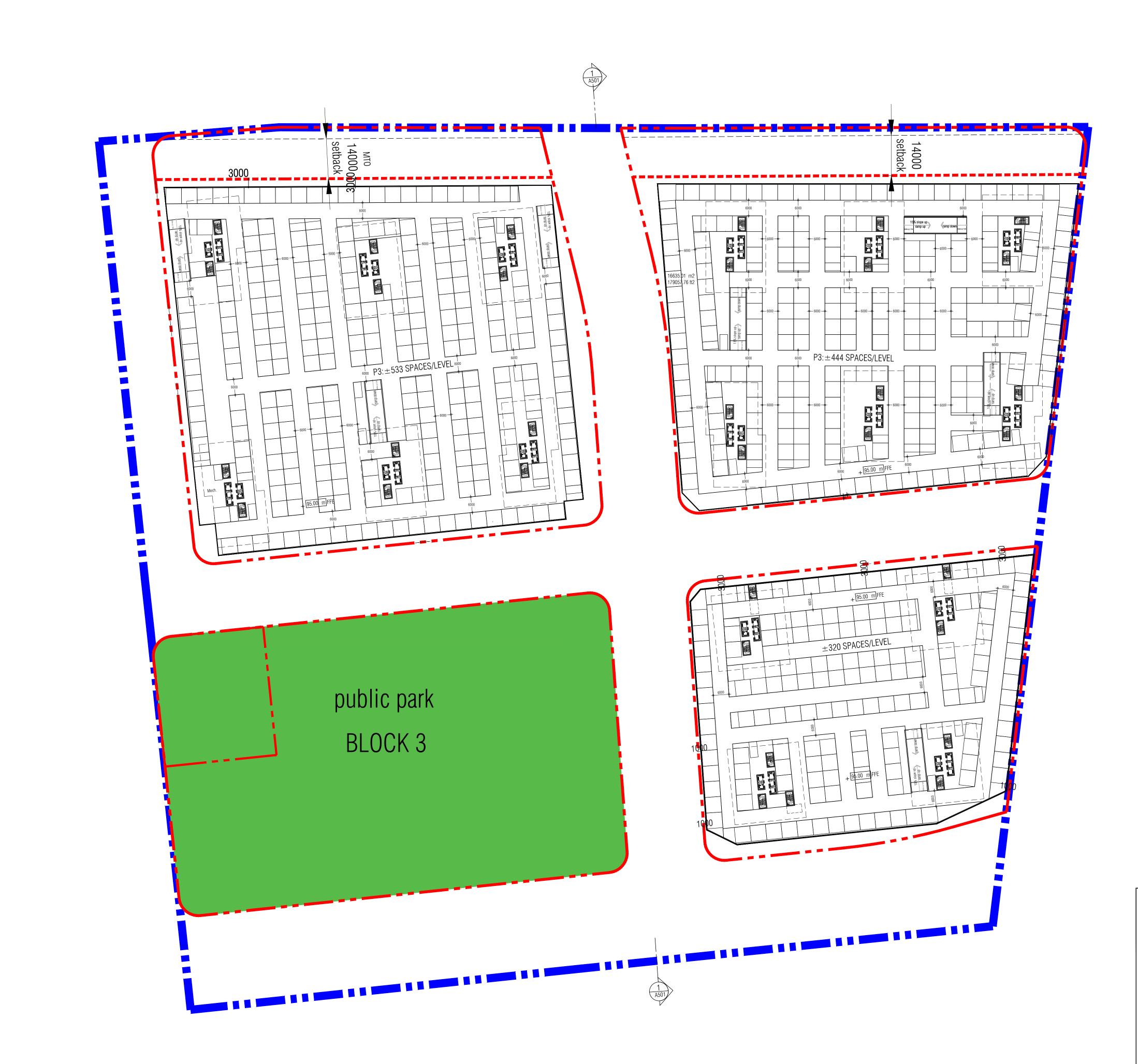
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

# ____ GRAZIANI

ISSUED FOR REVISIONS

CORAZZA ARCHITECTS + + + 8400 JANE STREET, BUILDING D-SUITE 300 T 905.795.2601 F.905.795.2844 CONCORD, ONTARIO L4K 4L8 WWW.GC-ARCHITECTS.COM PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD


TOAKVILLE	HE ROSE CORPORATION
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

SITE PLAN

1:750



A102



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE

INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

# PARKING LEGEND

### ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

THE I Oakville	ROSE CORPORATION
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

### P4-P3 UNDERGROUND PLAN

1:750



A201



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND

THE	ROSE CORPORATION
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23



THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

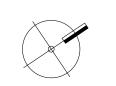
ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

### ISSUED FOR REVISIONS




PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE THE	ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

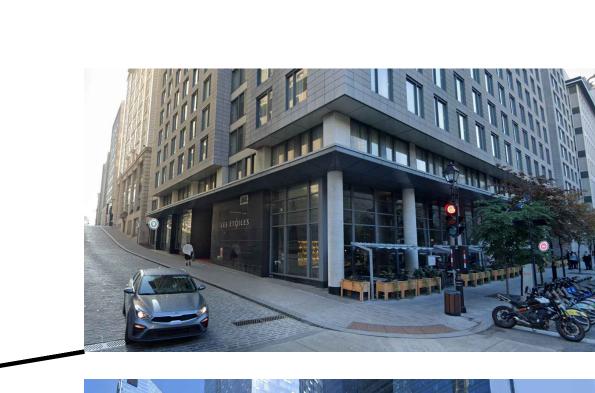
# P1 UNDERGROUND PLAN

1:750








THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.



LANDSCAPE

10**5.38** m F





# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

### GROUND FLOOR PLAN

1:750



A301



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

barrier free surface

type B

### ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

### 2ND FLOOR PLAN

1:750



TITLEBLOCK SIZE: 610 x 900

PARKING LEGEND

residential visitor barrier free

2800

type A

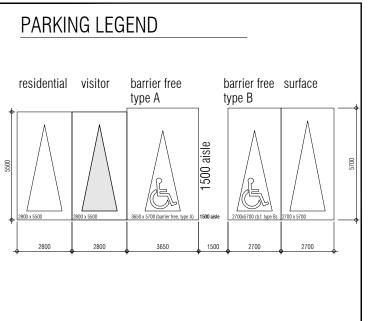
3650

20do

SIDEWALK

LANDSCAPE

105.38 m FF




THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE. THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.



### ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	E ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

### **3RD-4TH FLOOR PLAN**

1:750



A303



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

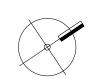
THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.




PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

# 5TH-6TH FLOOR PLAN

1:750



A304



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

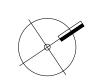
THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

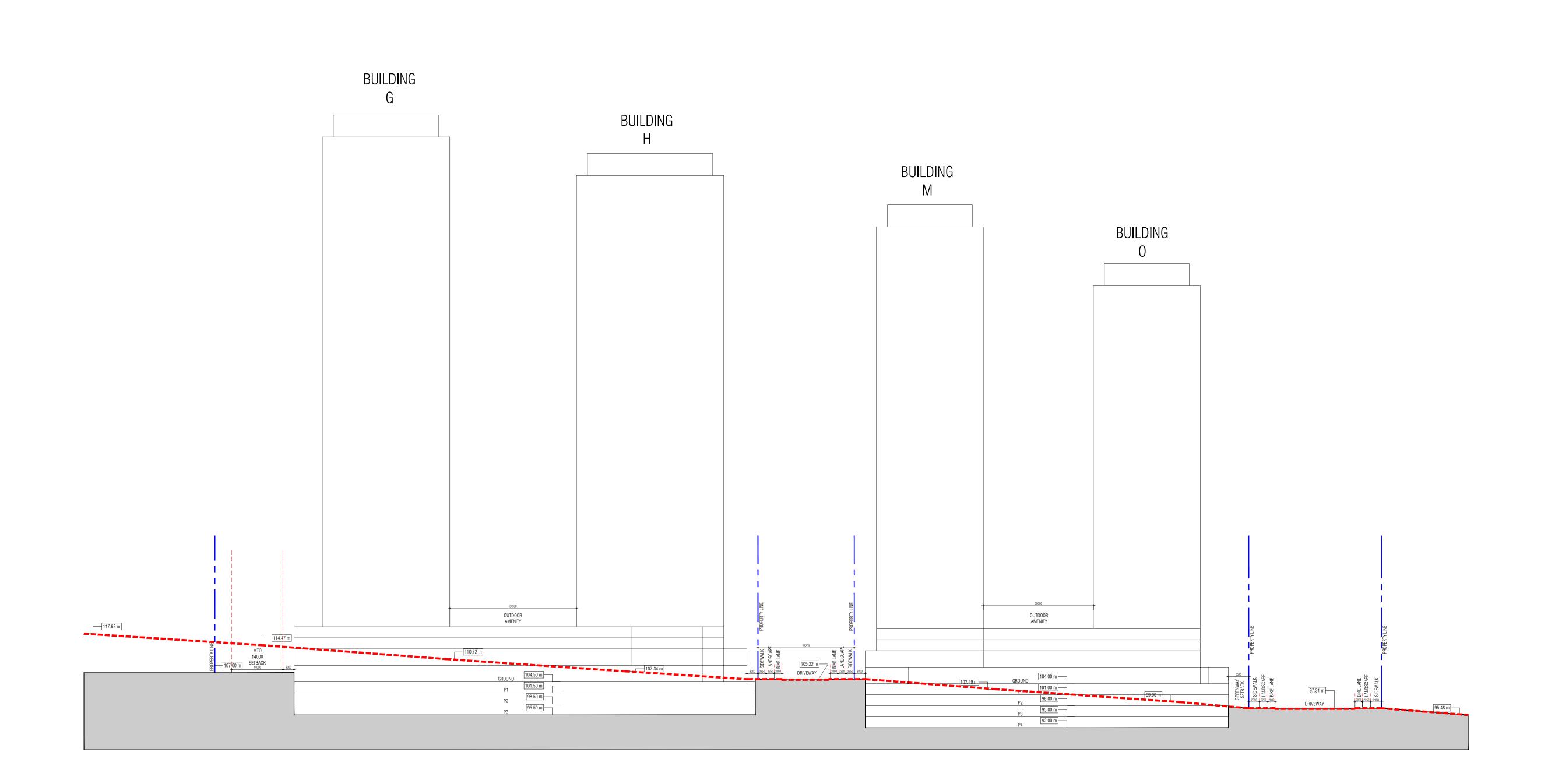
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.




PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23


# TYPICAL TOWER FLOOR PLAN

1:750



A305

TITLEBLOCK SIZE: 610 x 900



____

____

_____

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

 GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
 ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
 TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

1:600

A501

ONTARIO

ISSUED FOR REVISIONS

OAKVILLE

DRAWN BY:

CHECKED BY:

PLOT DATE:

JOB #

PROJECT ARCHITECT:

ASSISTANT DESIGNER:

+

GRAZIANI CORAZZA ARCHITECTS + + + 8400 JANE STREET, BUILDING D-SUITE 300 1.905.795.2601 F.905.795.2844 CONCORD, ONTARIO L4K 4L8 WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT

SOUTH SERVICE ROAD

THE ROSE CORPORATION

J. Chimienti

B. DADGOSTAR

D. Biase

2127.23

SECTION

SEP.19.2024

B. DADGOSTAR / S.BEHROUZ

____



_____

____

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

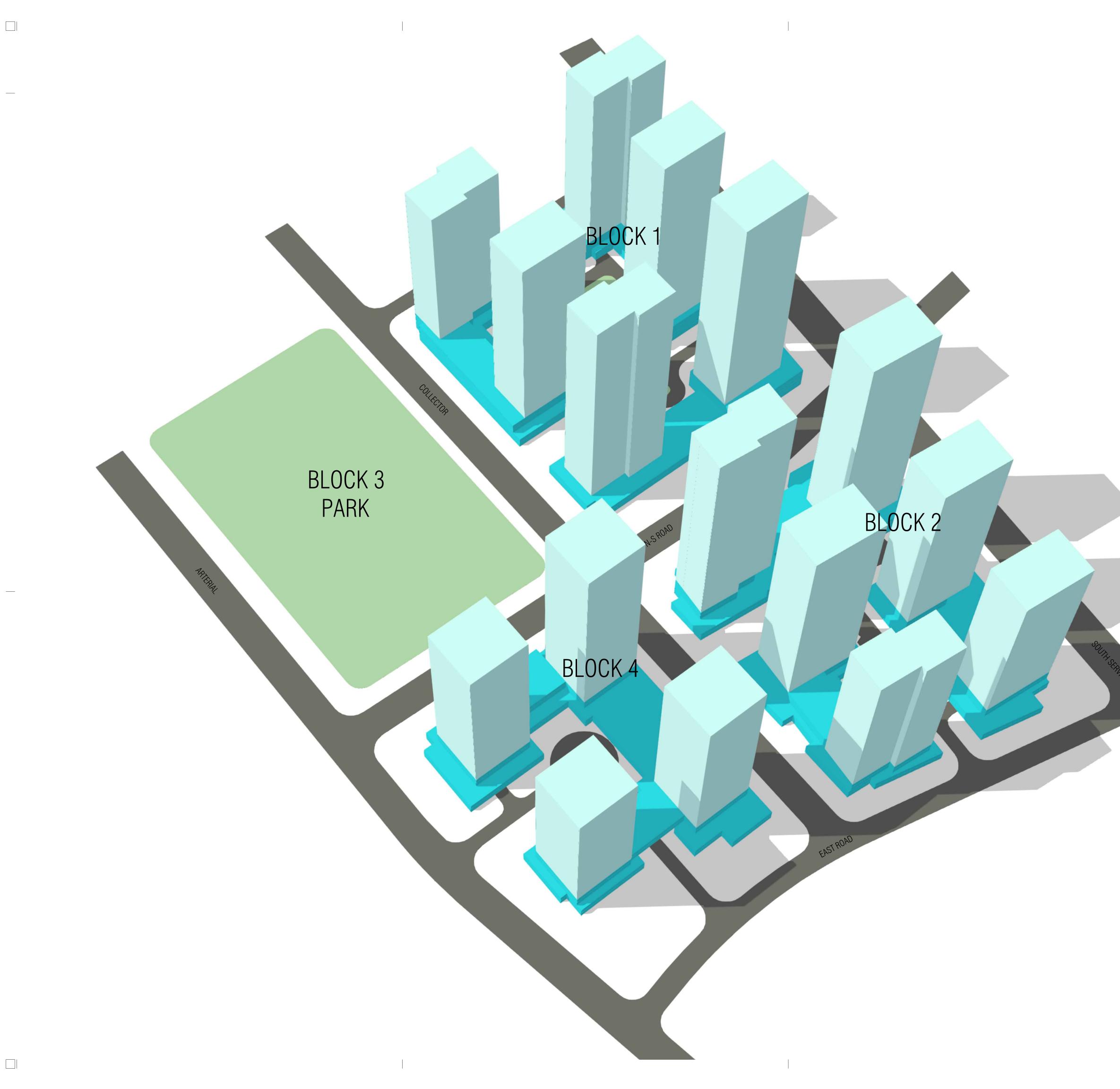
ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

_____




ISSUED FOR REVISIONS

# SOUTH SERVICE ROAD

OAKVILLE TH	IE ROSE CORPORATION ONTARIO
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

MASSING VIEW AERIAL VIEW LOOKING NORTH

N.T.S **A601** 



_____

_____

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	E ROSE CORPORATION ONTARIC
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

MASSING VIEW AERIAL VIEW LOOKING WEST

> A602 N.T.S

____



_____

____

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT DESDAUSIBLE FOR THE ACCURACY OF SUPPLY STRUCTURAL MECHANICAL RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

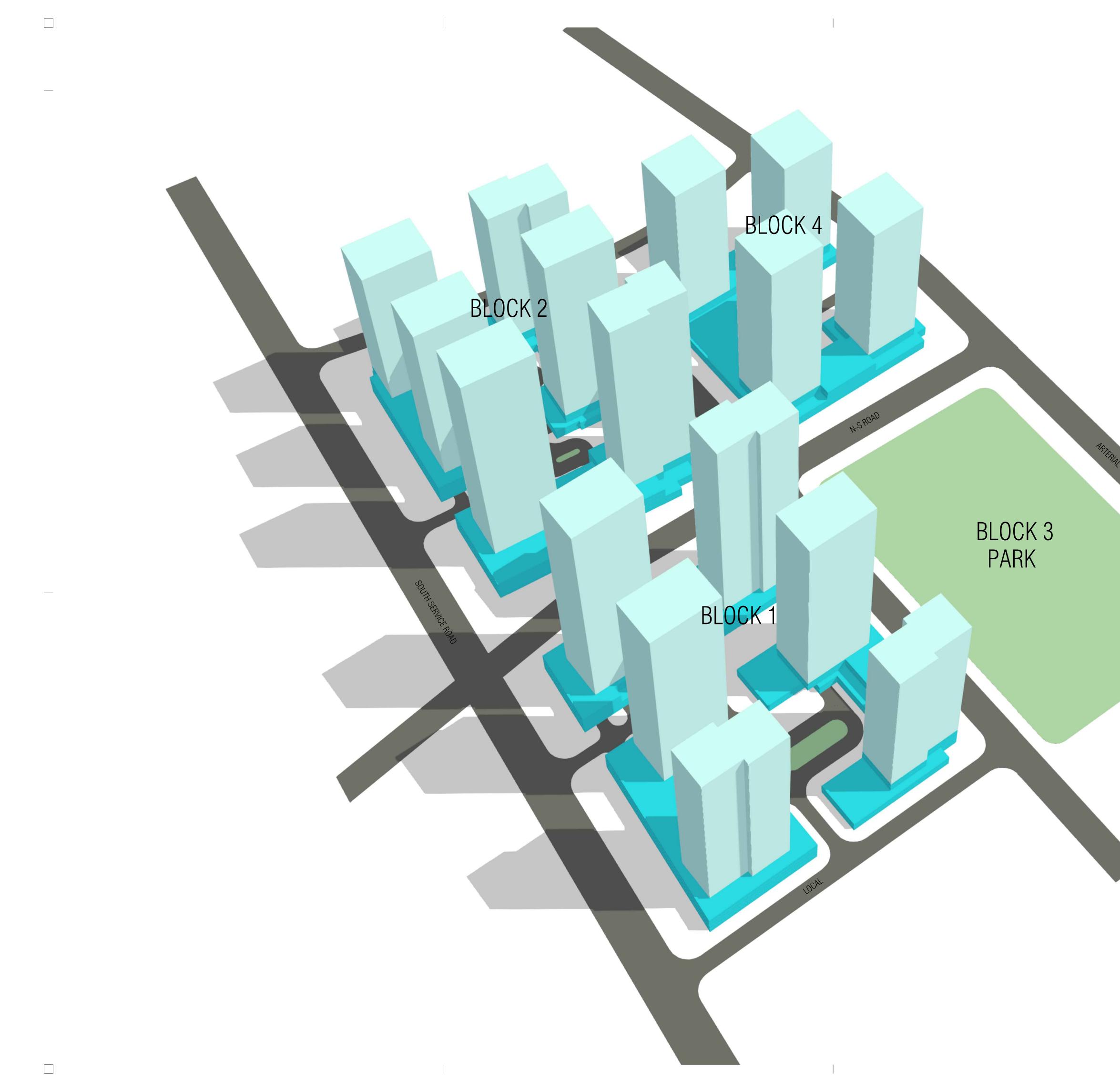
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

_____

# GRAZIANI CORAZZA ARCHITECTS + + 8400 JANE STREET, BUILDING D-SUITE 300 T.905.795.2601 CONCORD, ONTARIO L4K 4L8 WWW.GC-ARCHITECTS.COM PROPOSED MIXED-USE DEVELOPMENT

ISSUED FOR REVISIONS


# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

MASSING VIEW AERIAL VIEW LOOKING SOUTH

N.T.S

A603



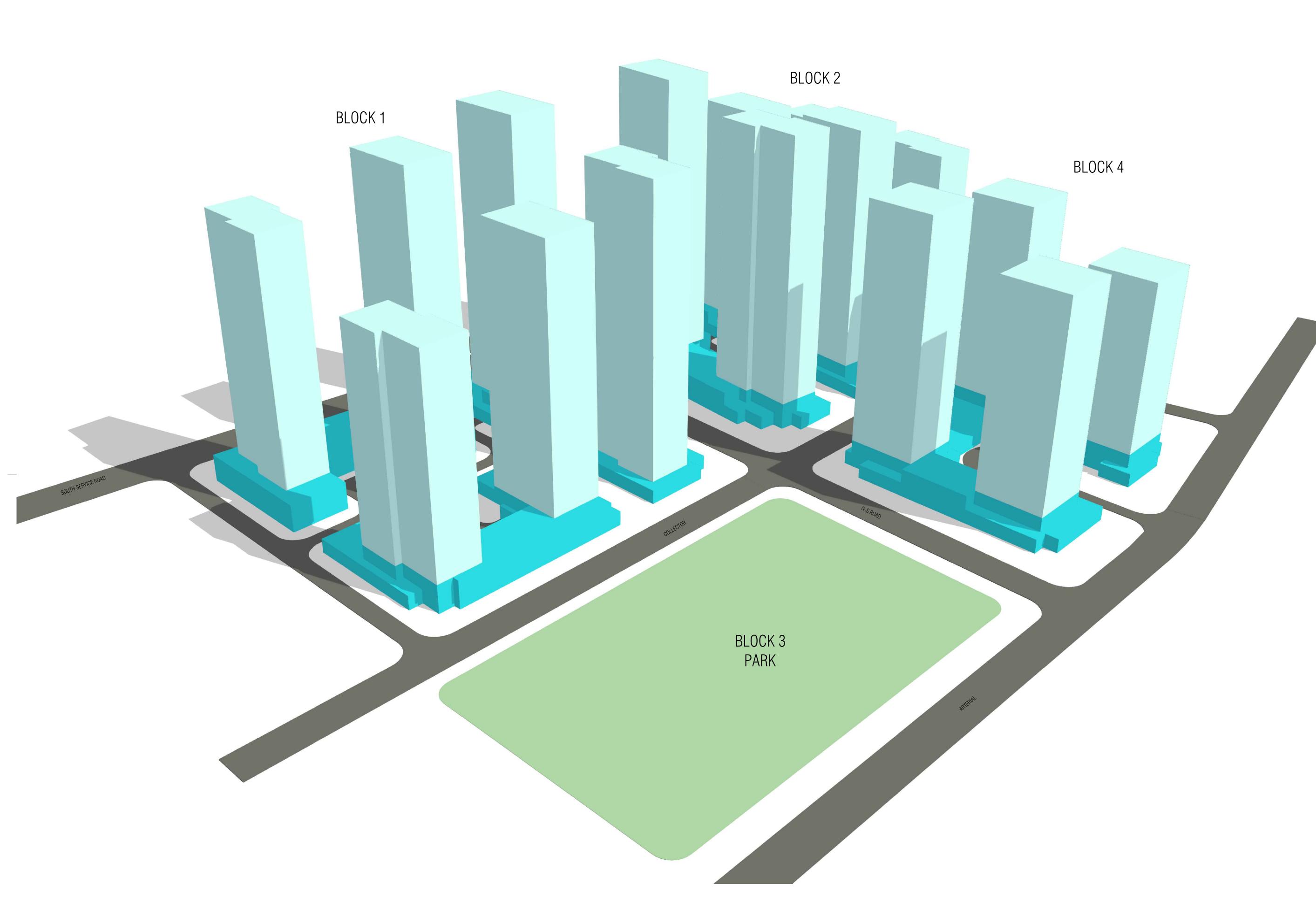
THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.




# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

MASSING VIEW AERIAL VIEW LOOKING EAST

> A604 N.T.S

____



THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.	
WHOLE OR PART WHEN INFORMATION IS TRANSFERRED	
. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC	)
SYSTEM WHEN INFORMATION IS TRANSFERRED.	

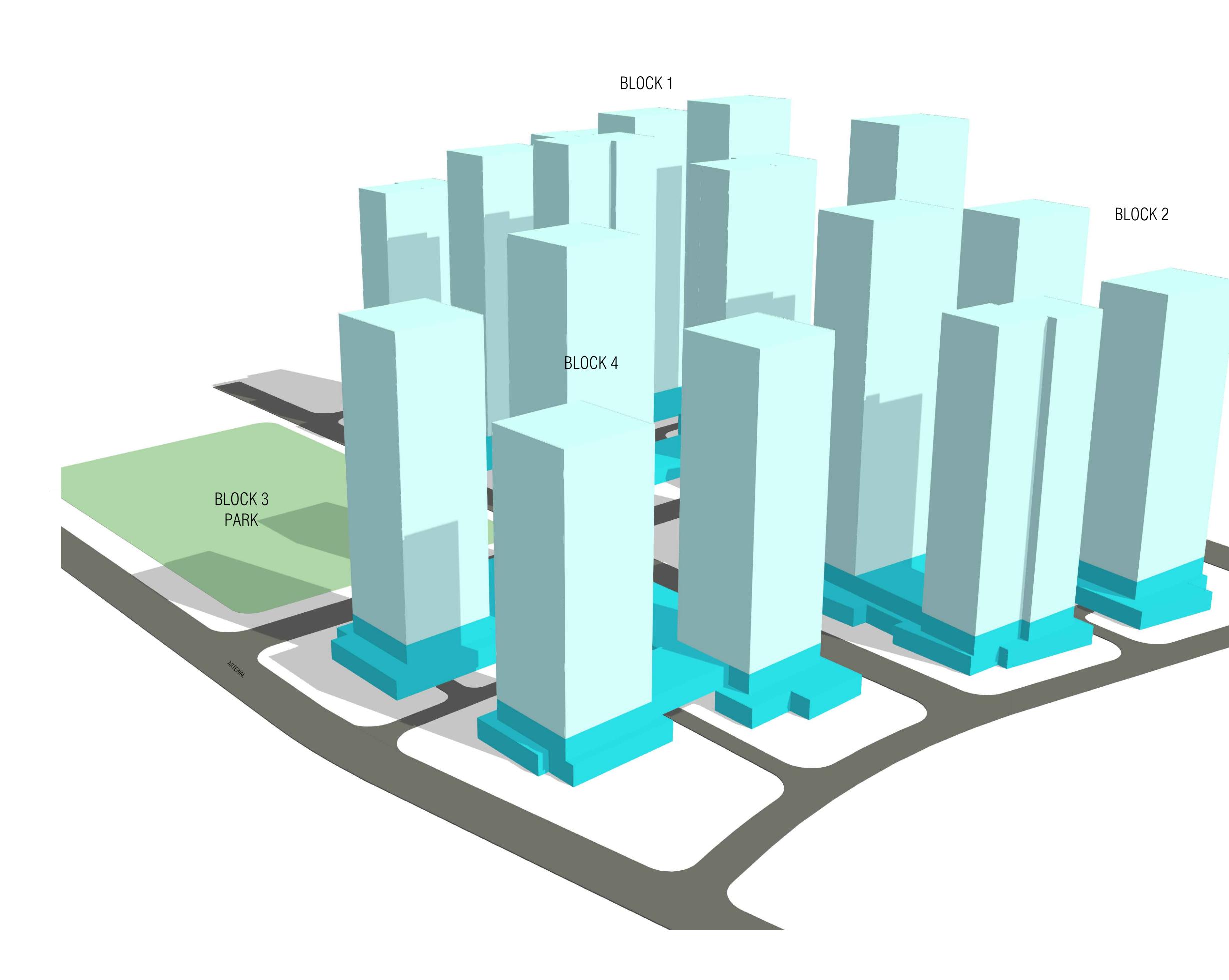
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

### ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD


OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

MASSING VIEW VIEW LOOKING NORTH

N.T.S

A605

_____



____

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

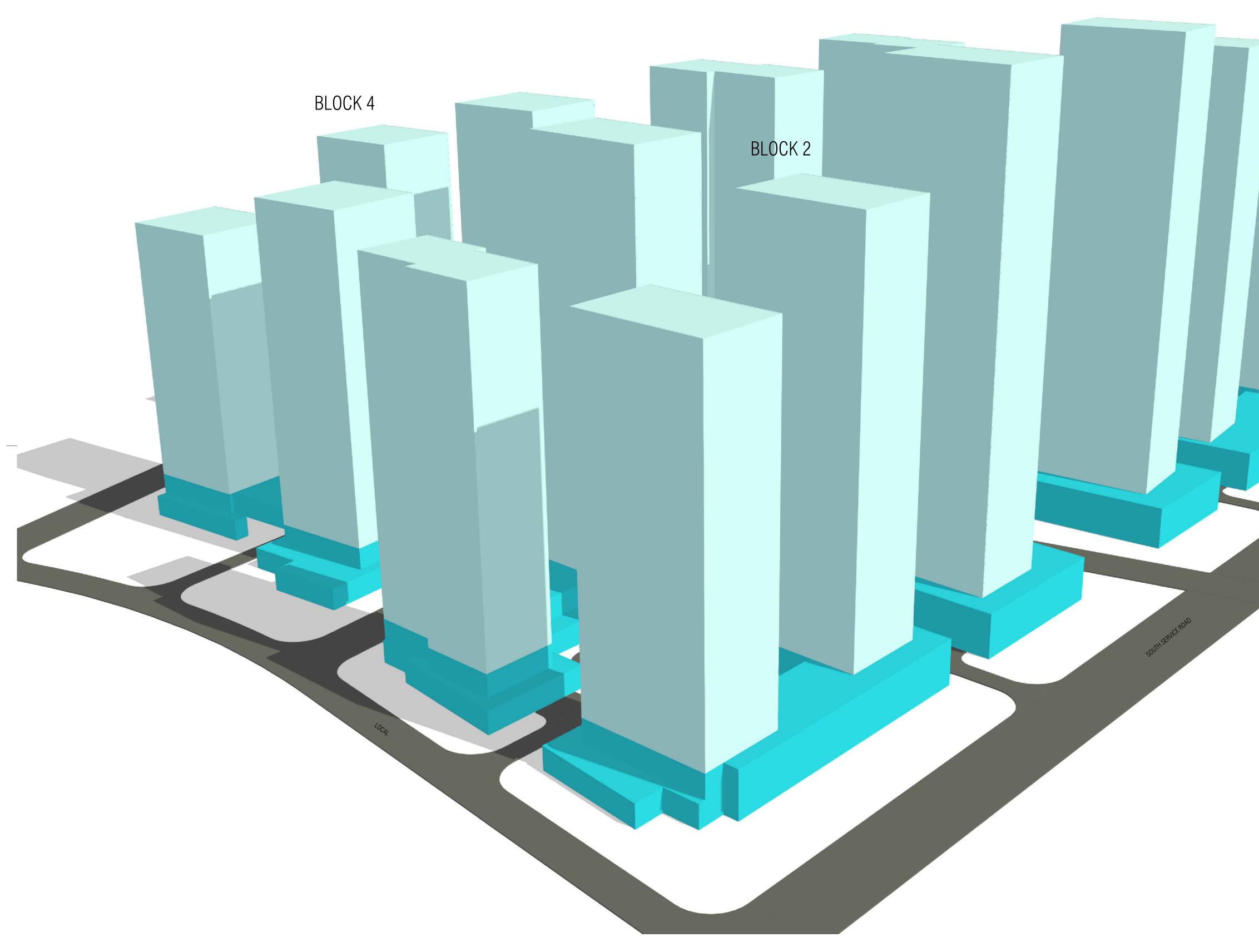
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

# $\square$

ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT


# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	RIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

MASSING VIEW VIEW LOOKING WEST

N.T.S **A606** 

____



____

BLOCK 1

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

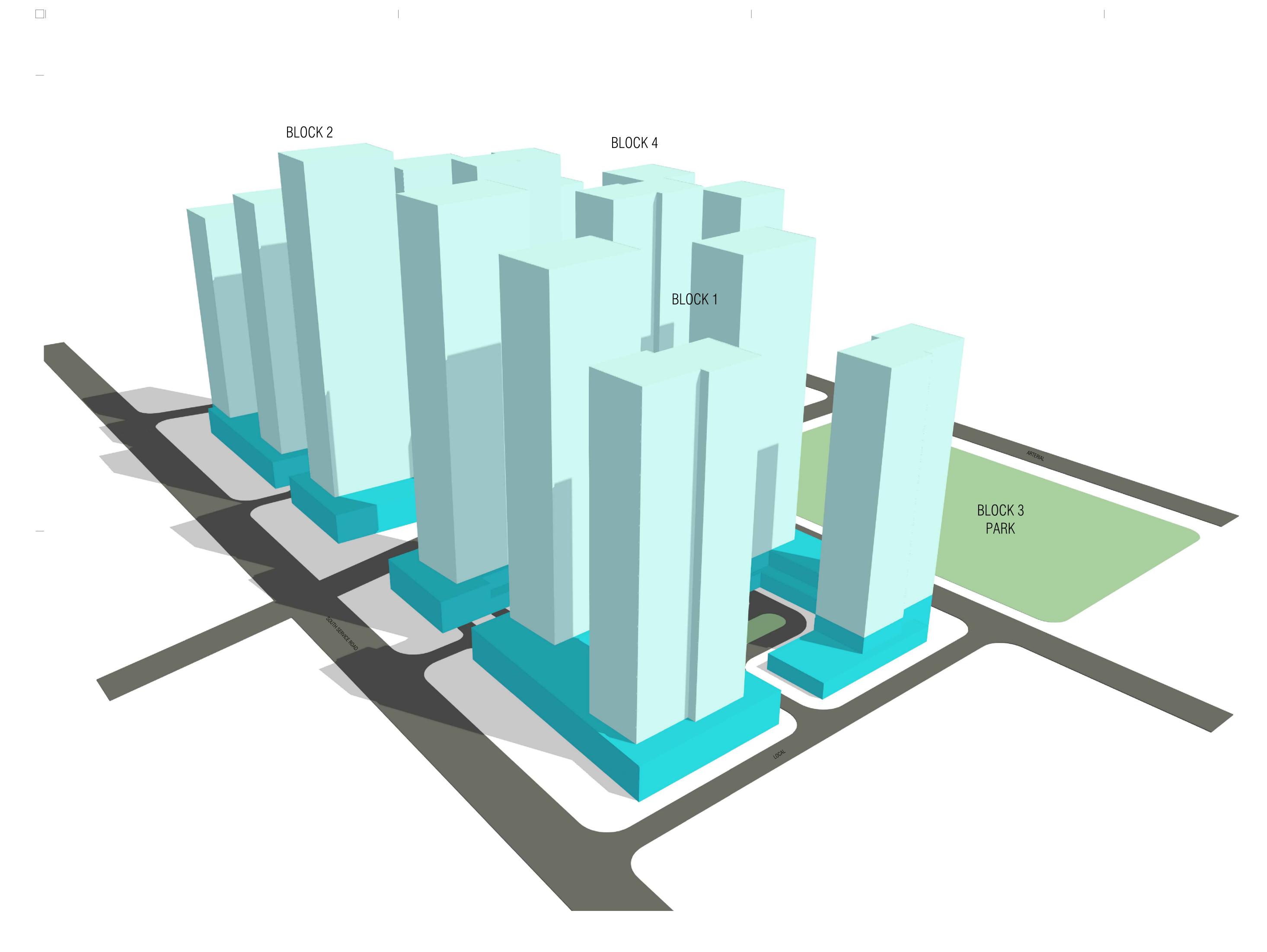
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.



ISSUED FOR REVISIONS

PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD


OAKVILLE	HE ROSE CORPORATION
PROJECT ARCHITECT:	J. Chimienti
ASSISTANT DESIGNER:	B. DADGOSTAR
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ
CHECKED BY:	D. Biase
PLOT DATE:	SEP.19.2024
JOB #	2127.23

MASSING VIEW VIEW LOOKING SOUTH

N.T.S

A607

_____



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

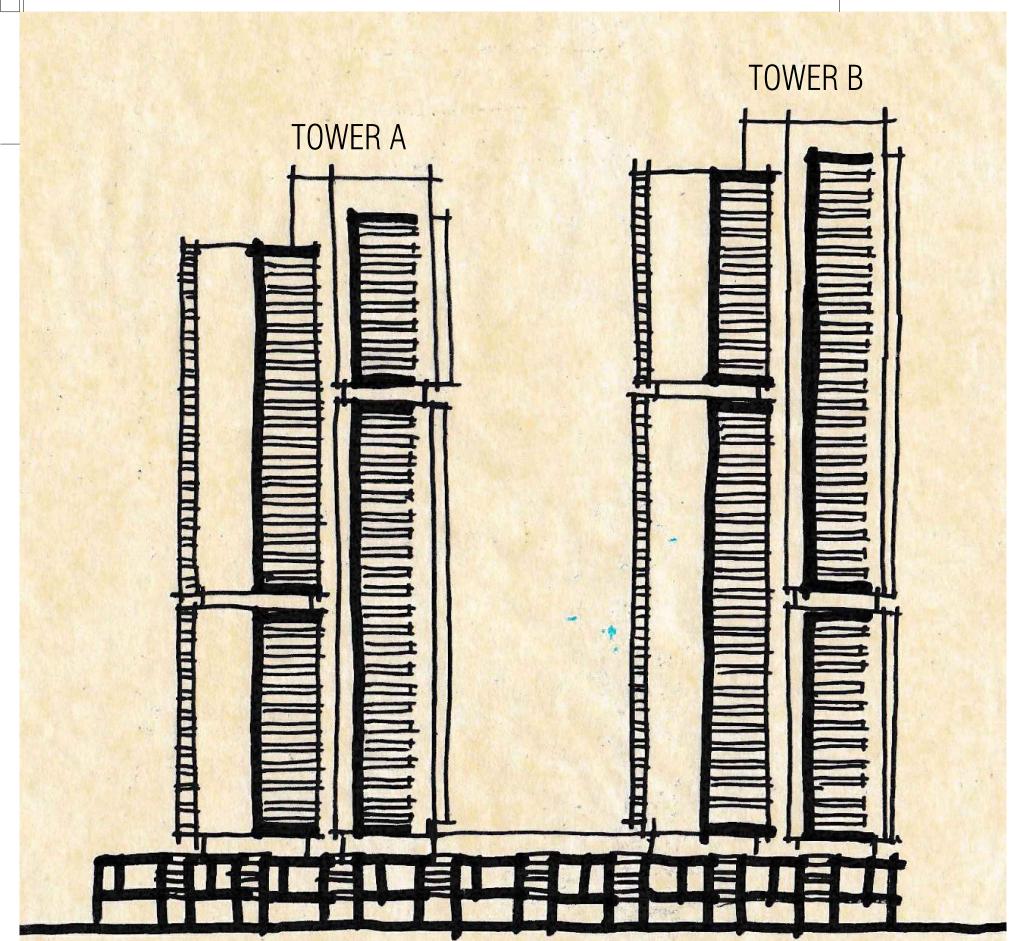
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

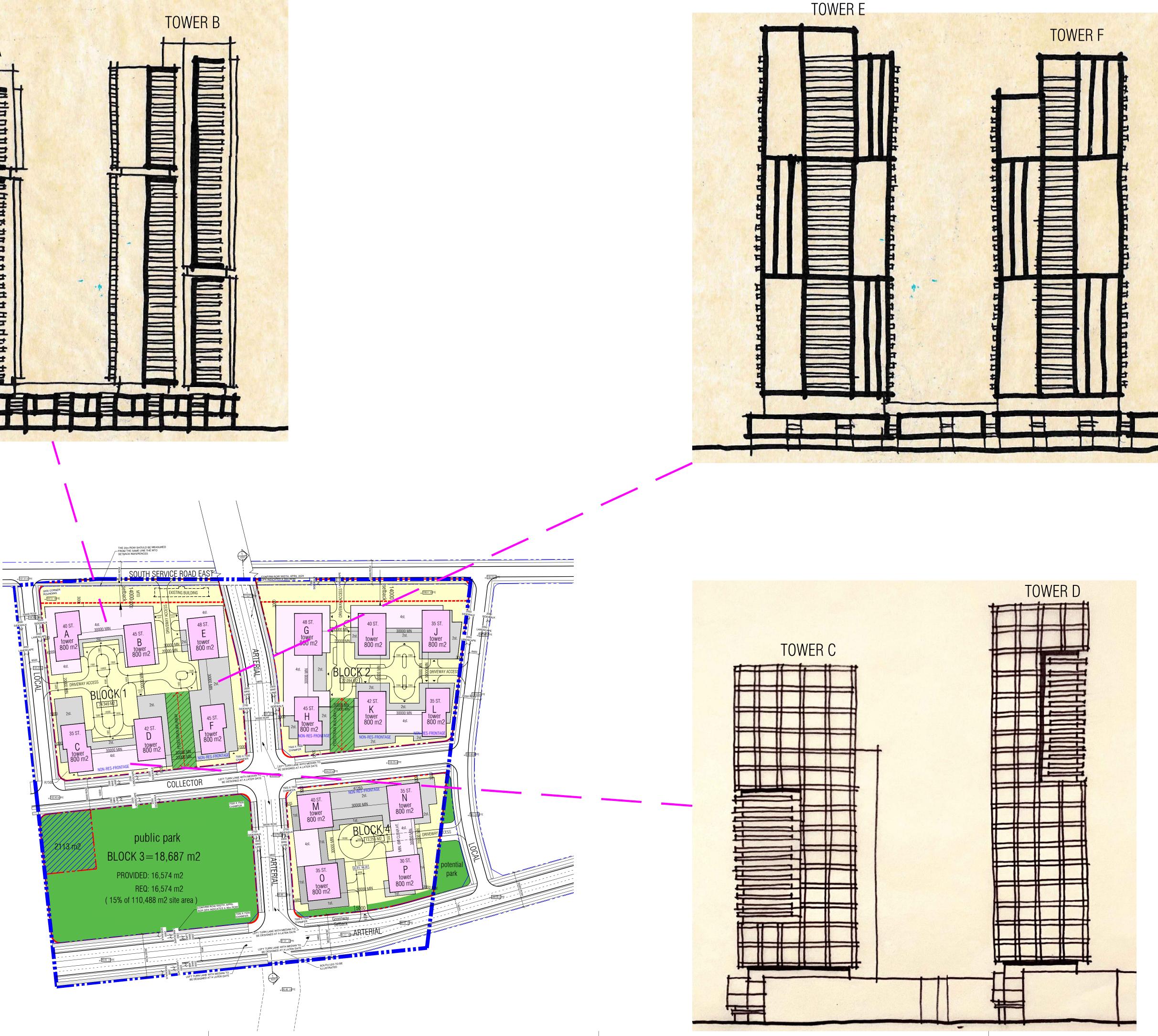
ISSUED FOR REVISIONS



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD


OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB#	2127.23	


MASSING VIEW VIEW LOOKING EAST

N.T.S

A608

_____





THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO

ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

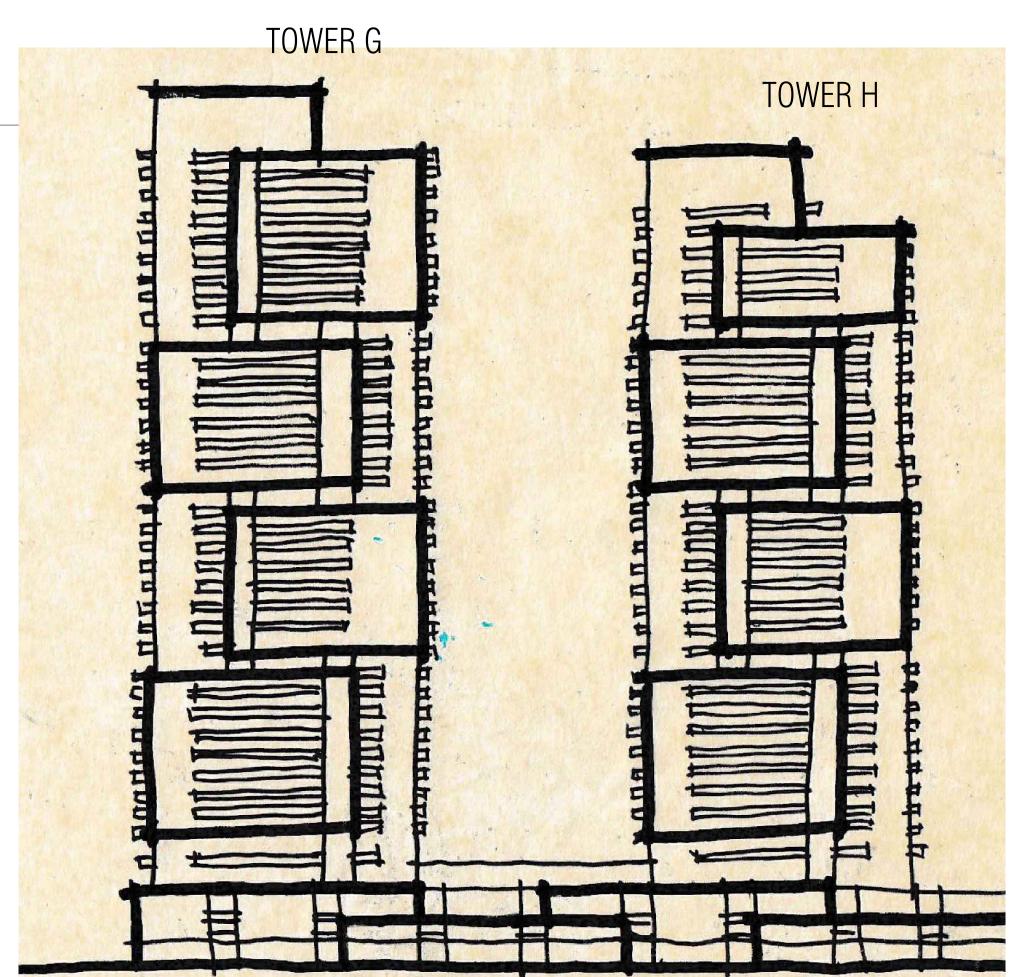
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

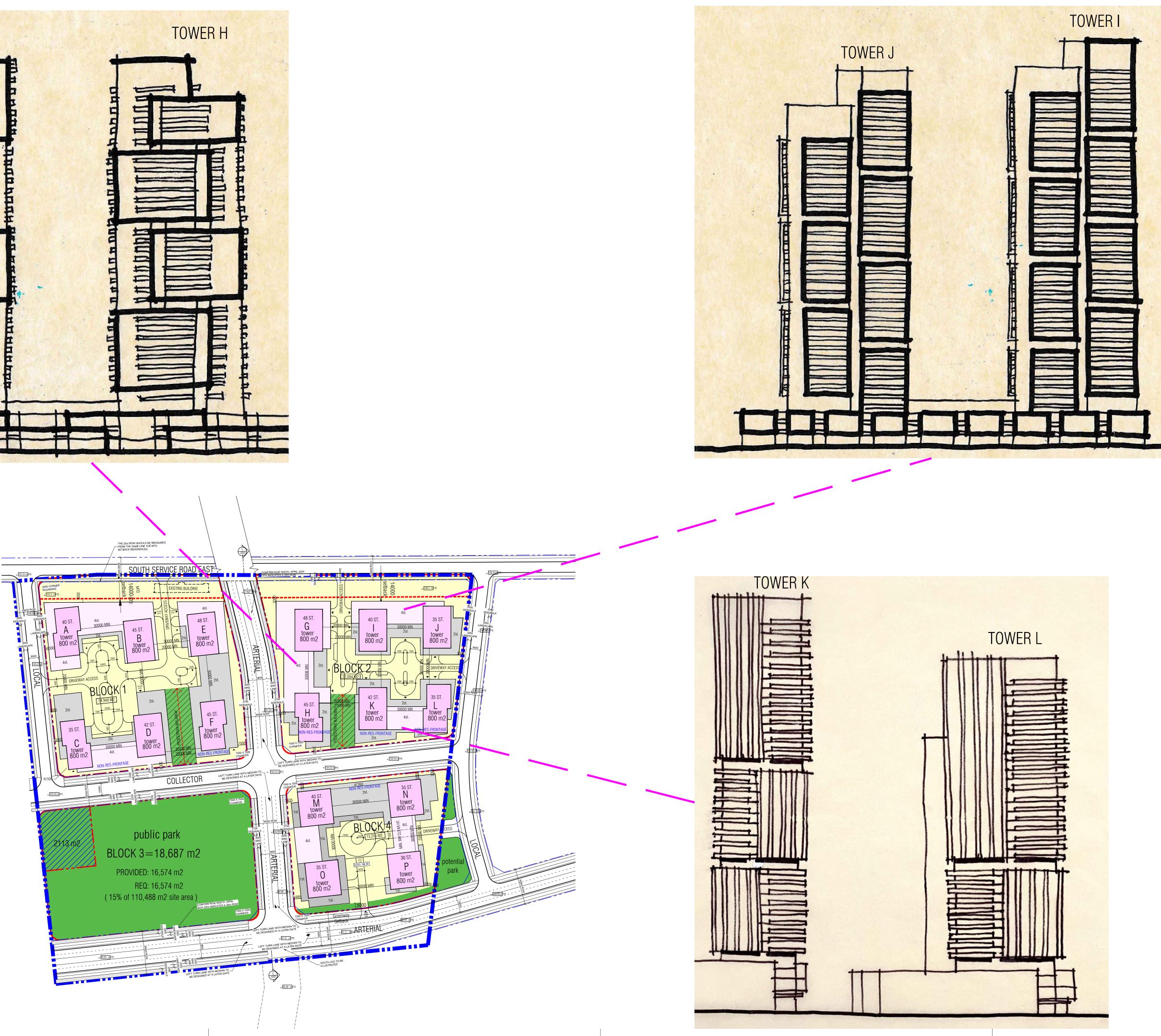
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

ISSUED FOR REVISIONS GRAZIANI CORAZZA 
 8400 JANE STREET, BUILDING D-SUITE 300
 CONCORD, ONTARIO
 L4K 4L8

 T.905.795.2601
 F.905.795.2844
 WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT


# SOUTH SERVICE ROAD


OAKVILLE	ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHR	OUZ
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

SKETCH IMAGES BLOCK 1

N.T.S

A609





THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER: ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR: 1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED. 2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

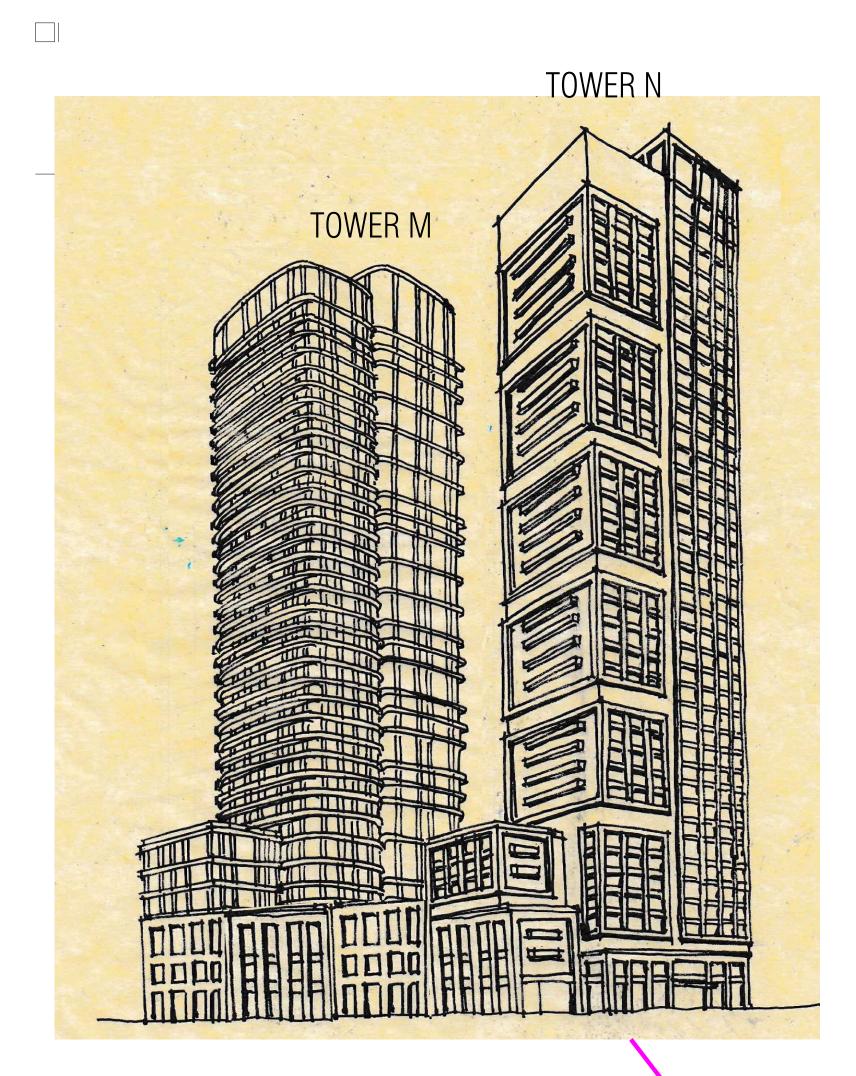
1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.

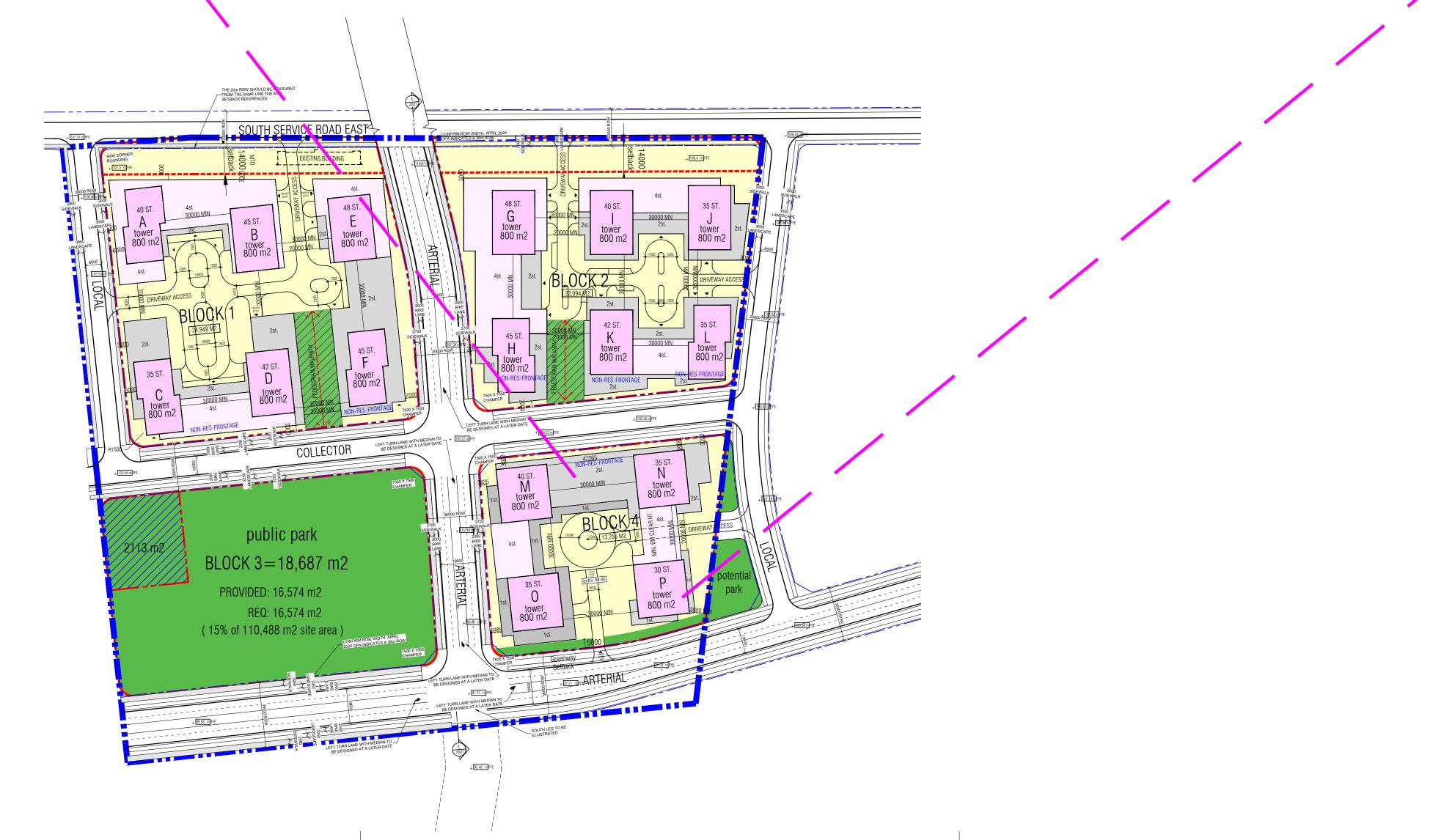
ISSUED FOR REVISIONS GRAZIANI 

 CORAZZA ARCHITECTS
 +
 +

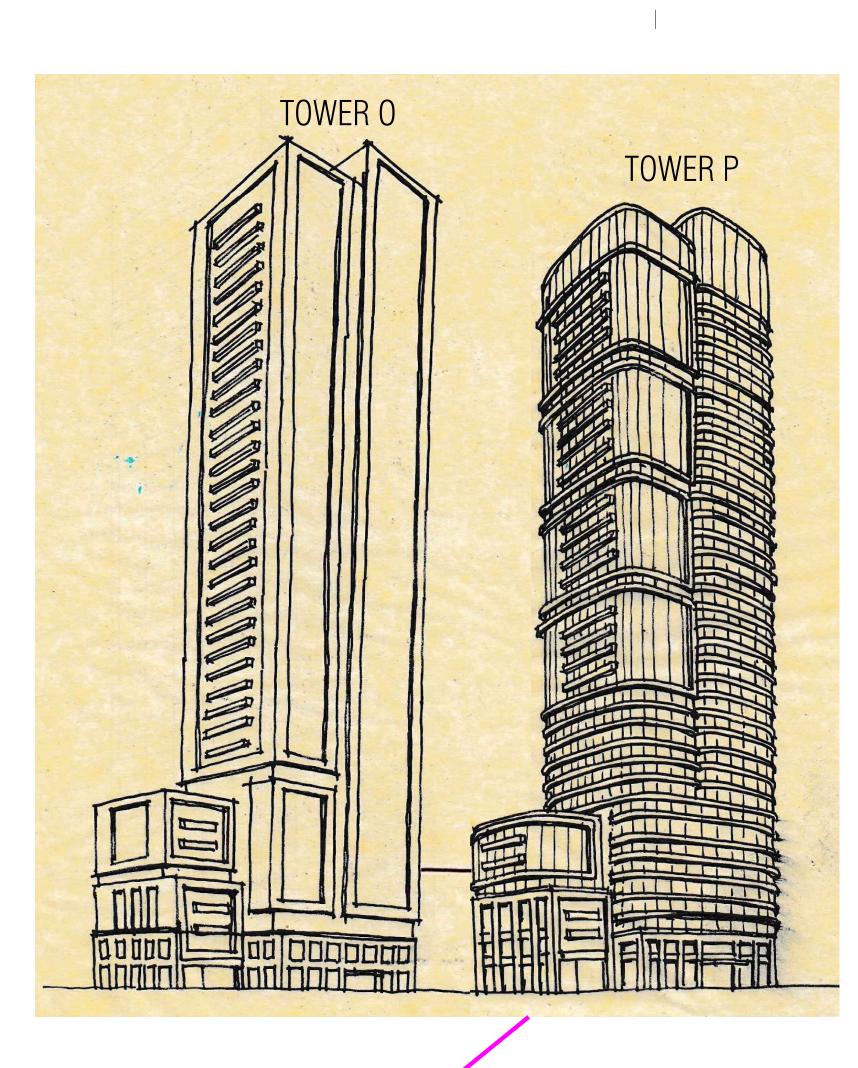
 8400 JANE STREET, BUILDING D-SUITE 300 T.905.795.2601
 CONCORD, ONTARIO F.905.795.2844
 L4K 4L8 WWW.GC-ARCHITECTS.COM

PROPOSED MIXED-USE DEVELOPMENT


# SOUTH SERVICE ROAD


OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER:	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

SKETCH IMAGES BLOCK 2


N.T.S

A610





____



THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE. THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY. CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.
2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

1. SEP.12.2025 ISSUED TO CITY FOR PAC MEETING J. CHI.



PROPOSED MIXED-USE DEVELOPMENT

# SOUTH SERVICE ROAD

OAKVILLE	THE ROSE CORPORATION	ONTARIO
PROJECT ARCHITECT:	J. Chimienti	
ASSISTANT DESIGNER	B. DADGOSTAR	
DRAWN BY:	B. DADGOSTAR / S.BEHROUZ	
CHECKED BY:	D. Biase	
PLOT DATE:	SEP.19.2024	
JOB #	2127.23	

SKETCH IMAGES BLOCK 4

N.T.S

A611