

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT BRIEF

BRONTE GREEN BLOCK C RESIDENTIAL DEVELOPMENT

TOWN OF OAKVILLE

HALTON REGION

PREPARED FOR CAIVAN COMMUNITIES (BRONTE) LTD.

Urbantech File No.: 21-696

1ST SUBMISSION SPA – SEPTEMBER 2021 2nd SUBMISSION SPA – FEBRUARY 2022 3rd SUBMISSION SPA – MAY 2022 NOTE TO FILE SUBMISSION – MARCH 2023 **NOTE TO FILE RESUBMISSION – JULY 2023**

TABLE OF CONTENTS

1	IN	TRODUCTION	4
	1.1. 1.2.	BACKGROUND PURPOSE	4 4
2	EX]	ISTING CONDITIONS	5
	2.1. 2.2.	LAND USE GRADING AND DRAINAGE	5
	2.3. 2.4.	SOIL CONDITIONS CIVIL INFRASTRUCTURE	5 5
3	PR	OPOSED CONDITIONS	6
	3.1. 3.2.	LAND USE GRADING AND DRAINAGE	6 6
4	STO	ORM DRAINAGE AND STORMWATER MANAGEMENT	7
5	SA	NITARY SERVICING	8
6	WA	ATER SERVICING	10
7	ER	OSION AND SEDIMENT CONTROL	11
8	CO	NCLUSION	12

List of Tables

Table 1: Drainage Areas and Percentage Impervious	7
Table 2: SWM Storage Tank, Orifice Size and Post Development Flows	8
Table 3: Sanitary Demand Calculations	9

Urbantech® Consulting, A Division of Leighton-Zec Ltd. | 3760 14th Avenue, Suite 301 · Markham · ON · L3R 3T7 | 905.946.9461

Page 3 of 16

List of Appendices

Appendix A: Design Calculations and Modelling Results

VO Model Results Proposed Sanitary Design Sheet (Urbantech) As-Constructed Sanitary Drainage Plans (DSEL) As-Constructed Sanitary Design Sheets (DSEL)

Appendix B: Water Analysis

Water Analysis (To Be Completed)

Appendix C: Geotechnical Investigation

Geotechnical Investigation (Soil Engineers Ltd.)

Appendix D: Drawings

Drawing GEN-1 – General Notes Drawing SP-1 – Site Servicing Plan Drawing GR-1 – Site Grading Plan Drawing STM-1 – Post-Development Storm Drainage Plan Drawing SAN-1 – Sanitary Drainage Plan Drawing ESC-1 – Erosion and Sediment Control Plan

1 INTRODUCTION

1.1. BACKGROUND

Urbantech has been retained as consulting engineers by Caivan Communities (Bronte) Ltd. and directed to complete a Functional Servicing and Stormwater Management Brief in support of a zoning application for the proposed three-hundred and thirty-five (335) unit six-storey residential building at the northwest intersection of Bronte Road and Saw Whet Blvd. in the Town of Oakville. The total developable area is 0.8 ha and the total property area is 0.8 ha, which includes future daylighting. The legal description of the site is Block 451, Plan 20M-1223.

The subject site is bounded by:

- Bronte Road to the south
- Saw Whet Blvd. to the east, and
- Yellow Rose Circle to the north and west.

This report provides an assessment of the impact of the current site plan concept on existing infrastructure. The concepts presented in this report are in general conformance with the latest standards and criteria prepared by the Town of Oakville (roads, grading and storm drainage) and Halton Region (water distribution and sanitary drainage).

1.2. PURPOSE

The purpose of this report is as follows:

- Discuss the optimal site grading strategy for the site;
- Identify site specific stormwater management requirements to ensure that the development project is in conformance with Town standards;
- For stormwater quantity control as per the pre-consultation meeting and inquiries with the Town of Oakville, an existing stormwater management (SWM) pond downstream of the proposed development is available for quantity and quality controls for a runoff coefficient no greater than 0.90. The allowable runoff coefficient was determined by the approved drainage plan from the Stormwater Management Design Brief prepared by DSEL;
- Determine an appropriate storm sewer system outlet which will work in accordance with the site's stormwater management strategy;
- Determine the site's sanitary sewage strategy and an appropriate outlet point, and;
- Determine an appropriate water service connection for the proposed development.

2 EXISTING CONDITIONS

2.1. LAND USE

The subject site is currently undeveloped. The land is zoned as residential Condominium. The subdivision storm services assumed this site would have a runoff coefficient of 0.90 under ultimate conditions.

2.2. GRADING AND DRAINAGE

The development has high points near the northeast and southeast parts of the site. Existing grades slope easterly towards Saw Whet Boulevard, and northerly towards Yellow Rose Circle.

2.3. SOIL CONDITIONS

A Geotechnical Investigation was prepared by Soil Engineers Ltd. for the subject lands.

The geotechnical report indicates the following subsurface conditions for the site:

- Topsoil A surficial veneer of topsoil with a thickness ranging from approximately 80 to 200 mm
- Silty Clay/Silty Clay Till/Silt Clayey soil was encountered below the topsoil to 6.1m below the ground surface
- Gravelly Sand Gravelly sand soil was encountered 6.1m below the ground surface to the end of borehole

The static groundwater level is estimated to be 5 to 7 m below the existing ground surface.

The report is included in **Appendix C**.

2.4. CIVIL INFRASTRUCTURE

Based on the as-constructed drainage plans by DSEL, the existing municipal infrastructure surrounding the site are as follows:

- Yellow Rose Circle
 - 450 mm storm connection to subject lands
 - Connects to a 750 mm storm sewer, flows south-easterly
 - o 200 mm sanitary connection
 - Connects to a 250 mm sanitary sewer, flows south-easterly
 - 200 mm watermain connection
 - Connects to a 300 mm watermain along the north side of the road

The existing storm and sanitary sewers and watermain along Yellow Rose Circle will service the proposed development.

3 PROPOSED CONDITIONS

3.1. LAND USE

The proposed development will consist of a 6-storey condominium with 333 units in total, internal private laneway (6.0 m in width), at-grade visitor parking spaces, and landscaped space. Vehicular access is provided by one (1) private driveway off Yellow Rose Circle.

3.2. GRADING AND DRAINAGE

The proposed grading design for the site is generally influenced by boundary conditions and will match existing grades along all property lines. The site grading design takes into consideration the following requirements and constraints

- Conform to the Town of Oakville's design criteria;
- Minimize cut and fill operations and work towards a balanced site;
- Match existing boundary conditions;
- Provide overland flow conveyance for major storm conditions;
- Reduce or eliminate (where possible) the need for retaining walls;
- Maximize the self-contained portion of the site conveying runoff to the storm sewer system(s); and
- Provide suitable cover on proposed servicing.

For the remainder of the site, most of the storm drainage flows are self-contained within the site boundaries into proposed catch basins. Minimal storm drainage is to discharge to existing ROWs. The proposed grading design matches into existing property line grades on all sides of the property.

Refer to the **Drawing GR-1** and **Drawing STM-1** for details.

URBANTECH[®]

4 STORM DRAINAGE AND STORMWATER MANAGEMENT

Storm servicing infrastructure for the site has been designed in accordance with the latest Town of Oakville standards and specifications. Due to high groundwater constraints that ultimately led to mechanical constraints within the building, a storm connection has been proposed at a different location from the existing storm connection that was provided during the construction of the subdivision. We are proposing to break into the existing 750mm concrete storm sewer along Yellow Rose Circle and install the proposed storm MH2. Inside of the property line, we are proposing to install a storm control MH1. The existing storm control manhole will be removed, and the existing 525 mm storm connection is to be plugged, grouted, and abandoned in place. Constant dewatering is not permitted to be directed to the Town storm sewer in any capacity.

Refer to the Drawing SP-1 and STM-1 for details.

The runoff generated from the site up to 100-year events will be collected in an underground SWM storage tank and released at a controlled rate, such that the total site release rate is less than the allowable release rate of 202L/s. The maximum release rate from the SWM tank will be 166L/s, while the maximum uncontrolled release rate will be 30L/s. Based on the results from the Visual OTTHYMO model, the maximum combined release rate from the site is 185L/s (refer to model results summarized in **Table 2**, and in **Appendix A**).

The total area of the site is 0.8 ha. Table 1 shows the breakdown of drainage areas of the site and percentage imperious.

Description	Total Area	Pervious Area	Impervious Area	% Imperviousness
•	m ²	m ²	m ²	
Controlled Areas				•
C1	1240	225	1015	82%
C2	922	232	690	75%
C3	715	225	490	69%
C4	187	30	157	84%
C5 (Roof)	4030	0	4030	100%
Total Controlled	7094	712	6382	90%
Uncontrolled Areas				
U1 (YRC)	386	259	127	33%
U2 (YRC)	146	99	47	32%
U3 (Bronte)	184	105	79	43%
U4 (SWB)	203	150	53	26%
Total Uncontrolled	919	613	306	33%
Total Site				
Controlled	7094	712	6382	90%
Uncontrolled	919	613	306	33%
TOTAL	8013	1325	6688	83%

Table 1 : Drainage Areas and Percentage Impervious

Urbantech® Consulting, A Division of Leighton-Zec Ltd. | 3760 14th Avenue, Suite 301 • Markham • ON • L3R 3T7 | 905.946.9461

The controlled flow from the SWM storage can be connected with a gravity connection as the invert elevation of the proposed out-letting storm sewer pipe is 125.81 and the proposed P1 level parking where the SWM storage tank and orifice will be located, elevation is 126.70m.

The underground storage tank and orifice size were first designed in an excel and then modelled in a Visual OTTHYMO program. With a few iterations, the right tank size and orifice plate diameter were designed and optimized. The following table summarizes the SWM storage tank and orifice size information.

Parameters	Value	Units
SWM Tank Size Provided (224 m ² X 1 m)	224	m ³
Tank height	1000	mm
Orifice diameter	300	mm
Orifice coefficient	0.63	
Max. Allowable Flow (Controlled +	202	
Uncontrolled Areas)	202	L/5
100 - Year controlled Flow rate (Total Site)	185	L/s
5 - Year Controlled Flow Rate (Total Site)	117	L/s
100 – Year storage used	199	m ³
5 – Year storage used	109	m ³

Table 2: SWM Storage Tank, Orifice Size and Post Development Flows

The excel design table and Visual OTTHYMO input and output files has been included in Appendix A.

The uncontrolled area around the perimeter of the building will be mostly landscaped; with a 33% impervious, in a 100-year event it generates about 30 L/s flow. In a 5-year event this area generates about 13 L/s flow.

5 SANITARY SERVICING

Sanitary servicing infrastructure for the site has been designed in accordance with the latest Halton Region standards and specifications. The existing 200 mm sanitary connection off Merton Road will be used to service the site. Refer to the **Drawing SAN-1** for details.

Based upon the Region's DC background study that contains populations projections per unit type, the density for apartments was projected at 1.578 ppu, forecasted for the years 2017-2031. This amounts to a total population of 526 and peak sanitary flow of 7.00 L/s. Sanitary demand calculations are presented in **Table 3**. Refer to **Appendix A** for the as-constructed sanitary drainage plans by DSEL for the Bronte Green subdivision (Region File No. DO-1040) and **Appendix D** for the proposed **Sanitary Drainage Plan** for the proposed sanitary drainage plan.

Parameter	Proposed (Residential)
Site Area (ha)	0.8
Total Units	333
Population Density (ppu)	1.578
Unit Sewage Flow (L/person/s)	0.003183
Population	526
Harmon Peaking Factor, M	4.0
Infiltration Allowance (L/s/ha)	0.286
Sanitary Flow (L/s)	7.00

Table 3: Sanitary Demand Calculations

Initially, the subdivision design by DSEL accounted for a population of 400 persons for Block 451. As of the current design, a total of 333 units are proposed at a density of 1.578 ppu, which amounts to a total population of 526. The downstream sanitary system was assessed to determine any impact of the increase in population. It was determined sufficient capacity exists in the downstream system, and that the existing 250mm sanitary sewer leg spanning from MH 94A to MH 95A was the leg that required analysis as it had the least amount of available capacity based on the as-built information available. At the original population of 400 persons, the existing sanitary sewer had a capacity of 79.2% full at an existing slope of 0.36%. At the proposed population of 526, the existing sanitary sewer maintains a capacity of 81.9% full at an existing slope of 0.36%. A reduction of 2.7% in sewer capacity of the constrained sewer leg is the result of the increase in population which is negligible considering there is still an available 18% capacity in this section of the system. Refer to **Appendix A** for the as-constructed sanitary design sheets and drainage plans by DSEL.

6 WATER SERVICING

Water servicing infrastructure for the site has been designed in accordance with the latest Halton Region standards and specifications. To supply water demands to the site, a 200 mm connection has been provided off the existing 300 mm watermain along Merton Road. Refer to Drawing **SP-1** for details.

A hydrant flow test is being scheduled and a water analysis report will be completed in the future.

7 EROSION AND SEDIMENT CONTROL

Erosion and sediment controls will be implemented for all construction activities undertaken during site works including topsoil stripping, bulk earthworks, foundation excavation and stockpiling of materials, conforming to the ESC Best Practices. These measures will include:

- Installation of heavy-duty silt control fencing along the perimeter of the site at strategic locations.
- Provision of a temporary mud mat at the construction site entrance on Yellow Rose Circle.
- Preventing silt or sediment laden water from entering existing inlets on the adjacent ROWs (catchbasins/catchbasin maintenance holes) by wrapping their tops with filter fabric and using clearstone on the existing inlet within the property limit.
- Maintaining sediment and erosion control structures in good repair until such time as the Engineer or the Town approves their removal.

A conceptual erosion and sediment control plan is shown on **Drawing ESC-1**. If required, site-specific measures will be determined during the detailed design / site alteration application stage.

8 CONCLUSION

This report has demonstrated that:

- The proposed site can be graded to match into existing grades at all property lines while adhering to Town of Oakville grading standards and specifications.
- A suitable storm sewer system outlet for the proposed development is provided by the existing storm connection off Yellow Rose Circle Road.
- Water Quantity the SWM tank of the proposed development will provide adequate quantity controls.
- Water Quality since the runoff generated from the site is treated in a SWM pond downstream, it is not necessary to provide water quality on the site.
- A suitable sanitary sewer system outlet for the proposed development is provided by the existing sanitary connection off Yellow Rose Circle.
- A suitable water service connection for the proposed development is provided by the existing watermain connection off Yellow Rose Circle. A future water analysis will determine if the water distribution system can provide adequate flows and pressures to support the proposed development.
- Erosion Control Measures and controls will be implemented for all construction activities undertaken during site works.

Report Prepared by:

Andrew McLennan, P.Eng. Design Project Manager

Javafoh

Nava Pokharel, M.Sc., P.Eng. Senior Water Resources Engineer

Urbantech® Consulting, A Division of Leighton-Zec Ltd. | 3760 14th Avenue, Suite 301 • Markham • ON • L3R 3T7 | 905.946.9461

Caivan Communities (Bronte) Ltd. Bronte Green Block C, Town of Oakville July 2023

APPENDIX A

DESIGN CALCULATIONS AND MODELLING RESULTS

V.O. Model Results Proposed Sanitary Design Sheet (Urbantech) As-Constructed Sanitary Drainage Plans (DSEL) As-Constructed Sanitary Design Sheets (DSEL)

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Tuesday, Mar 7 2023

<Name>

Circular		Highlighted	
Diameter (m)	= 0.4500	Depth (m)	= 0.4500
		Q (cms)	= 0.2850
		Area (sqm)	= 0.1590
Invert Elev (m)	= 100.0000	Velocity (m/s)	= 1.7921
Slope (%)	= 1.0000	Wetted Perim (m)	= 1.4137
N-Value	= 0.013	Crit Depth, Yc (m)	= 0.3749
		Top Width (m)	= 0.0000
Calculations		EGL (m)	= 0.6138
Compute by:	Q vs Depth		
No. Increments	= 5		

				Table A1	Undergrour	nd SWM Sto	orage Volume a	and Flow	Release Rat	e Calcula	itions						
Designer Inputs:	Undergroun	d Storage													_		
	Orifice Height= 1000 mm			Length=	15.45	m			Date:	July 4, 2023	3						
Orifice Plate Diameter (m) =	0.300	m		1.000	m		Area	193125	m2			Designed by:	N. Pokhare	l, P.Eng.			
			Width=	12500	mm	5	torage Provided=	224.0	m3								
Area of Pipe (m2) =	0.071	m2		14.50	m						Co	ntrolled Drainage Area =	0.7094	ha			
Cd =	0.63										Uncor	ntrolled Drainage Area =	0.0919	ha			
											Total W	eighted % Impervious =	83%				
												Allowable Flow =	202	(L/s)			
						Depth to							Total	Total			
	Stage	stage	Stage	Elevation	Storage Used -	Centre of	Qout Orifice			Qout	Qout	Incremental Volume	Storage	Storage		Cum.	Cum.
	(%)	(mm)	(m)	(m)	Events	Orifice (m)	(m3/s)	He	Flow Control	(m3/s)	(L/s)	(m3)	(m3)	(m-ha)	Inc. Time (s)	Time (s)	Time (hr)
Tom of Otomore	400	4000	1 000	400.00		0.050	0.4040		Orifice Diete	0.4040	400	11.0	004	0.0004	4 000	40 707	
Top or Storage	100	1000	1.000	120.80	100 Veer	0.850	0.1819		Orifice Plate	0.1819	182	11.2	224	0.0224	1,232	19,797	5.0
	95	950	0.950	120.75	100 - fear	0.800	0.1704		Onlice Plate	0.1704	170	11.2	213	0.0213	1,200	10,000	0.2
	90	900	0.900	126.70		0.750	0.1708		Orifice Plate	0.1708	1/1	11.2	202	0.0202	1,180	17,359	4.8
	00	800	0.000	120.05		0.700	0.1650		Orifice Plate	0.1650	100	11.2	190	0.0190	1,104	15,025	4.5
	00 75	750	0.000	120.00		0.650	0.1590		Orifice Plate	0.1590	159	11.2	1/9	0.0179	1,127	12 000	4.2
	70	700	0.750	120.55		0.000	0.1320		Orifice Plate	0.1320	146	11.2	100	0.0108	1,100	12 709	3.9
	65	650	0.700	126.30		0.500	0.1403		Orifice Plate	0.1403	139	11.2	146	0.0137	1,072	11 726	3.0
	60	600	0.600	126.40		0.000	0.1323		Orifice Plate	0.1000	132	22.4	13/	0.0134	1,044	10.682	3.0
	50	500	0.000	126.30		0.350	0.1323		Orifice Plate	0.1323	117	11.2	112	0.0112	960	9.666	2.7
	45	450	0.000	126.00		0.300	0.1080		Orifice Plate	0.1080	108	11.2	101	0.0101	933	8 706	2.1
	40	400	0.400	126.20		0.250	0.0986		Orifice Plate	0.0986	99	11.2	90	0.0090	909	7,773	2.2
	35	350	0.350	126.15		0.200	0.0882		Orifice Plate	0.0882	88	11.2	78	0.0078	889	6.865	1.9
	30	300	0.300	126.10		0.150	0.0764		Orifice Plate	0.0764	76	11.2	67	0.0067	880	5.976	1.7
	25	250	0.250	126.05		0.100	0.0624		Orifice Plate	0.0624	62	11.2	56	0.0056	898	5.096	1.4
	20	200	0.200	126.00		0.050	0.0441		Orifice Plate	0.0441	44	6.7	45	0.0045	1,016	4,198	1.2
	17	170	0.170	125.97		0.020	0.0279		Orifice Plate	0.0279	28	2.2	38	0.0038	1,365	3,182	0.9
	16	160	0.160	125.96		0.010	0.0197		Orifice Plate	0.0197	20	0.0	36	0.0036	1,817	1,817	0.5
	16	160	0.160	125.96		0.010	0.0197		Orifice Plate	0.0197	20	35.8	36	0.0036	-	-	0.0
Bottom of Storage	0	0	0.000	125.80	Orifice Invert	0.000	0.0000		Orifice Plate	0.0000	0	0.00	0	0.0000	-	-	0.0

Post Development VO Model Schematic

** SIMULATION:100-yr 24	********* 4hr * ********	· * · *								
CHICAGO STORM Ptotal= 98.13 mm	IDF cur	ve para	neters: A E	A=2150.000 3= 5.700)					
<u> </u>	used in	: INTI	C ENSITY =	C= 0.861 A/(t-	в)^С					
	Duratio Storm t Time to	on of sto ime step peak ra	orm = 24 o = 10 atio = 0	4.00 hrs).00 min).33						
$\begin{array}{c} TIME\\ hrs\\ 0.00\\ 0.17\\ 0.33\\ 0.50\\ 0.67\\ 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83\\ 4.00\\ 4.17\\ 4.33\\ 4.50\\ 4.67\\ 4.83\\ 5.00\\ 5.17\\ 5.33\\ 5.50\\ 5.67\\ 5.83\\ \end{array}$	RAIN mm/hr 0.59 0.60 0.61 0.63 0.64 0.65 0.67 0.68 0.70 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.83 0.83 0.85 0.88 0.91 0.94 0.97 1.00 1.04 1.08 1.12 1.08 1.12 1.08 1.12 1.66 1.77 1.90 2.04	TIME hrs 6.00 6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50 7.67 7.83 8.00 8.17 8.33 8.00 8.17 8.33 8.50 8.67 9.00 9.17 9.33 9.50 9.67 9.67 9.83 10.00 10.17 10.33 10.50 10.67 10.83 11.00 11.17 11.33 11.50 11.67 11.83	RAIN mm/hr 2.22 2.43 2.70 3.03 3.46 4.04 4.89 6.21 8.59 14.09 39.57 200.80 54.10 25.64 16.48 12.09 9.54 16.48 12.09 9.54 7.88 6.73 5.87 5.22 4.70 4.28 3.93 3.63 3.38 3.16 2.97 2.81 2.66 2.53 2.41 2.66 2.53 2.41 2.30 2.20 2.11 2.03	TIME hrs 12.00 12.17 12.33 12.50 12.67 12.83 13.00 13.17 13.33 13.50 13.67 13.83 14.00 14.17 14.33 14.00 14.17 14.33 14.00 14.17 14.33 14.50 14.67 14.83 15.00 15.17 15.33 15.50 15.67 15.83 16.00 16.17 16.33 16.50 16.67 16.83 17.00 17.17 17.33 17.50 17.67 17.83	RAIN mm/hr 1.96 1.89 1.82 1.76 1.71 1.65 1.60 1.52 1.48 1.44 1.44 1.33 1.33 1.30 1.27 1.24 1.22 1.17 1.24 1.22 1.17 1.14 1.12 1.17 1.14 1.08 1.04 1.02 1.01 0.99 0.94 0.93 0.90 0.88	TIME hrs 18.00 18.17 18.33 18.50 18.67 18.83 19.00 19.17 19.33 19.50 19.67 19.83 20.00 20.17 20.33 20.00 20.17 20.33 20.50 20.67 20.83 21.00 21.17 21.33 21.50 21.67 21.83 22.00 22.17 22.33 22.50 22.67 22.83 23.00 23.17 23.33 23.50 23.67 23.83	RAIN mm/hr 0.87 0.86 0.85 0.84 0.82 0.81 0.79 0.78 0.77 0.76 0.75 0.74 0.75 0.74 0.73 0.72 0.71 0.70 0.69 0.69 0.68 0.67 0.66 0.65 0.64 0.62 0.61 0.62 0.61 0.65 0.59 0.58			
CALIB STANDHYD (0001) ID= 1 DT= 5.0 min	Area Total Im	(ha)= ip(%)= 8	0.12 32.00 E	Dir. Conn	. (%)= 8	32.00				
Surface Area Dep. Storage Average Slope Length	I (ha)= (mm)= (%)= (m)=	MPERVIO 0.10 1.00 1.00 28.75	JS PEF	RVIOUS (i) 0.02 1.50 2.00 40.00)					

0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.59	6.083	2.22	12.083	1.96	18.08	0.87
0.167	0.59	6.167	2.22	12.167	1.96	18.17	0.87
0.250	0.60	6.250	2.43	12.250	1.89 İ	18.25	0.86
0.333	0.60	6.333	2.43	12.333	1.89	18.33	0.86
0.417	0.61	6.417	2.70	12.417	1.82	18.42	0.85
0 500	0 61	6 500	$\frac{1}{2}$ 70	12 500	1 82	18 50	0 85
0.583	0.63	6.583	3.03	12.583	1.76	18.58	0.84
0 667	0 63	6 667	3 03	12 667	1 76	18 67	0 84
0 750	0.64	6 750	3 46	12 750	1 71	18 75	0.82
0 833	0 64	6 833	3 46	12 833	1 71	18 83	0 82
0.917	0.65	6.917	4.04	12.917	1.65	18.92	0.81
1.000	0.65	7.000	4.04	13.000	1.65	19.00	0.81
1.083	0.67	7.083	4.89	13.083	1.60	19.08	0.80
1.167	0.67	7.167	4.89	13.167	1.60	19.17	0.80
1.250	0.68	7.250	6.21	13.250	1.56	19.25	0.79
1.333	0.68	7.333	6.21	13.333	1.56	19.33	0.79
1.417	0.70	7.417	8.59	13.417	1.52	19.42	0.78
1.500	0.70	7.500	8.59	13.500	1.52	19.50	0.78
1.583	0.71	7.583	14.09	13.583	1.48	19.58	0.77
1.667	0.71	7.667	14.09	13.667	1.48	19.67	0.77
1.750	0.73	7.750	39.57	13.750	1.44	19.75	0.76
1.833	0.73	7.833	39.58	13.833	1.44 İ	19.83	0.76
1.917	0.75	7.917	200.80	13.917	1.40 İ	19.92	0.75
2.000	0.75	8.000	200.79	14.000	1.40	20.00	0.75
2.083	0.77	8.083	54.10	14.083	1.37	20.08	0.74
2.167	0.77	8.167	54.10	14.167	1.37 İ	20.17	0.74
2.250	0.79	8.250	25.64	14.250	1.33	20.25	0.73
2.333	0.79	8.333	25.64	14.333	1.33 İ	20.33	0.73
2.417	0.81	8.417	16.48	14.417	1.30 İ	20.42	0.73
2.500	0.81	8.500	16.48	14.500	1.30 İ	20.50	0.73
2.583	0.83	8.583	12.09	14.583	1.27 İ	20.58	0.72
2.667	0.83	8.667	12.09	14.667	1.27 İ	20.67	0.72
2.750	0.85	8.750	9.54	14.750	1.24	20.75	0.71
2.833	0.85	8.833	9.54	14.833	1.24	20.83	0.71
2.917	0.88	8.917	7.88	14.917	1.22	20.92	0.70
3.000	0.88	9.000	7.88	15.000	1.22	21.00	0.70
3.083	0.91	9.083	6.73	15.083	1.19	21.08	0.69
3.167	0.91	9.167	6.73	15.167	1.19	21.17	0.69
3.250	0.94	9.250	5.87	15.250	1.17	21.25	0.69
3.333	0.94	9.333	5.87	15.333	1.17	21.33	0.69
3.417	0.97	9.417	5.22	15.417	1.14	21.42	0.68
3.500	0.97	9.500	5.22	15.500	1.14	21.50	0.68
3.583	1.00	9.583	4.70	15.583	1.12	21.58	0.67
3.667	1.00	9.667	4.70	15.667	1.12	21.67	0.67
3.750	1.04	9.750	4.28	15.750	1.10	21.75	0.66
3.833	1.04	9.833	4.28	15.833	1.10	21.83	0.66
3.917	1.08	9.917	3.93	15.917	1.08	21.92	0.66
4.000	1.08	10.000	3.93	16.000	1.08	22.00	0.66
4.083	1.12	110.083	3.63	116.083	1.06	22.08	0.65
4.16/	1.12	110.16/	3.63	116.16/	1.06	22.1/	0.65
4.250	1.16	110.250	3.38	116.250	1.04	22.25	0.64
4.333	1.16	10.333	3.38	116.333	1.04	22.33	0.64
4.41/	1.22	110.41/	3.16	116.41/	1.02	22.42	0.64
4.500	1.22	110.500	3.10 2.07	110.500	1.02	22.50	0.64
4.583	1.2/	110.583	2.9/	110.583	1.01	22.58	0.63
4.66/	1.27	110.00/	2.97	10.66/	1.01	22.67	0.63

4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000	$1.33 \\ 1.40 \\ 1.40 \\ 1.48 \\ 1.48 \\ 1.56 \\ 1.56 \\ 1.66 \\ 1.66 \\ 1.77 \\ 1.90 \\ 1.90 \\ 2.04 \\ 2.04 \\ 2.04 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	10.750 10.833 10.917 11.000 11.083 11.167 11.250 11.333 11.417 11.500 11.583 11.667 11.750 11.833 11.917 12.000	2.81 2.66 2.66 2.53 2.41 2.41 2.30 2.20 2.20 2.11 2.11 2.03 2.03	$\begin{vmatrix} 16.750 \\ 16.833 \\ 16.917 \\ 17.000 \\ 17.083 \\ 17.167 \\ 17.250 \\ 17.333 \\ 17.417 \\ 17.500 \\ 17.583 \\ 17.667 \\ 17.667 \\ 17.750 \\ 17.833 \\ 17.917 \\ 18.000 \end{vmatrix}$	$\begin{array}{c} 0.99 \\ 0.99 \\ 0.97 \\ 0.97 \\ 0.96 \\ 0.96 \\ 0.94 \\ 0.94 \\ 0.93 \\ 0.93 \\ 0.91 \\ 0.91 \\ 0.90 \\ 0.90 \\ 0.88 \\ 0.88 \\ 0.88 \\ \end{array}$	22.75 22.83 22.92 23.00 23.08 23.17 23.25 23.33 23.42 23.50 23.58 23.67 23.58 23.67 23.75 23.83 23.92 24.00	0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.60 0.59 0.59 0.59 0.58 0.58
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNDEE COEFFICTE	<pre>m/hr)= (min)= (min)= (min)= (cms)= (cms)= (hrs)= (mm)= (mm)= NT -</pre>	200.80 5.00 0.91 (5.00 0.34 0.06 8.00 97.13 98.13 0.99	1 (ii)	.25.06 5.00 3.83 (ii) 5.00 0.25 0.01 8.00 61.28 98.13 0.62	TOT* 0. 8 90 98	TALS* .064 (iii) 3.00 3.68 3.13 3.92	
***** WARNING: STORAG (i) CN PROCEDU CN* = 8 (ii) TIME STEP THAN THE S (iii) PEAK FLOW	E COEFF. RE SELECTI 2.0 Ia (DT) SHOUI TORAGE COI DOES NOT :	IS SMALLER ED FOR PER = Dep. St LD BE SMAL EFFICIENT. INCLUDE BA	THAN VIOUS orage LER OR	TIME STEP! LOSSES: (Above) E EQUAL I IF ANY.			
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area Total Ir	(ha)= 0 np(%)= 75	0.09	Dir. Conn.	(%)= 7	75.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.07 1.00 1.00 24.79 0.013	6 PE	RVIOUS (1) 0.02 1.50 2.00 40.00 0.250			
NOTE: RAINF	ALL WAS TI	RANSFORMED	0 ТО	5.0 MIN. T	IME STE	EP.	
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667	RAIN mm/hr 0.59 0.60 0.60 0.61 0.61 0.63 0.63	TRAN TIME hrs 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667	ISFORME RAIN mm/hr 2.22 2.22 2.43 2.43 2.70 2.70 3.03 3.03	ED HYETOGRA ' TIME ' hrs 12.083 12.167 12.250 12.333 12.417 12.500 12.583 12.667	PH RAIN mm/hr 1.96 1.96 1.89 1.82 1.82 1.82 1.76 1.76	TIME hrs 18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67	RAIN mm/hr 0.87 0.87 0.86 0.86 0.85 0.85 0.85 0.84 0.84

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.46 3.46 4.04 4.89 4.21 8.59 14.09 39.58 200.79 54.10 25.64 16.48 12.09 9.54.10 25.64.16 12.09 9.54.10 25.64.16 12.09 9.54.10 25.64.16 12.09 9.54.20 2.000 12.09 9.54.20 2.000 12.09 9.54.20 2.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 2.5.62 12.000 12.000 12.000 2.5.62 12.000 12.000 2.5.62 12.000 2.5.62 12.000 2.5.62 12.000 2.5.62 2.5.62 2.5.62 2.200 2.20	$ \begin{array}{c} 12.750 \\ 12.833 \\ 12.917 \\ 13.000 \\ 13.083 \\ 13.167 \\ 13.250 \\ 13.333 \\ 13.417 \\ 13.500 \\ 13.583 \\ 13.667 \\ 13.750 \\ 13.833 \\ 13.917 \\ 14.000 \\ 14.083 \\ 14.167 \\ 14.250 \\ 14.333 \\ 14.417 \\ 14.500 \\ 14.583 \\ 14.667 \\ 14.500 \\ 14.583 \\ 14.667 \\ 14.500 \\ 14.583 \\ 14.667 \\ 14.500 \\ 15.083 \\ 15.167 \\ 15.000 \\ 15.083 \\ 15.167 \\ 15.500 \\ 15.583 \\ 15.667 \\ 15.583 \\ 15.667 \\ 15.583 \\ 15.667 \\ 15.583 \\ 15.667 \\ 15.583 \\ 15.667 \\ 15.750 \\ 15.583 \\ 15.667 \\ 15.750 \\ 15.583 \\ 15.667 \\ 15.750 \\ 15$	$\begin{array}{c} 1.71\\ 1.71\\ 1.65\\ 1.60\\ 1.56\\ 1.52\\ 1.48\\ 1.44\\ 1.40\\ 1.37\\ 1.37\\ 1.33\\ 1.30\\ 1.27\\ 1.24\\ 1.22\\ 1.19\\ 1.17\\ 1.14\\ 1.12\\ 1.10\\ 1.08\\ 1.06\\ 1.04\\ 1.02\\ 1.01\\ 0.99\\ 0.97\\ 0.96\\ 0.94\\ 0.93\\ 0.91\\ 0.90\\$	18.75 18.83 19.00 19.08 19.17 19.25 19.33 19.42 19.50 19.58 19.75 19.75 19.83 19.92 20.00 20.08 20.17 20.25 20.33 20.42 20.58 20.75 20.83 20.92 21.00 21.08 21.58 21.58 21.58 21.58 21.58 21.58 22.58 23.58 2	$\begin{array}{c} 0.82\\ 0.81\\ 0.80\\ 0.79\\ 0.778\\ 0.776\\ 0.776\\ 0.775\\ 0.776\\ 0.775\\ 0.775\\ 0.775\\ 0.775\\ 0.775\\ 0.775\\ 0.773\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.772\\ 0.766\\ 0.666\\ 0.666\\ 0.665\\ 0.664\\ 0.663\\ 0.662\\$
5.833 1.90	11.833	2.11	17.833	0.90	23.83	0.59
5.917 2.04	11.917	2.03	17.917	0.88	23.92	0.58
6.000 2.04	12.000	2.03	18.000	0.88	24.00	0.58

Max.Eff.Inten.(mm, over (r Storage Coeff. (r Unit Hyd. Tpeak (r Unit Hyd. peak (r PEAK FLOW (r TIME TO PEAK (l RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIEN	/hr)= nin)= nin)= cms)= cms)= (ms)= (mm)= (mm)= T =	200.80 5.00 0.84 5.00 0.34 0.04 8.00 97.13 98.13 0.99	1 (ii)	25.06 5.00 4.28 (ii) 5.00 0.23 0.01 8.00 61.28 98.13 0.62	*TOT 0. 88 98 0	ALS* 046 (iii) 3.00 3.17 3.13 0.90				
(i) CN PROCEDURI CN* = 82 (ii) TIME STEP (I THAN THE STO (iii) PEAK FLOW DO	<pre>**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 82.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</pre>									
CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	Area Total In	(ha)= 1p(%)=	0.07 69.00	Dir. Conn.	(%)= 6	59.00				
Surface Area Dep. Storage Average Slope Length Mannings n	1 (ha)= (mm)= (%)= (m)= =	MPERVIO 0.05 1.00 1.00 21.83 0.013	US PE	RVIOUS (i) 0.02 1.50 2.00 40.00 0.250						
NOTE: RAINFAI	L WAS TR	RANSFORM	ED TO	5.0 MIN. T	IME STE	P.				
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.750 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000	RAIN mm/hr 0.59 0.60 0.60 0.61 0.61 0.63 0.63 0.64 0.64 0.65 0.65 0.67 0.67 0.68 0.68 0.68 0.68 0.70 0.71 0.71 0.73 0.75	TR. TIME hrs 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.500 7.583 7.667 7.750 7.833 7.917 8.000	ANSFORME RAIN mm/hr 2.22 2.43 2.43 2.70 2.70 3.03 3.03 3.46 4.04 4.04 4.04 4.04 4.89 6.21 6.21 6.21 6.21 8.59 8.59 14.09 14.09 14.09 39.57 39.58 200.80 200.79	D HYETOGRA ' TIME ' hrs 12.083 12.167 12.250 12.333 12.417 12.500 12.583 12.667 12.750 12.750 12.833 12.917 13.000 13.083 13.167 13.250 13.333 13.417 13.500 13.583 13.667 13.750 13.833 13.917 14.000	$\begin{array}{c} \text{RAIN} \\ \text{mm/hr} \\ 1.96 \\ 1.96 \\ 1.96 \\ 1.89 \\ 1.89 \\ 1.82 \\ 1.82 \\ 1.76 \\ 1.76 \\ 1.76 \\ 1.76 \\ 1.71 \\ 1.65 \\ 1.65 \\ 1.60 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.52 \\ 1.48 \\ 1.48 \\ 1.48 \\ 1.44 \\ 1.40 \\ 1.$	TIME hrs 18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67 18.75 18.75 18.83 18.92 19.00 19.08 19.17 19.25 19.33 19.42 19.50 19.58 19.67 19.58 19.67 19.75 19.83 19.92 20.00	RAIN mm/hr 0.87 0.86 0.86 0.85 0.85 0.85 0.84 0.82 0.82 0.82 0.81 0.80 0.79 0.78 0.79 0.78 0.77 0.76 0.75 0.75			

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left \begin{array}{cccccccccc} 8.083 & 54.10 \\ 8.167 & 54.10 \\ 8.250 & 25.64 \\ 8.333 & 25.64 \\ 8.333 & 25.64 \\ 8.417 & 16.48 \\ 8.583 & 12.09 \\ 8.667 & 12.09 \\ 8.667 & 12.09 \\ 8.667 & 12.09 \\ 8.750 & 9.54 \\ 8.833 & 9.54 \\ 8.917 & 7.88 \\ 9.000 & 7.88 \\ 9.000 & 7.88 \\ 9.000 & 7.88 \\ 9.000 & 7.88 \\ 9.000 & 7.88 \\ 9.083 & 6.73 \\ 9.167 & 6.73 \\ 9.250 & 5.87 \\ 9.333 & 5.87 \\ 9.417 & 5.22 \\ 9.500 & 5.22 \\ 9.583 & 4.70 \\ 9.667 & 4.70 \\ 9.750 & 4.28 \\ 9.917 & 3.93 \\ 10.000 & 3.93 \\ 10.083 & 3.63 \\ 10.167 & 3.63 \\ 10.250 & 3.38 \\ 10.333 & 3.38 \\ 10.417 & 3.16 \\ 10.500 & 3.16 \\ 10.583 & 2.97 \\ 10.667 & 2.97 \\ 10.750 & 2.81 \\ 10.833 & 2.81 \\ 10.917 & 2.66 \\ 11.083 & 2.53 \\ 11.167 & 2.53 \\ 11.250 & 2.41 \\ 11.333 & 2.41 \\ 11.417 & 2.30 \\ 11.500 & 2.30 \\ 11.583 & 2.20 \\ 11.667 & 2.20 \\ 11.750 & 2.11 \\ 11.833 & 2.11 \\ 11.917 & 2.03 \\ 12.000 & 2.03 \\ \end{array} $	$ \begin{array}{c} 14.083 \\ 14.167 \\ 14.250 \\ 14.333 \\ 14.417 \\ 14.500 \\ 14.583 \\ 14.667 \\ 14.750 \\ 14.833 \\ 14.917 \\ 15.000 \\ 15.083 \\ 15.167 \\ 15.250 \\ 15.333 \\ 15.417 \\ 15.500 \\ 15.583 \\ 15.667 \\ 15.750 \\ 15.833 \\ 15.917 \\ 16.000 \\ 16.083 \\ 16.167 \\ 16.250 \\ 16.333 \\ 16.417 \\ 16.500 \\ 16.583 \\ 16.667 \\ 16.583 \\ 16.667 \\ 16.583 \\ 16.667 \\ 16.750 \\ 16.833 \\ 16.917 \\ 17.000 \\ 17.083 \\ 17.167 \\ 17.500 \\ 17.333 \\ 17.417 \\ 17.500 \\ 17.833 \\ 17.917 \\ 18.000 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.08 20.17 20.25 20.33 20.42 20.50 20.58 20.75 20.75 20.83 20.92 21.00 21.08 21.17 21.25 21.33 21.42 21.50 21.58 21.75 21.83 21.92 22.00 22.08 22.17 22.25 22.33 22.42 22.58 23.58 23.67 23.58 23.58 23.67 23.58 23.58 23.67 23.58 23.58 23.67 23.58 23.67 23.58 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.75 23.83 23.92 24.00	$\begin{array}{c} 0.74\\ 0.73\\ 0.73\\ 0.73\\ 0.73\\ 0.73\\ 0.73\\ 0.72\\ 1.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.69\\ 0.66\\ 0.65\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6$
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	200.80 5.00 0.78 (ii) 5.00 0.34	125.06 5.00 4.65 (ii) 5.00 0.22	*		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.03 8.00 97.13 98.13 0.99	0.01 8.00 61.28 98.13 0.62	*1014 0.0 86. 98. 0.	ALS^ 035 (iii) .00 .01 .13 .88	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CALIB STANDHYD (0026) Area (ha)= 0.02 ID= 1 DT= 5.0 min Total Imp(%)= 84.00 Dir. Conn.(%)= 84.04	00
IMPERVIOUSPERVIOUS (i)Surface Area $(ha) =$ 0.02 0.00 Dep. Storage $(mm) =$ 1.00 1.50 Average Slope $(\%) =$ 1.00 2.00 Length $(m) =$ 11.17 40.00 Mannings n $=$ 0.013 0.250	
NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIMERAINhrsmm/hr8.080.878.170.878.250.868.330.868.420.858.500.858.580.848.670.848.750.828.830.828.920.819.000.819.000.819.000.799.330.799.420.789.500.789.500.789.500.769.830.769.920.750.000.750.000.750.000.750.750.730.330.730.420.730.500.710.830.710.830.710.830.710.830.710.830.691.170.69

	3.417 3.500 3.583 3.667 3.750 3.831 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.417 9.500 9.583 9.667 9.750 9.833 9.917 10.000 10.083 10.167 10.250 10.333 10.417 10.500 10.583 10.667 10.750 10.833 10.917 11.000 11.083 11.167 11.250 11.333 11.417 11.500 11.583 11.667 11.750 11.833 11.667 11.750 11.833 11.917 12.000 12.000 12.000 11.833 11.917 12.83 11.831 12.85	5.22 4.70 4.28 4.28 3.93 3.63 3.63 3.38 3.63 3.38 3.16 2.97 2.81 2.66 2.53 2.41 2.30 2.20 2.11 2.03 2.03	15.417 15.500 15.583 15.667 15.750 15.833 15.917 16.000 16.083 16.167 16.250 16.333 16.417 16.583 16.667 16.750 16.833 16.917 17.000 17.083 17.167 17.250 17.333 17.417 17.583 17.667 17.750 17.833 17.917 18.000	1.14 1.12 1.12 1.12 1.10 1.08 1.08 1.06 1.04 1.04 1.04 1.02 1.01 1.01 0.99 0.97 0.96 0.94 0.93 0.91 0.90 0.90 0.90 0.90 0.90 0.88 0.88	21.42 21.50 21.58 21.75 21.75 21.75 22.00 22.08 22.17 22.25 22.33 22.42 22.50 22.58 22.58 22.67 22.58 22.92 23.00 23.08 23.17 23.25 23.33 23.42 23.58 23.592 23.92 23.00 23.92	0.68 0.67 0.67 0.66 0.66 0.66 0.65 0.64 0.64 0.64 0.64 0.64 0.63 0.62 0.62 0.62 0.61 0.61 0.60 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Ma Stu Un Un	x.Eff.Inten.(n over orage Coeff. it Hyd. Tpeak it Hyd. peak	nm/hr)= (min) (min)= (min)= (cms)=	200.80 5.00 0.52 (5.00 0.34	1 (ii)	37.19 5.00 3.27 (ii) 5.00 0.27	*		
PE/ TII RUI TO RUI	AK FLOW ME TO PEAK NOFF VOLUME TAL RAINFALL NOFF COEFFICII	(cms)= (hrs)= (mm)= (mm)= ENT =	0.01 8.00 97.13 98.13 0.99		0.00 8.00 66.01 98.13 0.67	01^ 0. 80 98 0	ALS* 010 (iii) 3.00).45 3.13).82	
**** W	ARNING: STORAG	GE COEFF. I	IS SMALLEF	R THAN ⁻	TIME STEP!			
() (i	(i) CN PROCEDU CN* = { ii) TIME STEP THAN THE S ii) PEAK FLOW	JRE SELECTI 35.0 Ia (DT) SHOUI STORAGE COI DOES NOT I	ED FOR PEF = Dep. St LD BE SMAL EFFICIENT. INCLUDE BA	RVIOUS torage LER OR ASEFLOW	LOSSES: (Above) EQUAL IF ANY.			
CALIB STAND ID= 1	HYD (0027) DT= 5.0 min	Area Total In	(ha)= (mp(%)= 99).40 9.00	Dir. Conn.	(%)= 8	30.00	
Su De Av	rface Area p. Storage erage Slope ngth	(ha)= (mm)= (%)= (m)=	IMPERVIOUS 0.40 1.00 1.00 51.83	S PE	RVIOUS (i) 0.00 1.50 2.00 40.00			

0.250

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	' hrs	mm/hr	hrs	mm/hr
0.083	0.59	6.083	2.22	12.083	1.96	18.08	0.87
0.167	0.59	6.16/	2.22	12.167	1.96	18.17	0.87
0.250	0.60	6.250	2.43	12.250	1.89	18.25	0.86
0.333	0.60		2.43	12.333 12.417	1.09	10.33	
0.417	0.01		2.70	12.417	1 82	18 50	0.85
0.500	0.61	6 583	3 03	12.500	1 76	18 58	0.85
0.667	0.63	6.667	3.03	12.667	1.76	18.67	0.84
0.750	0.64	6.750	3.46	12.750	1.71	18.75	0.82
0.833	0.64	6.833	3.46	12.833	1.71	18.83	0.82
0.917	0.65	6.917	4.04	12.917	1.65	18.92	0.81
1.000	0.65		4.04	13.000	1.65	19.00	0.81
1 167	0.67	7.083 7.167	4.89	113.005	1.60	19.08	0.80
1 250	0.07		6 21	13.107	1 56	19.17	0.80
1.333	0.68	7.333	6.21	13.333	1.56	19.33	0.79
1.417	0.70	7.417	8.59	13.417	1.52	19.42	0.78
1.500	0.70	7.500	8.59	13.500	1.52	19.50	0.78
1.583	0.71	7.583	14.09	13.583	1.48	19.58	0.77
1.667	0.71	7.667	14.09	13.667	1.48	19.67	0.77
1.75U	0.73		39.57	13./50	1.44	19.75	0.76
1 017	0.75	7.033 7.017	200 80	13.033 13.017	1.44	19.05	0.76
2.000	0.75	8.000	200.00	14.000	1.40	20.00	0.75
2.083	0.77	8.083	54.10	14.083	1.37	20.08	0.74
2.167	0.77	8.167	54.10	14.167	1.37	20.17	0.74
2.250	0.79	8.250	25.64	14.250	1.33	20.25	0.73
2.333	0.79	8.333	25.64		1.33	20.33	0.73
2.41/	0.81		16.48	14.41/	1.30	20.42	0.73
2.500	0.81	0.500	12 09	14.500	1.30	20.50	0.75
2.667	0.83	8.667	12.09	14.667	1.27	20.50	0.72
2.750	0.85	8.750	9.54	14.750	1.24	20.75	0.71
2.833	0.85	8.833	9.54	14.833	1.24	20.83	0.71
2.917	0.88	8.917	7.88	14.917	1.22	20.92	0.70
3.000	0.88	9.000	7.88		1.22	21.00	0.70
3.083	0.91	9.083	6.73 6.72	15.083	1.19	21.08 21.17	0.69
3 250	0.91	9.107	5 87	115 250	1 17	21.17 21.25	0.09
3.333	0.94	9.333	5.87	15.333	1.17	21.33	0.69
3.417	0.97	9.417	5.22	15.417	1.14	21.42	0.68
3.500	0.97	9.500	5.22	15.500	1.14	21.50	0.68
3.583	1.00	9.583	4.70	15.583	1.12	21.58	0.67
3.667	1.00	9.667	4.70	15.66/	1.12	21.67	0.67
3./30	1.04	9.750	4.28	15./5U		21.75 21.82	0.66
3 917	1.04 1.08	9.033	3 93	115 917		21.03	0.00
4.000	1.08	10.000	3.93	16.000	1.08	22.00	0.66
4.083	1.12	10.083	3.63	16.083	1.06	22.08	0.65
4.167	1.12	10.167	3.63	16.167	1.06	22.17	0.65
4.250	1.16	10.250	3.38	16.250	1.04	22.25	0.64
4.333	1.16	10.333	3.38	16.333	1.04	22.33	0.64
4.41/ 1 500	1.22	110.41/	3.10 2 16	110.41/	1 02	22.42	0.64
4.300	⊥.∠∠ 1)7	10.500	5.10 2 07	16 582	1 01 1	22.30	0.04
4 667	1 27	10.505	2.97	16 667		22.30	0.03

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.81 16.750 2.81 16.833 2.66 16.917 2.66 17.000 2.53 17.083 2.53 17.167 2.41 17.250 2.41 17.333 2.30 17.417 2.30 17.500 2.20 17.583 2.20 17.667 2.11 17.750 2.11 17.833 2.03 17.917 2.03 18.000	0.99 0.97 0.97 0.96 0.96 0.94 0.94 0.93 0.93 0.93 0.91 0.91 0.90 0.88 0.88	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	200.80 5.00 1.30 (i 5.00 0.33	4000.88 5.00 2.23 (1 5.00 0.30	ii)			
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.18 8.00 97.13 98.13 0.99	0.04 8.00 95.87 98.13 0.98	*10 0 9 9	TALS* .224 (iii) 8.00 6.88 8.13 0.99		
***** WARNING: STORAGE COEFF (i) CN PROCEDURE SELEC CN* = 85.0 (ii) TIME STEP (DT) SHO THAN THE STORAGE ((iii) PEAK FLOW DOES NO	. IS SMALLER CTED FOR PERV Ia = Dep. Sto OULD BE SMALL COEFFICIENT. T INCLUDE BAS	THAN TIME ST /IOUS LOSSES: prage (Above ER OR EQUAL SEFLOW IF ANY	EP!)			
ADD HYD (0028) 1 + 2 = 3 AREA QPEAK TPEAK R.V. ID1= 1 (0001): 0.12 0.064 8.00 90.68 + ID2= 2 (0002): 0.09 0.046 8.00 88.17 ID = 3 (0028): 0.22 0.111 8.00 89.61						
NOTE: PEAK FLOWS DO NO	T INCLUDE BAS	SEFLOWS IF AN	Y.			
ADD HYD (0028) 3 + 2 = 1 ID1= 3 (0028): + ID2= 2 (0026):	AREA QPEA (ha) (cms 0.22 0.111 0.02 0.010	AK TPEAK 5) (hrs) L 8.00) 8.00	R.V. (mm) 89.61 80.45			
ID = 1 (0028): NOTE: PEAK FLOWS DO NO	0.23 0.121 T INCLUDE BAS	L 8.00 SEFLOWS IF AN	88.88 Y.			

ADD HYD (0028) 1 + 2 = 3 ID1= 1 (002 + ID2= 2 (002	ARE (ha 28): 0.2 27): 0.4	A QPEAK) (cms) 3 0.121 0 0.224	TPEAK (hrs) 8.00 8.00	R.V. (mm) 88.88 96.88		
ID = 3 (002)	28): 0.6	4 0.345	8.00	93.93		
NOTE: PEAK FLOW	VS DO NOT IN	CLUDE BASEFI	LOWS IF AN	IY.		
ADD HYD (0028) 3 + 2 = 1 + ID1= 3 (002 + ID2= 2 (000 =================================	ARE (ha 28): 0.6 33): 0.0 28): 0.7 VS DO NOT IN	A QPEAK) (cms) 4 0.345 7 0.035 ====== 1 0.380 CLUDE BASEFI	TPEAK (hrs) 8.00 8.00 8.00 8.00 LOWS IF AN	R.V. (mm) 93.93 86.01 93.13		
RESERVOIR(0025) IN= 2> OUT= 1 DT= 5.0 min	OVERFLO OUTFLOW (cms) 0.0000 0.0197 0.0197 0.0279 0.0441 0.0624 0.0764 0.0882 0.0986 0.1080	W IS OFF STORAGE (ha.m.) 0.0000 0.0036 0.0036 0.0038 0.0045 0.0056 0.0056 0.0067 0.0078 0.0090 0.0101	UUTF (cm 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	LOW IS) 167 323 395 463 528 590 650 708 764 819	STORAGE (ha.m.) 0.0112 0.0134 0.0146 0.0157 0.0168 0.0179 0.0190 0.0202 0.0213 0.0224	
INFLOW : ID= 2 (OUTFLOW: ID= 1 (0028) 0025)	AREA QPI (ha) (cr 0.709 (0.709 (EAK TP ns) (h 0.380 0.166	PEAK Irs) 8.00 8.08	R.V. (mm) 93.13 93.08	
PE T3 M/	EAK FLOW IME SHIFT OF AXIMUM STOR	REDUCTION PEAK FLOW AGE USED	[Qout/Qin] (m (ha.	(%)= 43 nin)= 5 m.)= 0	.62 .00 .0199	
CALIB STANDHYD (0004) ID= 1 DT= 5.0 min	Area (Total Imp	ha)= 0.09 (%)= 33.00	Dir. Co	onn.(%)=	33.00	
Surface Area Dep. Storage Average Slope Length Mannings n	IM (ha)= (mm)= (%)= (m)= =	PERVIOUS 0.03 1.00 1.00 24.75 0.013	PERVIOUS 0.06 1.50 2.00 40.00 0.250	(i)		
NOTE: RAINE	FALL WAS TRA	NSFORMED TO	5.0 MIN	I. TIME	STEP.	

---- TRANSFORMED HYETOGRAPH ----

E ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	RAIN mm/hr 0.59 0.60 0.60 0.61 0.61 0.63 0.63 0.64 0.64	TIME hrs 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833	RAIN mm/hr 2.22 2.22 2.43 2.43 2.70 2.70 3.03 3.03 3.46 3.46	<pre>' TIME ' hrs 12.083 12.167 12.250 12.333 12.417 12.500 12.583 12.667 12.750 12.833 12.017</pre>	RAIN mm/hr 1.96 1.89 1.89 1.82 1.82 1.76 1.76 1.71 1.71	TIME hrs 18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67 18.75 18.83 18.02	RAIN mm/hr 0.87 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.82 0.82
	0.65 0.67 0.67 0.68 0.68 0.70 0.71 0.71 0.71 0.73 0.75 0.75	0.917 7.000 7.083 7.167 7.250 7.333 7.417 7.500 7.583 7.667 7.750 7.917 8.000	4.04 4.89 4.89 6.21 6.21 8.59 8.59 14.09 14.09 39.57 39.58 200.80 200.79	12.917 13.000 13.083 13.167 13.250 13.333 13.417 13.500 13.583 13.667 13.750 13.833 13.917 14.000	$\begin{array}{c} 1.65 \\ 1.65 \\ 1.60 \\ 1.56 \\ 1.56 \\ 1.52 \\ 1.52 \\ 1.48 \\ 1.48 \\ 1.48 \\ 1.44 \\ 1.44 \\ 1.40 \\ 1.$	19.00 19.08 19.17 19.25 19.33 19.42 19.50 19.58 19.67 19.75 19.83 19.92 20.00	0.81 0.80 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.76 0.75 0.75
	$\begin{array}{c} 0.77\\ 0.79\\ 0.79\\ 0.81\\ 0.81\\ 0.83\\ 0.83\\ 0.83\\ 0.85\\ 0.85\\ 0.85\\ 0.88\\ 0.91\\ 0.91\\ 0.01\\$	8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 8.917 9.000 9.083	54.10 54.10 25.64 16.48 16.48 12.09 12.09 9.54 9.54 7.88 7.88 6.73	$ \begin{bmatrix} 14.083 \\ 14.167 \\ 14.250 \\ 14.333 \\ 14.417 \\ 14.500 \\ 14.583 \\ 14.667 \\ 14.750 \\ 14.833 \\ 14.917 \\ 15.000 \\ 15.083 \\ 14.77 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.08 20.17 20.25 20.33 20.42 20.50 20.58 20.67 20.75 20.83 20.92 21.00 21.08	0.74 0.73 0.73 0.73 0.73 0.72 0.72 0.72 0.71 0.71 0.70 0.70 0.69
	$\begin{array}{c} 0.91 \\ 0.94 \\ 0.97 \\ 0.97 \\ 1.00 \\ 1.00 \\ 1.04 \\ 1.04 \\ 1.08 \\ 1.08 \\ 1.12 \\ 1.12 \\ 1.12 \\ 1.12 \end{array}$	9.167 9.250 9.333 9.417 9.500 9.583 9.667 9.750 9.750 9.833 9.917 10.000 10.083 10.167	6.73 5.87 5.22 5.22 4.70 4.28 4.28 3.93 3.63 3.63 3.63	15.167 15.250 15.333 15.417 15.500 15.583 15.667 15.750 15.833 15.917 16.000 16.083 16.167	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.17 21.25 21.33 21.42 21.50 21.58 21.67 21.75 21.75 21.83 21.92 22.00 22.08 22.08 22.17	$\begin{array}{c} 0.69\\ 0.69\\ 0.69\\ 0.68\\ 0.68\\ 0.67\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.65\\$
037037037037	1.16 1.22 1.22 1.27 1.27 1.33 1.33 1.40 1.40 1.48 1.48	10.250 10.333 10.417 10.500 10.583 10.667 10.750 10.833 10.917 11.000 11.083 11.167	3.38 3.16 3.16 2.97 2.97 2.81 2.66 2.66 2.53 2.53	16.250 16.333 16.417 16.500 16.583 16.667 16.750 16.833 16.917 17.000 17.083 17.167	$\begin{array}{c ccccc} 1.04 & \\ 1.04 & \\ 1.02 & \\ 1.02 & \\ 1.01 & \\ 1.01 & \\ 0.99 & \\ 0.99 & \\ 0.97 & \\ 0.96 & \\ 0.96 & \\ 0.96 & \end{array}$	22.25 22.33 22.42 22.50 22.58 22.67 22.75 22.83 22.92 23.00 23.08 23.17	0.64 0.64 0.64 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.61 0.61

5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000	2.41 2.30 2.30 2.20 2.20 2.11 2.11 2.03 2.03	17.250 17.333 17.417 17.500 17.583 17.667 17.750 17.833 17.917 18.000	$\begin{array}{c} 0.94 \\ 0.94 \\ 0.93 \\ 0.93 \\ 0.91 \\ 0.91 \\ 0.90 \\ 0.90 \\ 0.88 \\ 0.88 \\ 0.88 \\ \end{array}$	23.25 23.33 23.42 23.50 23.58 23.67 23.75 23.83 23.92 24.00	0.61 0.60 0.60 0.59 0.59 0.59 0.59 0.59 0.58 0.58
Max.Eff.Inten.(mm/ over (m Storage Coeff. (m Unit Hyd. Tpeak (m Unit Hyd. peak (c	nr)= 2 in) in)= in)= ns)=	200.80 5.00 0.84 5.00 0.34	1 (ii)	25.06 10.00 7.29 († 10.00 0.14	i) *TOT	-AI S*	
PEAK FLOW (C TIME TO PEAK (h RUNOFF VOLUME (TOTAL RAINFALL (RUNOFF COEFFICIENT	ns)= rs)= nm)= nm)= =	0.02 8.00 97.13 98.13 0.99		0.02 8.08 61.28 98.13 0.62	0. 8 73 98	030 (iii) 3.00 3.07 3.13 0.74)
**** WARNING: STORAGE (i) CN PROCEDURE CN* = 82. (ii) TIME STEP (D THAN THE STO (iii) PEAK FLOW DO	COEFF. IS SELECTED) Ia = T) SHOULD RAGE COEFI ES NOT ING	SMALLEF FOR PEF Dep. S ¹ BE SMAI FICIENT CLUDE BA	R THAN RVIOUS Lorage LER OR	TIME STE LOSSES: (Above) EQUAL IF ANY	EP !		
ADD HYD (0024) 1 + 2 = 3 ID1= 1 (0025) + ID2= 2 (0004)	ARE/ (ha) : 0.7 : 0.09	A QPI) (cr 1 0.10 9 0.03	EAK ns) 56 30	TPEAK (hrs) 8.08 8.00	R.V. (mm) 93.08 73.07		
ID = 3 (0024)	: 0.80	0.18	35	8.08	90.78		
NOTE: PEAK FLOWS	DO NOT IN(************************************	CLUDE BA	ASEFLOW:	S IF ANY	′. 		
CHICAGO STORM Ptotal= 60.87 mm	IDF curve	e parame	eters: /	A=1170.(B= 5.8)00 300		
	used in:	INTE	NSITY =	C= 0.8 A / (1	343 = + B)^C		
	Duration Storm tin Time to p	of stom ne step peak rat	rm = 24 = 10 tio = 0	4.00 hrs 0.00 mir 0.33	5		
TIME hrs 0.00 0.17 0.33 0.50 0.67	RAIN mm/hr 0.41 0.42 0.43 0.44 0.44	TIME hrs 6.00 6.17 6.33 6.50 6.67	RAIN mm/hr 1.50 1.64 1.81 2.02 2.30	' TIME ' hrs 12.00 12.17 12.33 12.50 12.67	RAIN mm/hr 1.32 1.28 1.24 1.20 1.16	TIME hrs 18.00 18.17 18.33 18.50 18.67	RAIN mm/hr 0.60 0.59 0.59 0.58 0.58

$\begin{array}{c} 0.83\\ 1.00\\ 1.17\\ 1.33\\ 1.50\\ 1.67\\ 1.83\\ 2.00\\ 2.17\\ 2.33\\ 2.00\\ 2.17\\ 2.33\\ 2.50\\ 2.67\\ 2.83\\ 3.00\\ 3.17\\ 3.33\\ 3.00\\ 3.17\\ 3.33\\ 3.50\\ 3.67\\ 3.83\\ 4.00\\ 4.17\\ 4.33\\ 4.50\\ 4.67\\ 4.83\\ 5.00\\ 5.17\\ 5.33\\ 5.50\\ 5.67\\ 5.83\end{array}$	$\begin{array}{c} 0.45\\ 0.46\\ 0.47\\ 0.48\\ 0.50\\ 0.51\\ 0.52\\ 0.53\\ 0.55\\ 0.56\\ 0.58\\ 0.59\\ 0.61\\ 0.63\\ 0.65\\ 0.67\\ 0.69\\ 0.71\\ 0.74\\ 0.77\\ 0.80\\ 0.83\\ 0.87\\ 0.91\\ 0.96\\ 1.01\\ 1.06\\ 1.13\\ 1.20\\ 1.28\\ 1.38\end{array}$	$\begin{array}{c} 6.83\\ 7.00\\ 7.17\\ 7.33\\ 7.50\\ 7.67\\ 7.83\\ 8.00\\ 8.17\\ 8.33\\ 8.50\\ 8.67\\ 8.83\\ 9.00\\ 9.17\\ 9.33\\ 9.00\\ 9.17\\ 9.33\\ 9.50\\ 9.67\\ 9.83\\ 10.00\\ 10.17\\ 10.33\\ 10.50\\ 10.67\\ 10.83\\ 11.00\\ 11.17\\ 11.33\\ 11.50\\ 11.67\\ 11.83\end{array}$	$\begin{array}{c} 2.68\\ 3.21\\ 4.05\\ 5.53\\ 8.89\\ 23.90\\ 114.21\\ 32.36\\ 15.80\\ 10.34\\ 7.68\\ 6.11\\ 5.09\\ 4.37\\ 3.83\\ 3.42\\ 3.09\\ 2.82\\ 2.60\\ 2.41\\ 2.25\\ 2.11\\ 1.99\\ 1.88\\ 1.70\\ 1.62\\ 1.55\\ 1.49\\ 1.43\\ 1.37\end{array}$	$12.83 \\ 13.00 \\ 13.17 \\ 13.33 \\ 13.50 \\ 13.67 \\ 13.83 \\ 14.00 \\ 14.17 \\ 14.33 \\ 14.50 \\ 14.67 \\ 14.83 \\ 15.00 \\ 15.17 \\ 15.33 \\ 15.50 \\ 15.67 \\ 15.83 \\ 16.00 \\ 16.17 \\ 16.33 \\ 16.50 \\ 16.67 \\ 16.83 \\ 17.00 \\ 17.17 \\ 17.33 \\ 17.50 \\ 17.67 \\ 17.83 \\ 18.83 \\ 18.8$	$\begin{array}{c} 1.13\\ 1.09\\ 1.06\\ 1.03\\ 1.01\\ 0.98\\ 0.96\\ 0.93\\ 0.91\\ 0.89\\ 0.87\\ 0.85\\ 0.84\\ 0.82\\ 0.87\\ 0.84\\ 0.82\\ 0.87\\ 0.77\\ 0.76\\ 0.77\\ 0.76\\ 0.77\\ 0.76\\ 0.74\\ 0.73\\ 0.72\\ 0.71\\ 0.69\\ 0.68\\ 0.67\\ 0.68\\ 0.65\\ 0.64\\ 0.63\\ 0.62\\ 0.61\\ \end{array}$	$18.83 \\19.00 \\19.17 \\19.33 \\19.50 \\19.67 \\19.83 \\20.00 \\20.17 \\20.33 \\20.50 \\20.67 \\20.83 \\21.00 \\21.17 \\21.33 \\21.50 \\21.67 \\21.83 \\22.00 \\22.17 \\22.33 \\22.50 \\22.67 \\22.83 \\23.00 \\23.17 \\23.33 \\23.50 \\23.67 \\23.83 \\$	0.56 0.56 0.54 0.53 0.52 0.52 0.52 0.52 0.50 0.49 0.49 0.49 0.48 0.47 0.46 0.46 0.45 0.45 0.44 0.45 0.44 0.43 0.42 0.42 0.42 0.41 0.41
CALIB STANDHYD (0001) ID= 1 DT= 5.0 min	Area Total In	(ha)= np(%)= 8	0.12 32.00 [Dir. Conn	. (%)= 8	32.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOU 0.10 1.00 1.00 28.75 0.013	JS PEF 2 (RVIOUS (i 0.02 1.50 2.00 40.00 0.250)		
NOTE: RAINFA	LL WAS TE	RANSFORM	ED TO	5.0 MIN.	TIME STE	EP.	
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000	RAIN mm/hr 0.41 0.42 0.42 0.42 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.45 0.45	TRA TIME hrs 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000	ANSFORMEI RAIN mm/hr 1.50 1.64 1.64 1.81 1.81 2.02 2.02 2.30 2.30 2.68 2.68	D HYETOGR ' TIME ' hrs 12.083 12.167 12.250 12.333 12.417 12.500 12.583 12.667 12.750 12.833 12.917 13.000	APH RAIN mm/hr 1.32 1.32 1.28 1.28 1.24 1.24 1.24 1.20 1.20 1.20 1.16 1.16 1.13 1.13	TIME hrs 18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67 18.75 18.83 18.92 19.00	RAIN mm/hr 0.60 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.57 0.56

1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083 3.167 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.000 4.083 4.167 4.250 4.333 4.417 4.000 4.083 4.167 4.250 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.833 5.417 5.0000 5.833 5.417 5.0000 5.833 5.833 5.417 5.833 5.833	0.47 0.48 0.48 0.50 0.551 0.552 0.553 0.556 0.558 0.556 0.556 0.556 0.557 0.556 0.557 0.556 0.557 0.556 0.63 0.657 0.667 0.699 0.777 0.777 0.80 0.837 0.991 0.966 1.016 1.13 0.228 8.88 1.99 0.996 1.016 1.13 1.228 1.38 1.38 1.38 1.52 0.557 0.556 0.557 0.	$\begin{array}{c} 7.250\\ 7.333\\ 7.417\\ 7.500\\ 7.583\\ 7.667\\ 7.750\\ 7.833\\ 7.917\\ 8.000\\ 8.083\\ 8.167\\ 8.250\\ 8.333\\ 8.167\\ 8.250\\ 8.333\\ 8.417\\ 8.500\\ 8.583\\ 8.667\\ 8.750\\ 8.833\\ 8.917\\ 9.000\\ 9.083\\ 9.167\\ 9.250\\ 9.333\\ 9.417\\ 9.500\\ 9.583\\ 9.667\\ 9.750\\ 9.583\\ 9.667\\ 9.750\\ 9.583\\ 9.667\\ 9.750\\ 9.583\\ 9.667\\ 9.750\\ 9.583\\ 9.917\\ 10.000\\ 10.083\\ 10.167\\ 10.250\\ 10.333\\ 10.417\\ 10.500\\ 10.583\\ 10.667\\ 10.750\\ 10.583\\ 10.667\\ 10.750\\ 10.833\\ 10.917\\ 11.000\\ 11.683\\ 11.67\\ 11.58\\ 1.58\\ 1.$	4.05 4.05 5.53 8.89 23.91 114.216 32.350 15.800 10.348 7.68 6.111 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 10.34 1.437 1.62 2.252 2.111 1.999 1.888 1.700 1.622 1.555 1.499 1.433 1.37 1.37	13.250 13.333 13.417 13.500 13.583 13.667 13.750 13.833 13.917 14.000 14.083 14.167 14.250 14.333 14.417 14.583 14.667 14.750 14.833 14.917 15.000 15.083 15.167 15.250 15.333 15.417 15.583 15.667 15.750 15.833 15.667 15.750 15.833 15.917 16.000 16.333 16.417 16.500 16.583 16.417 16.500 16.583 16.667 16.750 16.833 16.417 17.083 17.167 17.083 17.167 17.583 17.677 17.583 17.677 17.583 17.677 17.583 17.917 18.000 54.30 54.30	$\begin{array}{c} 1.06\\ 1.03\\ 1.01\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.88\\ 0.88\\ 0.88\\ 0.88\\ 0.79\\ 0.77\\ 0.76\\ 0.74\\ 0.73\\ 0.72\\ 0.72\\ 0.66\\$	19.25 19.33 19.42 19.50 19.58 19.67 19.75 19.83 19.92 20.00 20.08 20.17 20.25 20.33 20.42 20.58 20.67 20.58 20.67 20.75 20.83 20.92 21.00 21.08 21.17 21.25 21.33 21.42 21.50 21.58 21.67 21.58 21.67 21.58 21.67 22.58 22.00 22.08 22.00 22.08 22.00 22.58 22.58 22.50 22.58 23.58	0.55 0.54 0.54 0.54 0.54 0.53 0.52 0.52 0.52 0.52 0.552 0.552 0.550 0.500 0.499 0.499 0.499 0.499 0.499 0.499 0.460 0.460 0.460 0.444 0.444 0.444 0.443 0.422
Storage Coeff. (mi	n)=	1.15	(ii)	4.80 (ii)			

Unit Hyd. Tpeak (m Unit Hyd. peak (c	in)= 5. ms)= 0.	00 5 34 0	.00 .22		
PEAK FLOW (C TIME TO PEAK (h RUNOFF VOLUME (TOTAL RAINFALL (RUNOFF COEFFICIENT	ms)= 0. rs)= 8. mm)= 59. mm)= 60. = 0.	03 0 00 8 87 30 87 60 98 0	*TC .00 C .00 .62 5 .87 6 .50	DTALS* D.035 (iii) 8.00 54.60 50.87 0.90	
***** WARNING: STORAGE	COEFF. IS SMA	LLER THAN TI	ME STEP!		
(i) CN PROCEDURE CN* = 82. (ii) TIME STEP (D THAN THE STC (iii) PEAK FLOW DC	SELECTED FOR 0 Ia = Dep T) SHOULD BE RAGE COEFFICI ES NOT INCLUD	PERVIOUS LOS . Storage (/ SMALLER OR EG ENT. E BASEFLOW I	SSES: Above) QUAL F ANY.		
CALIB STANDHYD (0002) ID= 1 DT= 5.0 min	Area (ha)= Total Imp(%)=	0.09 75.00 Di	r. Conn.(%)=	75.00	
Surface Area (Dep. Storage (Average Slope Length Mannings n	IMPERV ha)= 0. mm)= 1. (%)= 1. (m)= 24. = 0.0	IOUS PERV 07 0 00 1 00 2 79 40 13 0.7	IOUS (i) .02 .50 .00 .00 250		
NOTE: RAINFAL	L WAS TRANSFO	RMED TO 5.0	O MIN. TIME ST	ΓEP.	
	·	TRANSFORMED	HYETOGRAPH		
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333	RAINTIMmm/hrhr 0.41 6.08 0.41 6.16 0.42 6.25 0.42 6.33 0.43 6.41 0.43 6.50 0.44 6.58 0.44 6.66 0.44 6.66 0.44 6.75 0.44 6.75 0.44 6.75 0.45 7.00 0.46 7.16 0.47 7.25 0.47 7.33 0.48 7.41 0.48 7.50 0.50 7.58 0.50 7.66 0.51 7.83 0.52 7.91 0.52 8.00 0.53 8.16 0.55 8.25 0.55 8.33	E RAIN ' s mm/hr ' 3 1.50 1. 7 1.50 1. 7 1.64 1. 3 1.64 1. 3 1.64 1. 7 1.81 1. 7 2.02 1. 3 2.02 1. 3 2.02 1. 3 2.02 1. 3 2.02 1. 3 2.02 1. 3 2.02 1. 7 2.02 1. 7 2.02 1. 7 2.02 1. 7 2.02 1. 7 2.030 1. 7 2.68 1. 7 3.21 1. 7 3.21 1. 7 5.53 1. 7 3.889 1. 7 14.21 1. 3 32.36 1. 7	TIMERAINhrsmm/hr 2.083 1.32 2.167 1.32 2.250 1.28 2.333 1.28 2.417 1.24 2.500 1.24 2.583 1.20 2.667 1.20 2.750 1.16 2.833 1.16 2.917 1.13 3.000 1.13 3.083 1.09 3.167 1.09 3.250 1.06 3.333 1.06 3.417 1.03 3.583 1.01 3.667 1.01 3.750 0.98 3.833 0.98 3.917 0.96 4.000 0.96 4.083 0.93 4.167 0.93 4.333 0.91	N TIME hrs 18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67 18.75 18.75 18.83 18.92 19.00 19.08 19.17 19.25 19.33 19.42 19.33 19.42 19.50 19.58 19.58 19.58 19.67 19.58 19.67 19.75 19.83 19.92 20.00 20.08 20.17 20.25 20.33	RAIN mm/hr 0.60 0.59 0.59 0.59 0.59 0.59 0.58 0.57 0.56 0.56 0.56 0.56 0.55 0.55 0.55 0.55

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.417 10.3 8.500 10.3 8.500 10.3 8.583 7.6 8.667 7.6 8.750 6.1 8.833 6.1 8.917 5.0 9.000 5.0 9.333 3.8 9.917 2.6 10.000 2.6 10.000 2.6 10.000 2.6 10.000 2.1 10.583 1.9 10.667 1.9 10.750 1.8 10.917 1.7 11.083 1.7 11.083 1.7 11.583 1.4 11.750 1.4 11.917 1.3 12.000 1.3	$\begin{array}{c} 4 & 14.417 \\ 4 & 14.500 \\ 8 & 14.583 \\ 8 & 14.667 \\ 1 & 14.750 \\ 1 & 14.833 \\ 9 & 14.917 \\ 9 & 15.000 \\ 7 & 15.083 \\ 7 & 15.167 \\ 3 & 15.250 \\ 3 & 15.333 \\ 2 & 15.417 \\ 2 & 15.500 \\ 9 & 15.667 \\ 2 & 15.750 \\ 2 & 15.750 \\ 2 & 15.833 \\ 0 & 15.917 \\ 0 & 16.000 \\ 1 & 16.083 \\ 1 & 16.167 \\ 5 & 16.250 \\ 5 & 16.333 \\ 1 & 16.417 \\ 1 & 16.500 \\ 9 & 16.583 \\ 9 & 16.667 \\ 8 & 16.750 \\ 8 & 16.917 \\ 1 & 16.833 \\ 8 & 16.917 \\ 8 & 17.000 \\ 0 & 17.083 \\ 0 & 17.167 \\ 2 & 17.250 \\ 2 & 17.333 \\ 5 & 17.417 \\ 5 & 17.500 \\ 9 & 17.667 \\ 3 & 17.917 \\ 7 & 18.000 \\ \end{array}$	0.89 0.89 0.87 0.87 0.87 0.85 0.85 0.84 0.82 0.82 0.82 0.82 0.79 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.72 0.72 0.72 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61	20.42 20.50 20.58 20.75 20.75 20.83 20.92 21.00 21.08 21.17 21.25 21.50 21.58 21.67 21.75 21.67 21.75 21.83 21.92 22.00 22.08 22.17 22.25 22.33 22.42 22.50 22.58 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 22.58 22.50 23.58 23.00 23.08 23.17 23.25 23.33 23.42 23.50 23.58 23.67 23.58 23.50 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.58 23.67 23.75 23.83 23.92 24.00	0.50 0.50 0.50 0.49 0.47 0.47 0.47 0.46 0.46 0.465 0.455 0.444 0.444 0.444 0.443 0.433 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.421
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	114.21 5.00 1.05 (ii) 5.00 0.34	54.30 10.00 5.36 (ii) 10.00 0.16	****		
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.02 8.00 59.87 60.87 0.98	0.00 8.08 30.62 60.87 0.50	* 101 0. 52 60 (14L5* .024 (iii) 3.00 2.42).87).86	
		N TTME CTER!			

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 82.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

-	CALIB STANDHYD (0003) ID= 1 DT= 5.0 min	 Area Total I	(ha)= mp(%)= 6	0.07 59.00 I	Dir. Conn	.(%)= 6	9.00	
	Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOU 0.05 1.00 1.00 21.83 0.013	JS PEI	RVIOUS (i) 0.02 1.50 2.00 40.00 0.250)		
	NOTE: RAI	INFALL WAS T	RANSFORME	ED TO	5.0 MIN. ⁻	TIME STE	P.	
	0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750	$ \begin{array}{c} 1.50\\ 1.50\\ 1.64\\ 1.64\\ 1.81\\ 1.81\\ 2.02\\ 2.02\\ 2.30\\ 2.30\\ 2.30\\ 2.30\\ 3.30$	12.083 12.167 12.250 12.333 12.417 12.500 12.583 12.667 12.750	$\begin{array}{c cccc} 1.32 \\ 1.32 \\ 1.28 \\ 1.28 \\ 1.24 \\ 1.24 \\ 1.20 \\ 1.20 \\ 1.20 \\ 1.16 \\ 1.16 \\ \end{array}$	18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67 18.75	0.60 0.59 0.59 0.59 0.59 0.59 0.58 0.58 0.58
	0.8 0.9 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	533 0.44 917 0.45 900 0.45 903 0.46 167 0.46 250 0.47 333 0.47 417 0.48 500 0.48 583 0.50 567 0.50 750 0.51 833 0.51 917 0.52	6.835 6.917 7.000 7.083 7.167 7.250 7.333 7.417 7.583 7.667 7.750 7.833 7.917	2.30 2.68 2.68 3.21 4.05 4.05 5.53 5.53 8.89 23.90 23.91 114.21	12.833 12.917 13.000 13.083 13.167 13.250 13.333 13.417 13.500 13.583 13.667 13.750 13.833 13.917	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.83 18.92 19.00 19.08 19.17 19.25 19.33 19.42 19.50 19.58 19.67 19.75 19.83 19.92	0.57 0.56 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.52
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.000 8.083 8.167 8.250 8.333 8.417 8.500 8.583 8.667 8.750 8.833 8.917 9.000 9.083 9.167 9.250 9.333 9.417 9.500	114.21 32.36 32.35 15.80 15.80 10.34 10.34 7.68 7.68 6.11 6.11 5.09 4.37 4.37 3.83 3.83 3.42 3.42	14.000 14.083 14.167 14.250 14.333 14.417 14.500 14.583 14.667 14.750 14.833 14.917 15.000 15.083 15.167 15.250 15.333 15.417 15.500	$\begin{array}{c cccc} 0.96 \\ 0.93 \\ 0.93 \\ 0.91 \\ 0.91 \\ 0.89 \\ 0.87 \\ 0.87 \\ 0.87 \\ 0.87 \\ 0.85 \\ 0.85 \\ 0.84 \\ 0.84 \\ 0.84 \\ 0.82 \\ 0.82 \\ 0.80 \\ 0.80 \\ 0.79 \\ 0.70$	20.00 20.08 20.17 20.25 20.33 20.42 20.50 20.58 20.67 20.75 20.83 20.92 21.00 21.08 21.17 21.25 21.33 21.42 21.50	$\begin{array}{c} 0.52\\ 0.52\\ 0.52\\ 0.51\\ 0.51\\ 0.50\\ 0.50\\ 0.50\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.47\\$
	3.	583 0.69 567 0.69	9.583	3.09	15.583	0.77	21.58	0.47

$\begin{array}{c} 3.750\\ 3.833\\ 3.917\\ 4.000\\ 4.083\\ 4.167\\ 4.250\\ 4.333\\ 4.417\\ 4.500\\ 4.583\\ 4.667\\ 4.750\\ 4.833\\ 4.667\\ 4.750\\ 4.833\\ 4.917\\ 5.000\\ 5.083\\ 5.167\\ 5.250\\ 5.333\\ 5.417\\ 5.500\\ 5.583\\ 5.667\\ 5.750\\ 5.833\\ 5.917\\ 6.000\end{array}$	0.71 0.74 0.74 0.74 0.77 0.77 0.80 0.80 0.83 0.83 0.83 0.83 0.87 0.91 0.91 0.96 1.01 1.01 1.06 1.01 1.06 1.13 1.20 1.20 1.28 1.28 1.38 1.38	$\left \begin{array}{c}9.750\\9.833\\9.917\\10.000\\10.083\\10.167\\10.250\\10.333\\10.417\\10.500\\10.583\\10.667\\10.750\\10.833\\10.917\\11.000\\11.083\\11.167\\11.250\\11.333\\11.417\\11.500\\11.583\\11.667\\11.750\\11.833\\11.917\\12.000\end{array}\right.$	2.82 2.60 2.60 2.41 2.25 2.11 1.99 1.88 1.78 1.70 1.62 1.55 1.49 1.43 1.37 1.37	$\begin{array}{c} 15.750 \\ 15.833 \\ 15.917 \\ 16.000 \\ 16.083 \\ 16.167 \\ 16.250 \\ 16.333 \\ 16.417 \\ 16.500 \\ 16.583 \\ 16.667 \\ 16.750 \\ 16.750 \\ 16.833 \\ 16.917 \\ 17.000 \\ 17.083 \\ 17.167 \\ 17.000 \\ 17.333 \\ 17.417 \\ 17.500 \\ 17.583 \\ 17.667 \\ 17.583 \\ 17.667 \\ 17.750 \\ 17.833 \\ 17.917 \\ 18.000 \end{array}$	0.76 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.69 0.69 0.68 0.68 0.67 0.66 0.66 0.65 0.65 0.65 0.64 0.63 0.63 0.62 0.61 0.61	21.75 21.83 21.92 22.00 22.08 22.17 22.25 22.50 22.58 22.67 22.75 22.75 22.83 22.92 23.00 23.08 23.17 23.25 23.33 23.42 23.50 23.58 23.58 23.50 23.58 23.50 23.58 23.50 23.58 23.50 23.58 23.50 23.58 23.50 23.58 23.67 23.58 23.50 23.58 23.50 23.58 23.50 23.58 23.67 23.75 23.83 23.92 24.00	0.46 0.46 0.45 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.42 0.41 0.41
Max.Eff.Inten.(m over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	m/hr)= (min) (min)= (min)= (cms)=	114.21 5.00 0.97 (5.00 0.34	(ii)	54.30 10.00 5.83 (ii) 10.00 0.15			
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	0.020.008.008.0859.8730.6260.8760.870.980.50		0.00 8.08 30.62 60.87 0.50	*TOTALS* 0.018 (iii) 8.00 48.77 60.87 0.80			
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!							
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 82.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 							
CALIB STANDHYD (0026)	Area	(ha) = 0).02		(0/)	24.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.02 1.00 1.00 11.17 0.013	5 PE	RVIOUS (i) 0.00 1.50 2.00 40.00 0.250	(<i>/</i> 0 <i>J</i> = 8	94.00	
NOTE: RAINF	ALL WAS T	RANSFORMED	о то	5.0 MIN. T	IME STE	EP.	

		TR	ANSFORME	D HYETOGR	APH		
TIME	RAIN	TIME	RAIN	' TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
0.083	0.41		1.50	12.083	1.32 1.22	18.08	0.60
0.107	0.41 0.42		1.50 1.64	12.107	1 28	18.17	0.00
0.333	0.42	6.333	1.64	12.333	1.28	18.33	0.59
0.417	0.43	6.417	1.81	12.417	1.24	18.42	0.59
0.500	0.43	6.500	1.81	12.500	1.24	18.50	0.59
0.583	0.44	6.583	2.02	12.583	1.20	18.58	0.58
0.667	0.44	0.00/	2.02	12.00/	1.20	18.67 18.75	0.58
0.833	0.44	6.833	2.30	12.833	1.16	18.83	0.57
0.917	0.45	6.917	2.68	12.917	1.13	18.92	0.56
1.000	0.45	7.000	2.68	13.000	1.13	19.00	0.56
1.083 1.167	0.46	7.083	3.21 3.21	13.083 13.167	1.09	19.08	0.56
1.250	0.40	7.250	4.05	13.250	1.06	19.25	0.55
1.333	0.47	7.333	4.05	13.333	1.06	19.33	0.55
1.417	0.48	7.417	5.53	13.417	1.03	19.42	0.54
1.500	0.48	7.500	5.53		1.03	19.50	0.54
1 667	0.50	7.505	8.89 8.89	113.505	1 01	19.58	0.54
1.750	0.50	7.750	23.90	13.750	0.98	19.75	0.53
1.833	0.51	7.833	23.91	13.833	0.98	19.83	0.53
1.917	0.52	7.917	114.21	13.917	0.96	19.92	0.52
2.000	0.52		114.21	14.000		20.00	0.52
2.167	0.53	8.167	32.35	14.065	0.93	20.08	0.52
2.250	0.55	8.250	15.80	14.250	0.91	20.25	0.51
2.333	0.55	8.333	15.80	14.333	0.91	20.33	0.51
2.41/	0.56		10.34	14.41/		20.42	0.50
2.500	0.50	0.000 8.583	7 68	14.500	0.09	20.50	0.50
2.667	0.58	8.667	7.68	14.667	0.87	20.67	0.50
2.750	0.59	8.750	6.11	14.750	0.85	20.75	0.49
2.833	0.59		6.11	14.833	0.85	20.83	0.49
2.917	0.61	0.91/	5.09	14.917	0.84	20.92	0.49
3.083	0.63	9.083	4.37	15.083	0.82	21.08	0.48
3.167	0.63	9.167	4.37	15.167	0.82	21.17	0.48
3.250	0.65	9.250	3.83	15.250	0.80	21.25	0.48
3.333 3 /17	0.65	9.333 0 /17	3.83	15.333 15 /17		21.33 21.42	0.48
3.500	0.67	9.500	3.42	15.500	0.79	21.50	0.47
3.583	0.69	9.583	3.09	15.583	0.77	21.58	0.47
3.667	0.69	9.667	3.09	15.667	0.77	21.67	0.47
3./50	0.71 0.71	9./50 0.833	2.82	15./50 15.833		21.75 21.83	0.46
3.917	0.71 0.74	9.917	2.60	15.917	0.74	21.03	0.40
4.000	0.74	10.000	2.60	16.000	0.74	22.00	0.46
4.083	0.77	10.083	2.41	16.083	0.73	22.08	0.45
4.16/	0.77	10.16/	2.41	16.16/	0.73	22.1/	0.45
4.230	0.80	10.230	2.25	16.333	0.72	22.23	0.45
4.417	0.83	10.417	2.11	16.417	0.71	22.42	0.44
4.500	0.83	10.500	2.11	16.500	0.71	22.50	0.44
4.583	0.87	10.583	1.99	16.583	0.69	22.58	0.44
4.007 4.750	0.07	110.00/	1.99 1.88	16.750	0.69	22.07 22.75	0.44
4.833	0.91	10.833	1.88	16.833	0.68	22.83	0.44
4.917	0.96	10.917	1.78	16.917	0.67	22.92	0.43
5.000	0.96	11.000	1.78	17.000	0.67	23.00	0.43
5.083 5.167 5.250 5.333 5.417 5.500 5.583 5.667 5.750 5.833 5.917 6.000	$1.01 \\ 1.01 \\ 1.06 \\ 1.06 \\ 1.13 \\ 1.13 \\ 1.20 \\ 1.20 \\ 1.28 \\ 1.28 \\ 1.38 \\ $	11.083 11.167 11.250 11.333 11.417 11.500 11.583 11.667 11.750 11.833 11.917 12.000	$1.70 \\ 1.70 \\ 1.62 \\ 1.62 \\ 1.55 \\ 1.55 \\ 1.49 \\ 1.49 \\ 1.43 \\ 1.37 \\ 1.37 \\ 1.37 $	17.083 17.167 17.250 17.333 17.417 17.500 17.583 17.667 17.750 17.833 17.917 18.000	0.66 0.65 0.65 0.64 0.64 0.63 0.63 0.62 0.62 0.61	23.08 23.17 23.25 23.33 23.42 23.50 23.58 23.67 23.75 23.83 23.92 24.00	0.43 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42
---	--	---	--	---	---	---	---
Max.Eff.Inten.(mr over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	n/hr)= (min) (min)= (min)= (cms)=	114.21 5.00 0.65 5.00 0.34	(ii)	61.46 5.00 4.10 (ii) 5.00 0.24	*T01	-41 6*	
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE	(cms)= (hrs)= (mm)= (mm)= NT =	0.00 8.00 59.87 60.87 0.98		0.00 8.00 33.83 60.87 0.56	45 60	005 (iii) 3.00 5.39 3.87 3.75	
***** WARNING: STORAGI (i) CN PROCEDUI CN* = 8 (ii) TIME STEP THAN THE S (iii) PEAK FLOW I	E COEFF. : RE SELECTI 5.0 Ia (DT) SHOUI FORAGE COI DOES NOT :	IS SMALLEF ED FOR PEF = Dep. S1 LD BE SMAL EFFICIENT. INCLUDE BA	R THAN RVIOUS Corage LER OR	TIME STEP! LOSSES: (Above) EQUAL IF ANY.			
CALIB STANDHYD (0027) ID= 1 DT= 5.0 min	Area Total In	(ha)= (mp(%)= 99).40).00	Dir. Conn.	(%)= 8	30.00	
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.40 1.00 1.00 51.83 0.013	5 PE	RVIOUS (i) 0.00 1.50 2.00 40.00 0.250			
NOTE: RAINF	ALL WAS TI	RANSFORME	о то	5.0 MIN. T	IME STE	EP.	
TIME hrs 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750 0.833 0.917 1.000	RAIN mm/hr 0.41 0.42 0.42 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.45 0.45	TRAN TIME hrs 6.083 6.167 6.250 6.333 6.417 6.500 6.583 6.667 6.750 6.833 6.917 7.000	NSFORME RAIN mm/hr 1.50 1.64 1.64 1.64 1.81 2.02 2.02 2.30 2.30 2.68 2.68	D HYETOGRA ' TIME ' hrs 12.083 12.167 12.250 12.333 12.417 12.500 12.583 12.667 12.750 12.833 12.917 13.000	PH RAIN mm/hr 1.32 1.32 1.28 1.28 1.24 1.24 1.20 1.20 1.16 1.16 1.13 1.13	TIME hrs 18.08 18.17 18.25 18.33 18.42 18.50 18.58 18.67 18.75 18.83 18.92 19.00	RAIN mm/hr 0.60 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.57 0.56 0.56

1.107 1.250 1.333 1.417 1.500 1.583 1.667 1.750 1.833 1.917 2.000 2.083 2.167 2.250 2.333 2.417 2.500 2.583 2.667 2.750 2.833 2.917 3.000 3.083 3.167 3.250 3.333 3.417 3.500 3.583 3.667 3.750 3.833 3.917 4.000 4.083 4.167 4.250 4.333 4.417 4.500 4.583 4.667 4.750 4.833 4.917 5.000 5.083 5.167 5.250 5.333 5.417 5.000 5.833 5.417 5.	0.47 0.48 0.50 0.51 0.522 0.553 0.556 0.558 0.556 0.558 0.556 0.633 0.657 0.667 0.699 0.771 0.777 0.80 0.833 0.991 0.966 1.016 1.13 0.228 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.3	$\begin{array}{c} 7.333 \\ 7.417 \\ 7.500 \\ 7.583 \\ 7.667 \\ 7.750 \\ 7.833 \\ 7.917 \\ 8.000 \\ 8.083 \\ 8.167 \\ 8.250 \\ 8.333 \\ 8.417 \\ 8.500 \\ 8.583 \\ 8.417 \\ 8.500 \\ 8.583 \\ 8.417 \\ 8.500 \\ 8.583 \\ 8.917 \\ 9.000 \\ 9.083 \\ 9.167 \\ 9.250 \\ 9.333 \\ 9.417 \\ 9.000 \\ 9.083 \\ 9.167 \\ 9.250 \\ 9.333 \\ 9.417 \\ 9.500 \\ 9.583 \\ 9.667 \\ 9.750 \\ 9.583 \\ 9.667 \\ 9.750 \\ 9.583 \\ 9.917 \\ 10.000 \\ 10.083 \\ 10.167 \\ 10.250 \\ 10.333 \\ 10.417 \\ 10.500 \\ 10.583 \\ 10.667 \\ 10.750 \\ 10.583 \\ 10.667 \\ 10.750 \\ 10.833 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.667 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.67 \\ 11.583 \\ 11.917 \\ 12.000 \\ 114.21 \\ 500 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.21 \\ 114.$	$\begin{array}{c} 4.05\\ 5.53\\ 5.53\\ 8.89\\ 23.90\\ 23.91\\ 114.21\\ 32.36\\ 10.34\\ 10.34\\ 10.34\\ 7.68\\ 6.11\\ 5.09\\ 5.09\\ 4.37\\ 3.83\\ 3.42\\ 2.260\\ 2.41\\ 2.25\\ 2.11\\ 1.99\\ 1.88\\ 1.70\\ 1.62\\ 1.55\\ 1.49\\ 1.43\\ 1.37\\ 1.37\\ 22\end{array}$	$\begin{array}{c} 13.333 \\ 13.417 \\ 13.500 \\ 13.583 \\ 13.667 \\ 13.750 \\ 13.833 \\ 13.917 \\ 14.000 \\ 14.083 \\ 14.167 \\ 14.250 \\ 14.333 \\ 14.417 \\ 14.500 \\ 14.583 \\ 14.467 \\ 14.583 \\ 14.667 \\ 14.583 \\ 14.667 \\ 14.583 \\ 14.667 \\ 14.583 \\ 14.667 \\ 15.000 \\ 15.083 \\ 15.167 \\ 15.250 \\ 15.333 \\ 15.417 \\ 15.500 \\ 15.583 \\ 15.417 \\ 15.500 \\ 15.583 \\ 15.667 \\ 15.750 \\ 15.583 \\ 15.667 \\ 15.750 \\ 15.833 \\ 15.917 \\ 16.000 \\ 16.083 \\ 16.167 \\ 15.583 \\ 15.917 \\ 16.500 \\ 16.583 \\ 16.667 \\ 15.750 \\ 15.833 \\ 15.917 \\ 16.500 \\ 16.583 \\ 16.667 \\ 15.750 \\ 15.833 \\ 15.917 \\ 16.500 \\ 16.583 \\ 16.667 \\ 16.583 \\ 16.667 \\ 16.583 \\ 16.667 \\ 16.750 \\ 17.833 \\ 17.417 \\ 17.500 \\ 17.833 \\ 17.417 \\ 17.500 \\ 17.583 \\ 17.677 \\ 17.500 \\ 17.583 \\ 17.677 \\ 17.500 \\ 17.583 \\ 17.677 \\ 17.500 \\ 17.583 \\ 17.677 \\ 17.500 \\ 17.583 \\ 17.917 \\ 18.000 \\ 63.68 \\ 5.00 \end{array}$	$\begin{array}{c} 1.06\\ 1.03\\ 1.01\\ 1.03\\ 1.01\\ 1.03\\ 1.01\\ 1.03\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.98\\ 0.88\\ 7.9\\ 0.88\\ 7.7\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.77\\ 0.66\\ 8.8\\ 0.66\\ 0.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.55\\ 0.54\\ 0.54\\ 0.54\\ 0.54\\ 0.53\\ 0.52\\ 0.52\\ 0.52\\ 0.552\\ 0.552\\ 0.550\\ 0.50\\ 0.50\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.49\\ 0.46\\ 0.46\\ 0.46\\ 0.45\\ 0.45\\ 0.45\\ 0.45\\ 0.45\\ 0.45\\ 0.44\\ 0.44\\ 0.43\\ 0.43\\ 0.42\\ 0.$
Storage Coeff. (mi	n)=	1.63	(ii)	2.79 (ii)			

Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	5.00 0.32	5.00 0.28	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	0.10 8.00 59.87 60.87 0.98	0.02 8.00 58.64 60.87 0.96	TOTALS* 0.127 (iii) 8.00 59.62 60.87 0.98
***** WARNING: STORAGE COEFF	. IS SMALLER THA	N TIME STEP!	
(i) CN PROCEDURE SELE CN* = 85.0 (ii) TIME STEP (DT) SH THAN THE STORAGE (iii) PEAK FLOW DOES NO	CTED FOR PERVIOU Ia = Dep. Storag OULD BE SMALLER COEFFICIENT. T INCLUDE BASEFL	S LOSSES: e (Above) OR EQUAL OW IF ANY.	
1 + 2 = 3 $ID1= 1 (0001):$ $+ ID2= 2 (0002):$	AREA QPEAK (ha) (cms) 0.12 0.035 0.09 0.024	TPEAK R.V. (hrs) (mm) 8.00 54.60 8.00 52.42	
ID = 3 (0028):	0.22 0.060	8.00 53.67	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASEFL	OWS IF ANY.	
ADD HYD (0028) 3 + 2 = 1 ID1= 3 (0028): + ID2= 2 (0026):	AREA QPEAK (ha) (cms) 0.22 0.060 0.02 0.005	5.00 5.00 0.32 0.28 *TOTALS* 0.10 0.02 0.127 (iii) 8.00 8.00 8.00 59.87 58.64 59.62 60.87 60.87 60.87 0.98 SMALLER THAN TIME STEP! FOR PERVIOUS LOSSES: Dep. Storage (Above) BE SMALLER OR EQUAL TCLENT. LUDE BASEFLOW IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 2 0.060 8.00 53.67 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 2 0.066 8.00 53.01 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 3 0.065 8.00 53.01 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 3 0.065 8.00 53.01 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 3 0.065 8.00 53.01 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 3 0.065 8.00 53.01 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 3 0.065 8.00 57.19 CLUDE BASEFLOWS IF ANY. A QPEAK TPEAK R.V. (cms) (hrs) (mm) 3 0.0132 8.00 57.19 CLUDE BASEFLOWS IF ANY.	
ID = 1 (0028):	0.23 0.065	8.00 53.01	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASEFL	OWS IF ANY.	
$ \begin{array}{c c} ADD HYD & (& 0028) \\ 1 & 1 + 2 = 3 \\ ID1 = 1 & (& 0028) \\ \end{array} $	AREA QPEAK (ha) (cms) 0.23 0.065	TPEAK R.V. (hrs) (mm) 8.00 53.01	
+ $1D2 = 2 (0027)$: ====================================	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.00 59.62	
NOTE: PEAK FLOWS DO NO	T INCLUDE BASEFL	OWS IF ANY.	
ADD HYD (0028) 3 + 2 = 1 ID1= 3 (0028): + ID2= 2 (0003):	AREA QPEAK (ha) (cms) 0.64 0.192 0.07 0.018	TPEAK R.V. (hrs) (mm) 8.00 57.19 8.00 48.77	
ID = 1 (0028):	0.71 0.210	8.00 56.34	

RESERVOIR(0025)	 0 OVERF	LOW IS OFF			
IN= 2> OUT= I DT= 5.0 min	OUTFL((cms) 0.000 0.019 0.019 0.02 0.04 0.06 0.07 0.08 0.09 0.100	DW STORAGE 0 (ha.m.) 00 0.0000 97 0.0030 97 0.0030 97 0.0030 97 0.0030 97 0.0030 941 0.0045 24 0.0056 64 0.0067 82 0.0078 86 0.0090 80 0.0101	E OUTFLO 0 (cms) 0 0.116 5 0.132 5 0.139 8 0.146 5 0.152 5 0.159 7 0.165 8 0.170 0 0.176 L 0.181	W STORA (ha.m 7 0.0 3 0.0 5 0.0 3 0.0 3 0.0 8 0.0 0 0.0 0 0.0 8 0.0 9 0.0	GE 112 134 146 157 168 179 190 202 213 224
INFLOW : ID= 2 (OUTFLOW: ID= 1 ((0028) (0025)	AREA QI (ha) (d 0.709 0.709	PEAK TPEA cms) (hrs 0.210 8 0.109 8	K R.) (m .00 5 .08 5	V. m) 6.34 6.29
	PEAK FLOW TIME SHIFT (MAXIMUM ST	REDUCTION DF PEAK FLOW DRAGE USED	Qout/Qin](%] (min (ha.m.))= 52.05)= 5.00)= 0.0108	
CALIB STANDHYD (0004) ID= 1 DT= 5.0 min	 Area Total In	(ha)= 0.09 np(%)= 33.00)) Dir. Conn	.(%)= 33.	00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	IMPERVIOUS 0.03 1.00 1.00 24.75 0.013	PERVIOUS (i 0.06 1.50 2.00 40.00 0.250)	
NOTE: RAI	INFALL WAS T	RANSFORMED TO	5.0 MIN.	TIME STEP.	
T 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	IME RAIN nrs mm/hr 083 0.41 167 0.41 250 0.42 333 0.42 417 0.43 500 0.43 583 0.44 567 0.44 533 0.44 567 0.44 500 0.45 000 0.45 000 0.45 083 0.46 167 0.46 250 0.47	TRANSFO TIME R/ hrs mm, 6.083 1 6.167 1 6.250 1 6.333 1 6.417 1 6.500 1 6.583 2 6.667 2 6.667 2 6.750 2 6.833 2 6.917 2 7.000 2 7.083 3 7.167 3	DRMED HYETOGR. AIN ' TIME /hr ' hrs .50 12.083 .50 12.167 .64 12.250 .64 12.333 .81 12.417 .81 12.500 .02 12.583 .02 12.667 .30 12.750 .30 12.917 .68 13.000 .21 13.083 .21 13.250	APH RAIN mm/hr 1.32 1 1.32 1 1.28 1 1.28 1 1.24 1 1.24 1 1.20 1 1.20 1 1.16 1 1.16 1 1.13 1 1.13 1 1.09 1 1.09 1	TIMERAINhrsmm/hr8.080.608.170.608.250.598.330.598.420.598.500.598.580.588.670.588.750.578.830.578.920.569.000.569.080.569.170.569.250.55
1.3	333 0.47 117 0.48	7.333 4 7.417 5	.05 13.333 .53 13.417	1.06 1 1.03 1	9.33 0.55 9.42 0.54

0.48 | 7.500

1.500

1.03 |

5.53 13.500

19.33 19.42 19.50

0.54

1.583 0.50 1.667 0.50 1.750 0.51 1.833 0.51 1.917 0.52 2.000 0.52 2.083 0.53 2.167 0.53 2.250 0.56 2.333 0.59 2.417 0.56 2.500 0.56 2.583 0.58 2.667 0.58 2.750 0.59 2.833 0.69 2.917 0.61 3.083 0.63 3.167 0.63 3.250 0.65 3.333 0.65 3.417 0.67 3.583 0.69 3.667 0.69 3.750 0.71 3.833 0.71 3.917 0.74 4.000 0.74 4.000 0.74 4.000 0.74 4.083 0.77 4.167 0.77 4.250 0.80 4.333 0.80 4.417 0.83 4.500 0.83 4.583 0.87 4.667 0.87 4.750 0.91 4.833 0.91 4.917 0.96 5.000 0.96 5.083 1.01 5.250 1.06 5.333 1.06 5.417 1.13 5.500 1.13 5.583 1.20 5.667 1.20 5.750 1.28 5.833 1.28 5.917 1.38	$ \begin{bmatrix} 7.583 & 8.8 \\ 7.667 & 8.8 \\ 7.750 & 23.9 \\ 7.917 & 114.2 \\ 8.000 & 114.2 \\ 8.083 & 32.3 \\ 8.167 & 32.3 \\ 8.250 & 15.8 \\ 8.333 & 15.8 \\ 8.417 & 10.3 \\ 8.500 & 10.3 \\ 8.583 & 7.6 \\ 8.667 & 7.6 \\ 8.750 & 6.1 \\ 8.833 & 6.1 \\ 8.917 & 5.0 \\ 9.000 & 5.0 \\ 9.083 & 4.3 \\ 9.167 & 4.3 \\ 9.250 & 3.8 \\ 9.333 & 3.8 \\ 9.417 & 3.4 \\ 9.500 & 3.4 \\ 9.583 & 3.0 \\ 9.667 & 3.0 \\ 9.667 & 3.0 \\ 9.750 & 2.8 \\ 9.333 & 2.8 \\ 9.917 & 2.6 \\ 10.000 & 2.6 \\ 10.083 & 2.4 \\ 10.167 & 2.4 \\ 10.250 & 2.2 \\ 10.333 & 2.2 \\ 10.417 & 2.1 \\ 10.583 & 1.9 \\ 10.667 & 1.9 \\ 10.667 & 1.9 \\ 10.667 & 1.9 \\ 10.667 & 1.9 \\ 10.583 & 1.9 \\ 10.667 & 1.9 \\ 10.583 & 1.9 \\ 10.667 & 1.9 \\ 10.583 & 1.9 \\ 10.667 & 1.9 \\ 10.583 & 1.8 \\ 10.917 & 1.7 \\ 11.000 & 1.7 \\ 11.083 & 1.7 \\ 11.083 & 1.7 \\ 11.083 & 1.7 \\ 11.083 & 1.7 \\ 11.583 & 1.4 \\ 11.67 & 1.4 \\ 11.833 & 1.4 \\ 11.917 & 1.3 \\ 12.000 & 1.3 \\ 114 & 21 \end{bmatrix} $	$\begin{array}{c} 9 & 13.583 \\ 9 & 13.667 \\ 0 & 13.750 \\ 1 & 13.917 \\ 1 & 14.000 \\ 6 & 14.083 \\ 5 & 14.167 \\ 0 & 14.250 \\ 0 & 14.333 \\ 4 & 14.417 \\ 4 & 14.500 \\ 8 & 14.583 \\ 8 & 14.667 \\ 1 & 14.750 \\ 1 & 14.833 \\ 9 & 14.917 \\ 9 & 15.000 \\ 7 & 15.083 \\ 7 & 15.167 \\ 3 & 15.250 \\ 3 & 15.333 \\ 2 & 15.417 \\ 2 & 15.500 \\ 9 & 15.583 \\ 9 & 15.667 \\ 2 & 15.750 \\ 2 & 15.750 \\ 2 & 15.917 \\ 0 & 16.003 \\ 1 & 16.083 \\ 1 & 16.167 \\ 5 & 16.250 \\ 5 & 16.333 \\ 1 & 16.417 \\ 1 & 16.500 \\ 9 & 16.667 \\ 8 & 16.750 \\ 8 & 16.917 \\ 0 & 17.083 \\ 1 & 16.833 \\ 8 & 16.917 \\ 8 & 17.000 \\ 0 & 17.083 \\ 9 & 17.67 \\ 2 & 17.583 \\ 9 & 17.667 \\ 3 & 17.917 \\ 7 & 18.000 \\ 54 & 30 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$19.58 \\ 19.67 \\ 19.75 \\ 19.83 \\ 19.92 \\ 20.08 \\ 20.23 \\ 20.25 \\ 20.32 \\ 20.58 \\ 20.58 \\ 20.58 \\ 20.58 \\ 20.58 \\ 20.75 \\ 20.83 \\ 20.92 \\ 21.08 \\ 21.17 \\ 21.25 \\ 21.32 \\ 21.58 \\ 21.58 \\ 21.67 \\ 21.58 \\ 21.58 \\ 21.67 \\ 22.25 \\ 22.58 \\ 23.67 \\ 23.88 \\ 23.5$	0.54433322221100000000000000000000000000000
Max.Eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	114.21 5.00 1.05 (ii) 5.00 0.34	54.30 15.00 10.06 (ii) 15.00 0.10	*****	C *	
PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)=	0.01 8.00 59.87	0.01 8.17 30.62	0.01 8.(39.4	13 (iii) 00 40	

TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	60.87 0.98	60.87 0.50	60.87 0.65
***** WARNING: STORAGE COEFF. I	IS SMALLER THAN	TIME STEP!	
 (i) CN PROCEDURE SELECTE CN* = 82.0 Ia (ii) TIME STEP (DT) SHOUL THAN THE STORAGE COE (iii) PEAK FLOW DOES NOT I 	ED FOR PERVIOUS = Dep. Storage LD BE SMALLER OR EFFICIENT. INCLUDE BASEFLOW	LOSSES: (Above) EQUAL IF ANY.	
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 82.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. ADD HYD (0024) 1 + 2 = 3 AREA QPEAK TPEAK R.V. ID1= 1 (0025): 0.71 0.109 8.08 56.29 + ID2= 2 (0004): 0.09 0.013 8.00 39.40 ID = 3 (0024): 0.80 0.117 8.08 54.35 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.			
ID = 3 (0024): 0.	.80 0.117	8.08 54.35	
NOTE: PEAK FLOWS DO NOT I	INCLUDE BASEFLOW	/S IF ANY.	

SANITARY SEWER DESIGN SHEET

BRONTE GREEN BLK C (CAIVAN)

REGIONAL MUNICIPALITY OF HALTON

PROJECT DETAILS

Project No: 21-696 Date: 13-May-22 Designed by: DY Checked by: JO

						RESIDENTIA	L				COMMERCI	AL/INDUSTR	IAL/INSTIT	UTIONAL				FLOW C	ALCULATION	IS					PIPE DA	ГА		-
STREET	FROM MH	то мн	AREA (ha)	ACC. AREA (ha)	UNITS (#)	DENISTY (P/ha)	DENSITY (P/unit)	РОР	ACCUM. RES. POP.	AREA (ha)	ACC. AREA (ha)	EQUIV. POP. (p/ha)	FLOW RATE (I/s/ha)	EQUIV. POP.	ACCUM. EQUIV. POP.	INFILTRATION (I/s)	TOTAL ACCUM. POP.	PEAKING FACTOR	RES. FLOW (l/s)	COMM. FLOW (l/s)	ACCUM. COMM. FLOW (l/s)	TOTAL FLOW (l/s)	SLOPE (%)	PIPE DIAMETER (mm)	FULL FLOW CAPACITY (I/s)	FULL FLOW VELOCITY (m/s)	ACTUAL VELOCITY (m/s)	PERCENT FULL (%)
BLOCK 451	BLDG	CTRL MH1A			333		1.578	526	526								526	3.96	6.6			6.6	1.00	200	32.8	1.0	0.8	20%
	CTRL MH1A	MH10A							526								526	3.96	6.6			6.6	1.11	200	34.6	1.1	0.8	19%

			DESIGN CRITE	RIA	
Min Dismeter -	200		Aug. Demostic Flow -	275.0	
Min Diameter =	200	mm	Avg. Domestic Flow $=$	275.0	I/C/a
Mannings 'n'=	0.013		Infiltration =	0.286	l/s/ha
Min. Velocity =	0.6	m/s	Max. Peaking Factor =	4.50	
Max. Velocity =	3.0	m/s	Min. Peaking Factor=	2.00	
Factor of Safety =	15	%			

NOMINAL PIPE SIZE USED

LEGEND

(0.82Ha) $\smallsetminus \checkmark$

.61Ha

SANITARY SINGLE HOUSE CONNECTION SANITARY SEWER TRIBUTARY BOUNDARY SANITARY TRIBUTARY SUB-CATCHMENT BOUNDARY PHASE LINE NOT PART OF THIS APPROVAL

BRONTE CREEK PROVINCIAL PARK				
WORT	H SERVICE RAAD	DEERFIELD GOLF COURSE	EX. SAL PUMP S	VITARY TATION Ex. WYTER
DPOGRAPHIC POGRAPHIC INFORMA -30-371-02-TOPO EGAL INFORI LCULATED M-PLAN 0JECT No. 12-30-3 0JECT No. 12-30-3 0JECT No. 12-30-3 0JECT No. 12-30-3 0JECT No. 12-30-3 0JECT No. 12-30-3 0JECT No. 12-30-3	, INFORMATIO TION PROVIDED BY -COMBINED, TOPOGR MATION PROVIDED BY J.D. B 371-00, SURVEY DA 571-09, SURVEY DA 371-09-RPLAN, SUR 371-11, SURVEY DAT 371-11-D, SURVEY DAT 371-11-F, SURVEY DAT 371-11-F, SURVEY DAT	UN J.D. BARNES L RAPHIC SURVEY BARNES LTD., TED NOVEMBEI JARNES LTD., TED AUGUST (VEY DATED S TED JANUARY DATED DECEME DATED APRIL 2 ICTE	TD., PROJECT N Y DATED MAY 25 R 29, 2018. D9, 2017, EPTEMBER 14, 2 2, 2018. BER 04, 2018. 29, 2019.	o. , 2017. 017,
BENCHMARK N LEVATIONS SHOWN ON THI DAKVILLE BENCHMARK No. 12. 12. 20-08-21 T.M. 11. 19-06-21 W.L. 10. 19-03-29 W.L. 9. 19-03-13 W.L. 8. 19-02-12 W.L. 7. 18-11-19 W.L. 6. 18-11-06 W.L. 5. 18-10-09 W.L. 4 18-09-12 W.L	IO. 101 S PLAN ARE RELATED TO 101, HAVING A PUBLISHED AS-CONSTRUCTED MOE SUBMISSION 2 3rd RESUBMISSION 2 4th SUBMISSION 7 3rd RESUBMISSION 3rd RESUBMISSION 7 MOE SUBMISSION 7 MOE SUBMISSION 7	E GEODETIC DATUM ELEVATION OF 11 SUBMISSION (L 2 AMENDMENT TO CH 2 0 REGION FOR SIGNATL TO REGION 0 REGION	LEVATION = AND ARE DERIVED FF 5.838 METRES. INDERGROUNDS O	115.838m ROM THE TOWN OF NLY)
3. 18-06-29 W.L. 2. 18-03-23 W.L. No. DATE BY ESIGNED BY: C.M.	3rd SUBMISSION TO 2nd SUBMISSION ./K.M. CHECKED BY:	REVISIONS	DATE	APPROVED
CALE HORIZ. 1:10				
A	PPROVALS		FIELD NOTES	
IUNICIPAL APPROVAL	PLE SUBJECT TO DE:	ΤΔΙΙ		
ONSTRUCTION CONF TANDARDS AND SPE	CIFICATIONS	OAKVILLE	BELL	
MANAGER OF DEVELOPMENT	ENGINEERING	DATE	TRAFFIC	WATER
			STAMP ORIGINALLY WILL LIU DATED SEP 20	SIGNED BY J, P.ENG TEMBER 30, 19
		600 A	lden Road, Suite 50	0
		Markha	am, Ontario, L3R 0E Tel. (905) 475-308 Fax. (905) 475-308	7
david schaetter er Iunicipality	igineering ita		www.DSEL.c	a
				_E ₀G
EGION	Halto	ION	The Regi Municipa of Halton	onal lity
BRON	TE GREEI	N COR	PORATI	ION
	project BRONTE	GREEI 24T-1	N SUBDI 4004	VISION
SANI	TARY DF	RAINA	AGE PL	© DSEL .AN
IUNICIPAL FILE NO.	SD-XXX.X	REGION	AL FILE NO.	-1040
ROJECT NO.				

DAVID SCHAEFFER ENGINEERING LTD.										TH	E RE	GIONA	LMU	UNICIPAL		DF HALTON											SH	HEET No.	1	OF	5
600 ALDEN ROAD, SUITE 500																							Single Fami	y: 55	pph		LC	CATION		BRONTE GRE	EEN
MARKHAM, ON IARIO									C		TAE	v	C		ED	DESIC	NI I					Se	mi-detache	d: 100	pph		DDO	IF CT No.			
L3R 0E7 TEL: (005) 475 3080									3	AN	IAL	K I	0		ER	DESIG							Commerce	e: 135 al: 00	ppn		PROJ	DATE		12-601	020
EAX: (905) 475-3081												F	BRON	ITE GRE	FEN							Com	nity Servic	s 40	nnh		DESI	GNED BY		FEDRUART, Z	020
1100 (000) 110 0001																			0.0101	0.010					PPI		CHE	CKED BY	<u> </u>	N.IVL	
Note: To be conservative, industrial K _m is considered to be 1																			n (Cond	c): 0.013		h	fil.Flow (N	0.286	L/s/ha		AS-E	BUILT BY:	-	K.P.	
																				/							CHE	CKED BY:	1	D.P.	
	MA	NHOLE					TRIBUTAR	RY ARE A HE	CTARE					PO	PULATION	TRIBUTARY		AVG.	AVG.				MAX			SEWER				PIPE	
STREET			LENGTH				INCREM	MENT			TOTAL			INC	CREMENT		TOTAL	m³/s	m³/s	PEAKING	MAX	INF.	FLOW	SIZE	SLOPE	Q	VEL	. (m/s)			REMARK S
	FROM	TO	(m)	SINGLEF	F. SEMIL	TOWNHOUS	SE CONDO	COMMER	COMM. SER	6 NFILT		SINGLEF	F. SEMI.	TOWNHOUS	E CONDO	COMMERC COMM.SEP	w.	INC.	TOTAL	FACTOR	mĭ/s	mĭ/s	EXP.			m*/s	FULL	ACT.	TYPE	CLASS	-
OWA SHEET WAY			-	-	-		-		-			-	-		-					-	-	-	-	-	_				<u> </u>	+	-
Contribution From BLOCK 444 (RESIDENTIAL CONDO), Bine CON	TROL MH 7A -	2014	10.0				1 15				1.15				400		40.0	0.0016	0.0016	2 00	0.006	2 0 000	0.006	200	4.40	0.046	1.42	1.01	BVC	000.06	
Contribution From BLOCK 445 (RESIDENTIAL CONDO), Pipe CON	TROL MH 8A -	201A	11.0	-		1 22	1. 15				1.15	-	-	170	490		170	0.0016	0.0016	5 4 17	0.000	4 0.000	1 0.000	200	0.00	0.045	1.42	0.75	PVC	SDR-30	
	2014	2024	31.2			0.08				0.21	2.76			11			680	0.0000	0.002	2 3.90	0.002	4 0.000	3 0.009	2 200	0.33	0.042	0.88	0.79	PVC	SDR-35	
	202A	203A	12.1		-	0.00				0.02	2.78						680	0.0000	0.002	2 3.90	0.0084	4 0.000	3 0.009	2 200	0.58	0.032	1.03	0.88	PVC	SDR-35	
Contribution From BLOCK 445 (RESIDENTIAL CONDO), Pipe CONT	TROL MH 9A -	203A	12.3			0.41					0.41			56			56	0.0002	0.0002	2 4.30	0.0008	8 0.000	1 0.000	9 200	0.57	0.032	1.02	0.44	PVC	SDR-36	
	203A	204A	79.5			0.32					3.51			44			780	0.0001	0.0025	5 3.87	0.0096	6 0.001	0.010	5 200	0.40	0.027	0.86	0.81	PVC	SDR-35	
	204A	Ex. Trunk	8.0								3.51				-		780	0.0000	0.0025	5 3.87	0.0096	6 0.001	0.010	5 200	1.00	0.043	1.36	1.12	PVC	SDR-36	
To EXISTING SANITARY TRUNK, EX. MH 4 - EX. MH 3			-				_				3.51						780														
	_						_					-	-		-				_			-	-	_					<u> </u>		_
YELLOW ROSE CIRCLE		-			-			_							_																_
	1A	2A	83.7		-	0.45	-		-	-	0.45		-	61	-		61	0.0002	0.0002	2 4.30	0.0008	8 0.000	1 0.001	200	1.00	0.043	1.36	0.54	PVC	SDR-35	-
Contribution Errors Felture at Dass 0111/5 - 25	ZA	JA	102.8	2.40		0.48	4.00		0.24		0.93	474		00	040		120	0.0002	0.0004	4 4.21	0.001	7 0.000	3 0.002	J 200	0.55	0.032	1.01	0.55	PVC	SUR-35	
Condition to the contract of the contract role of the contract	30	04	70.0	3.10		1.07	1.88		0.34	0.12	7.44	1/1		145	812	14	1/142	0.0030	0.003	2 2 72	0.015	1 0.002	1 0.017	2 200	0.36	0.024	0.01	0.07	PVC PVC	SDP.25	
To MERTON ROAD , Pipe 9A - 10A	JM	JH	10.2		-		-			0.12	7.44						1268	0.0000	0.0040	3 3.75	0.015	1 0.002	0.017.	200	0.50	0.020	0.01	0.07	110	001-30	-
																	1200													1	
QUEENS PLATE ROAD								_													_										
Contribution from BLOCK 484 (URBAN SQUARE)										0.19	0.19						0														
	5A	7A	50.1	0.33							0.52	19					19	0.0001	0.000*	1 4.38	0.0003	3 0.000	1 0.000	4 200	1.04	0.043	1.38	0.42	PVC	SDR-35	
To MERTON ROAD, Pipe 7A - 8A			_								0.52						19														
					_		_	_																							_
	120A	12A	43.7	0.31			_	_			0.31	18	-		_		18	0.0001	0.000	1 4.39	0.0003	3 0.000	1 0.000	3 200	0.98	0.042	1.34	0.39	PVC	SDR-35	_
	12A	13A	102.5	0.74			-				1.05	41	-		-		59	0.0001	0.0002	2 4.30	0.0008	8 0.000	3 0.001	1 200	0.75	0.037	1.18	0.51	PVC	SDR-35	_
	134	89A	34.7		-		-			0.05	1.10						59	0.0000	0.0002	2 4.30	0.0008	8 0.000	3 0.001	1 200	0.72	0.036	1.15	0.52	PVC	SUR-35	
TO SAME WHILE I DOGLEVARED, THE BAR - SUR		-	-	-	-		+	-	-		1.10		+	-	-		09						-	+					<u> </u>	+	-
	35A	36A	75.6	0.46	-		-				0.46	26					26	0 0001	0.000	1 4.36	0.0004	4 0 000	1 0 000	5 200	0.89	0.040	1.28	0.43	PVC	SDR-35	
	36A	37A	85.5	0.56							1.02	31					57	0.0001	0.0002	2 4.30	0.0008	8 0.000	3 0.001	1 200	0.96	0.042	1.33	0.57	PVC	SDR-35	
	37A	56A	28.9	0.11							1.13	7			1		64	0.0000	0.0002	2 4.29	0.0009	9 0.000	3 0.001	2 200	1.04	0.043	1.38	0.59	PVC	SDR-35	
To EDWARD LEAVER TRAIL, Pipe 56A - 57A											1.13						64														
	71A	56A	72.1	0.41	_		_	_			0.41	23					23	0.0001	0.000	1 4.37	0.0003	3 0.000	1 0.000	4 200	1.75	0.056	1.80	0.52	PVC	SDR-35	_
TO EDWARD LEAVER TRAIL, Pipe 56A - 57A	-	-	-	-				-			0.41		+		-		23		_	-	-			-					<u> </u>	+	
Contribution From IRENE CRESCENT, Ring 690.4 714			_		-			-			0.00		-				54						-	-					<u> </u>	+	-
Contribution Florm Reine CRESCENT, Fipe 080X - 71X				0.05							0.90	2					- 51					-							<u> </u>		
	716	726	721	0.05	-		-				1.40	25	+				70	0.0001	0.000	3 4.27	0.001	1 0.000	1 0.001	5 200	0.51	0.030	0.97	0.40	PVC	SDR-35	
Contribution From IRENE CRESCENT, Pipe 70A - 72A		140	1 44 1	0.40		1	-				1.18	200					66	0.0001	0.000	7.61	0.001		0.001	200	5.01	0.000	0.01	0.40			
				0.16							0.16	9		T.			9														
	72A	81A	70.3	0.27	-						3.01	15					169	0.0000	0.0005	5 4.17	0.0022	2 0.000	9 0.003	1 200	1.91	0.059	1.88	0.99	PVC	SDR-35	
To CHARLES CORNWALL AVENUE , Pipe 81A - 82A		_					_				3.01						169					_							L		
							_																								
Contribution From BLOCK 500 (OPEN SPACE)	1 200	1							0.73		0.73					30	30														
	73A	74A	85.6	0.45	-			-			1.18	25	-	-	-		55	0.0001	0.0002	2 4.31	0.0008	8 0.000	3 0.001	1 200	1.02	0.043	1.37	0.57	PVC	SDR-35	
To CHARLES CORNWALL AVENUE Pine 81A - 82A	74A	81A	0.80	0.23	-		-		-	-	1.41	13	-				80	0.0000	0.0002	4.29	0.0005	9 0.000	4 0.001	3 200	0.70	0.030	1.14	0.54	PVC	SUR-30	-
the set is a set of the matching of the other open		-	1	1	-	+	-	+	-	-	1.41		-	-	-	+ +	00				-		-	-	-			-	<u> </u>	+	_
MERTON ROAD				1	1		1					1	1		+						1	1	1	1					-	+	
	6A	7A	56.5	0.48		1	-				0.48	27					27	0.0001	0.000	1 4.36	0.0004	4 0.000	1 0.000	5 200	1.70	0.056	1.77	0.54	PVC	SDR-35	
Contribution From QUEENS PLATE ROAD , Pipe 5A - 7A			-								0.52						19														
	7A	8A	69.1	0.35							1.35	20					66	0.0001	0.0002	2 4.29	0.0009	9 0.000	4 0.001	3 200	0.30	0.023	0.74	0.39	PVC	SDR-35	
	A8	9A	47.6	0.37	-						1.72	21					87	0.0001	0.0003	3 4.26	0.0012	2 0.000	5 0.001	7 200	0.36	0.026	0.81	0.45	PVC	SDR-35	
Contribution From YELLOW ROSE CIRCLE, Pipe 3A - 9A											7.44						1268														
	9A	10A	63.2	0.27	-		-				9.43	15					1370	0.0000	0.004	4 3.71	0.0162	2 0.002	7 0.018	9 200	0.35	0.025	0.80	0.88	PVC	SDR-36	
	_			-	-	-	-				-		-		-	<u> </u>			_				-	-	-			-	<u> </u>	+	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1		1	1	1	1	1	1	1	1	1	1	1	1

DAVID SCHAFFEED ENCINEEDING LTD										ты			MU		TV C													CULL	THee		05	r.
DAVID SCHAEFFER ENGINEERING LID.												GIONAL	- 100	NICIFAL			LION											SHEET	I NO:	3		0
MARKHAM ONTARIO																							Commu	Commercial	100	pph		LOCA	HON:		BRONTE GREE	2 N
L3R 0F7									S		ТΔБ	2V	S	EW/E	R		ESIG	N					Commu	ity de vice	135	pph		PROJEC'	T No:		12601	
TEL: (905) 475-3080									0		IAP		0										hf	ILFlow (NF)	: 90	pph		T NOUL CI	DATE:	ĩ	EBRILARY, 20	20
FAX: (905) 475-3081												E	RON	TE GRE	EN										40	pph		DESIGNE	D BY:		K.M.	
																				n (PVC):	0.010							CHECKE	D BY:		W.L.	
Note: To be conservative, industrial K _{av} is considered to be 1																				n (Conc)	0.013		hf	il.Flow (NF)	0.286	L/s/ha		AS-BUIL	T BY:		K.P.	
			_																					_	_			CHECKE	D BY:		D.P.	
CTDEET	MAN	HOLE		-		т	RIBUTAR	Y ARE A HEC	TARE		-			POP	ULATION	TRIBUTAR	Y		AVG.	AVG.				MAX			SEWER		_	P	IPE	
STREET	mon	70	LENGTH	SINGLEE	SEM	TOWNHOUS			COMM SERV	NEILT	TOTAL	SINGLEE	SEMI	TOWNHOLSE	CONDO	COMMERC	COMM SERV	TOTAL	m'/s	m7s	PEAKING	MAX	INF.	FLOW	SIZE	SLOPE	Q	VEL (m/s	S)	TYPE	CLASS	REMARK S
FELICITY GARDENS	TROM	10	(11)																III Ca	TOTAL	TACTOR	111/5	111/8	LAF.			111/5	TULL		TIPE	CLASS	-
	344	340A	55.9	0.45			-				0.45	25						25	0.0001	0 0001	4.37	0.0003	0.0001	0.0005	200	1.02	0.043	1.37 (0 44	PVC	SDR-35	
	340A	57A	59.8	0.26							0.71	15						40	0.0000	0.0001	4.33	0.0006	0.0002	0.0008	200	0.40	0.027	0.86 (0.37	PVC	SDR-35	
To EDWARD LEAVER TRAIL, Pipe 57A - 58A											0.71							40														
LANE 175																																<u> </u>
	39A	38A	78.8	_		0.43					0.43			59				59	0.0002	0.0002	4.30	0.0008	0.0001	0.0009	200	0.98	0.042	1.34 0).54	PVC	SDR-35	<u> </u>
	38A	48A	11.9	-		0.04	-				0.47			6				65	0.0000	0.0002	4.29	0.0009	0.0001	0.0010	200	0.84	0.039	1.24 0	J.53	PVC	SDR-35	+
TO BADGER CRESCENT, PIPE 48A - 50A				+	-		+				0.47		-					65		_					+	++			+			+
LITTLEFIELD C RESCENT			1	+	1		+	1		<u> </u>														1	1	<u>├</u> ─┤		-+	+			+
	414	404	123			0.07					0.07			10				10	0.0000	0.0000	4 41	0.0001	0.0000	0.0002	200	0.73	0.036	1.16 (0.28	PVC	SDR-35	-
	40A	52A	69.0			0.19					0.26			26				36	0.0001	0.0001	4.34	0.0005	0.0001	0.0006	200	0.70	0.036	1.14 (0.41	PVC	SDR-35	
To MERTON ROAD, Pipe 52A - 53A											0.26							36														
	41A	42A	72.2			0.33					0.33			45				45	0.0001	0.0001	4.32	0.0006	0.0001	0.0007	200	0.97	0.042	1.34 0). 50	PVC	SDR-35	
	42A	43A	10.6							0.02	0.35							45	0.0000	0.0001	4.32	0.0006	0.0001	0.0007	200	2.93	0.073	2.32 0).74	PVC	SDR-35	<u> </u>
	43A	54A	66.5		-	0.19					0.54			26				71	0.0001	0.0002	4.28	0.0010	0.0002	0.0011	200	1.29	0.048	1.54 0). 64	PVC	SDR-35	<u> </u>
To MERION ROAD, Pipe 54A - 55A	-	-	-	-	-						0.54							71		_						┝──┦						
RELTIANE			-																					-		++						-
occi canc	444	534	58.8	+		0.26	-	1			0.26			36				36	0.0001	0.0001	4 34	0.0005	0.0001	0.0006	200	1.87	0.058	1.86 (0.59	PVC	SDR-35	
To MERTON ROAD, Pipe 53A - 54A			0000	-		0.20					0.26							36	0.0001	0.0001		0.0000	0.0001	0.0000	200		0.000				001100	
BADGER CRE SCENT																																
	46A	45A	11.1			0.05					0.05			7				7	0.0000	0.0000	4.43	0.0001	0.0000	0.0001	200	1.35	0.050	1.58 0). 32	PVC	SDR-35	
	45A	49A	69.8			0.19					0.24			26				33	0.0001	0.0001	4.35	0.0005	0.0001	0.0005	200	1.36	0.050	1.58 0).51	PVC	SDR-35	
To MERTON ROAD, Pipe 49A - 50A											0.24	-	-					33		_												+
	464	474	20.0	+		0.14	+				0.14			10				10	0.0001	0.0001	4.20	0.0002	0.0000	0.0000	200	2.42	0.066	2.11 (0.51	DVC	000.05	+
	404	484	11.0	+		0.14	-	1		0.01	0.14			15				19	0.0001	0.0001	4.30	0.0003	0.0000	0.0003	200	2.42	0.000	217 0	0.52	PVC	SDR-35	
Contribution From LANE 175, Pipe 38A - 48A		TOR								0.01	0.47							65	0.0000	0.0001	1.00	0.0000	0.0000	0.0000	200	2.00	0.000	2			001100	-
	48A	50A	69.6			0.20					0.82			27				111	0.0001	0.0004	4.23	0.0015	0.0002	0.0017	200	1.05	0.044	1.39 0	0.67	PVC	SDR-35	
To MERTON ROAD, Pipe 50A - 55A											0.82							111											_			
IRENE CRESCENT	67A	68A	12.9	0.17							0.17	10						10	0.0000	0.0000	4.41	0.0001	0.0000	0.0002	200	1.09	0.045	1.42 0).34	PVC	SDR-35	<u> </u>
	68A	680A	38.1	0.26	-		-	+			0.43	15						25	0.0000	0.0001	4.37	0.0003	0.0001	0.0005	200	0.94	0.041	1.32 0	1.42	PVC	SDR-35	+
To OLIFENS PLATE ROAD Pine 714 - 724	68UA	(1A	92.2	0.4/			-	-			0.90	20						51	0.0001	0.0002	4.31	0.0007	0.0003	0.0010	200	0.53	0.031	0.99 0	1.44	PVC	SDR-35	
Contraction of the contract of the Children of			1		1		1	1			0.90						1	31			1				1	<u> </u> −		-+	+			+
	67A	69A	55.9	0.27	1			1			0.27	15						15	0,0000	0.0000	4,40	0.0002	0.0001	0.0003	200	0.81	0.038	1.22 (0.35	PVC	SDR-35	1
	69A	70A	12.1	0.17							0.44	10						25	0.0000	0.0001	4.37	0.0003	0.0001	0.0005	200	0.74	0.037	1.17 0	0.39	PVC	SDR-35	
	70A	72A	127.4	0.74							1.18	41		1				66	0.0001	0.0002	4.29	0.0009	0.0003	0.0012	200	0.53	0.031	0.99 0	0.48	PVC	SDR-35	
To QUEENS PLATE ROAD , Pipe 72A - 81A											1.18							66														
			-																													
PONDSIDE TRAIL	64A	65A	75.5	0.64	-						0.64	36	-					36	0.0001	0.0001	4.34	0.0005	0.0002	0.0007	200	1.07	0.044	1.40 0).51	PVC	SDR-26	+
To EDMARD LEAVER TRAIL, Diss. 614 (624	65A	61A	86.8	0.40			-				1.04	22						58	0.0001	0.0002	4.30	0.0008	0.0003	0.0011	200	0.39	0.027	0.85 0	1.41	PVC	SDR-26	+
TO CONTINUE CONTERTINGE, FIDE OIL FOZA			-	-			-	-		<u> </u>	1.04		-				-	58		-				-	-	\vdash		-+	+			+
IRON BRIDGE ROAD			+	-			-	1														-		-	1	\vdash		-+	+			+
	660A	66A	62.7	0.54				1			0.54	30						30	0,0001	0,0001	4.35	0.0004	0,0002	0,0006	200	1,10	0.045	1.42 0	0.48	PVC	SDR-35	+
	66A	59A	98.6	0.47				1			1.01	26						56	0.0001	0.0002	4.30	0.0008	0.0003	0.0011	200	0.41	0.027	0.87 (0.41	PVC	SDR-35	1
To EDWARD LEAVER TRAIL, Pipe 59A - 60A											1.01							56														
																										\square			\rightarrow			1
				-		<u> </u>						-	-				<u> </u>			_				-	-	\parallel			\rightarrow			<u> </u>
			+		-	<u> </u>	-	+		<u> </u>		-	-		<u> </u>											\vdash		\rightarrow	\rightarrow			+
	1	1	1	1	1	1	1	1	1	L	1	1	1				1	1	1	1	1	1	1	1	1	1 /						1

DAVID SCHAEFFER ENGINEERING LTD.										THE RE	GIONAL	L MU	NICIPALITY O	F HALTON											SH	EET No:	5	5 OF	5
600 ALDEN ROAD SUITE 500																				Circ	alo Engrity:		nah		100	ATION		BRONTE OPEEN	v
NADKUAN ONTADIO																					gre ranny.	00	ppii		LUG	CATION.		DRONTE OREEN	•
MARKHAM, UNTARIO									0			0		DEDIO						Sem	detached:	100	ppn						
L3R 0E7									5	ANIIAF	< Y	5	EWER	DESIG	N					To	winhousie:	135	pph		PROJE	ECT No:		12-601	
TEL: (905) 475-3080																				C	ommer cial:	90	pph			DATE:		FEBRUARY, 2020	0
FAX: (905) 475-3081											E	BRON	TE GREEN							Communit	Services	40	pph		DESIG	NED BY:		KM	
											-						(7) (7)								CHEC			North Control of Contr	
																	n (PVC):	0.010							CHEC	KED DT:		W.L.	
Note: To be conservative, industrial Kav is considered to be 1																	n (Conc)	: 0.013		hfil	flow (INF):	0.286	L/s/ha		AS-BI	JILT BY:		K.P.	
																									CHEC	KED BY:		D.P.	
	MAN					T	RIBUTARY	AREA HEC	TARE				POPULATION	RIBUTARY		AVG.	AVG.				MAX			SEWER				DIDE	
STREET		IIOEL	LENGTH				IN CRE M	ENT					IN CREMENT			m³/s	m ⁸ /s	PEAKING	MAX	INF.	FLOW			0	VEL (m/s)			RE MARK S
	FROM	TO	(m)	SINGLE F.	SEMI.	TO WITH OUSE	CONDO	COMMERC	COMM, SERV	INFILT	SINGLE F.	SEMI	TOWNHOUSE CONDO	COMMERC COMM. SERV	IOTAL	INC	TOTAL	FACTOR	m ³ /e	m ³ /e	FYD	SIZE	SLOPE	m ³ /e	FILL	ACT	TYPE	224.17	
SAM MULET DOUL EVADD	T ROM	10	(11)													inc.	TOTAL	TACTOR	111/3	11178	LAL			11173	TULL	Acti	1112	CLASS	
SAVY WHET BOULEVARD				_													_												
	20A	92A	37.7	0.52						0.52	29				29	0.0001	0.0001	4.36	0.0004	0.0001	0.0006	200	1.03	0.043	1.38	0.46	PVC	SDR-35	
To SAW WHET BOULEVARD, Pipe 92A - 93A										0.52					29														
Contribution From MEDTON DOAD Ding 114 994			-	-						40.40		-			4775		-												
Contribution From WERTON ROAD, Fipe Tra - bas				-						10.40					1//5		-												
Contribution From MERTON ROAD, Pipe 51A - 88A			-							1.26					532													+	
	88A	89A	72.4			0.43				0.27 12.36			59		2366	0.0002	0.0075	3.53	0.0266	0.0035	0.0301	250	0.26	0.039	0.80	0.88	PVC	SDR-35	
Contribution From QUEENS PLATE ROAD , Pipe 13A - 89A										1,10					59														
	804	00.0	145.1	0.62						14.09	35				2460	0.0001	0.0079	3.51	0.0275	0.0040	0.0315	250	0.31	0.042	0.88	0.96	PVC	SDR-35	
Contribution From ALIRREY TUROUAND TRAIL, Ding 404 - 004	034	JUM	190,1	0.02						14.00	30				2400	0.0001	0.00/0	3.31	0.0279	0.0040	0.0313	200	0.01	0.040	0.00	0.00	FVG	SURGO	
CONTRACT FIGHT ADDINET FOR QUAND TRAIL, PIDE 19A - SUA		1000	200							1.27					67		-						12 miles						
	90A	91A	34.0	0.15	\vdash					15.50	9				2536	0.0000	0.0081	3.50	0.0283	0.0044	0.0327	250	0.29	0.042	0.85	0.94	PVC	SDR-35	
	91A	92A	60.7	0.20						15.70	11				2547	0.0000	0.0081	3.50	0.0284	0.0045	0.0329	250	0.33	0.044	0.90	0.99	PVC	SDR-35	
Contribution From SAW WHET BOULEVARD, Pipe 20A - 92A										0.52					29														
Contribution From BLOCK 477 (PARK), Pine CONTROL MH 44			17.0						2.42	2.42				06	26	0.0002	0.0000	4.96	0.0040	0.0000	0.0049	200	0.73	0.026	1.46	0.60	PVC.	SDP 25	
A STATE AND A STATE AND A STATE AND A STATE AND AND AND AND AND AND AND AND AND AND	05.	05.1	17.9						213	2.13				80	00	0.0003	0.0003	4.20	0.0012	0.0000	0.0018	200	0.15	0.030	1. 10	0.00	FVC	007035	
	92A	93A	55.0	0.18						18.53	10				2672	0.0000	0.0085	3.48	0.0296	0.0053	0.0349	250	0.42	0.050	1.02	1.10	PVC	SUR-35	
	93A	94A	96.9	0.61						19.14	34				2706	0.0001	0.0086	3.48	0.0300	0.0055	0.0354	250	0.78	0.068	1.39	1.40	PVC	SDR-35	
Contribution From HYACINTH CRESCENT, Pipe 22A - 94A										1.20					67														
	04.0	05.4	79.9	0.35						20.69	20				2702	0.0001	0 0090	3.47	0.0209	0.0059	0.0269	250	0.36	0.046	0.94	1.05	PVC	SDB-26	
Contribution From LIVA CINITLI CRESCENT, Dino 274 054	514	JJA	70.0	0.55						20.03	20				2135	0.0001	0.0003	0.47	0.0500	0.0033	0.0500	200	0.50	0.040	0.34	1.05	110	0011-20	
Contribution From HEACINTH CRESCENT, FIDE 27A - 90A			-							0.93					48														
	95A	96A	131.7	0.67						22.29	37				2878	0.0001	0.0092	3.46	0.0317	0.0064	0.0381	300	0.23	0.060	0.85	0.90	PVC	SDR-26	
Contribution From MEADOWSIDE PATH, Pipe 30A - 96A										1.03					58														
	964	ARP	118.0	0.80						24 12	44				2980	0.0001	0.0095	3.44	0.0326	0.0069	0.0395	300	0.20	0.056	0.80	0.86	PVC	SDR-26	
	00.4	Fy Trunk	47.2							24.42					2000	0.0000	0.0005	2.44	0.0206	0.0060	0.0205	200	0.42	0.044	0.60	0.70	DVC	CDD 26	
TO EXISTING SAMITARY TRANK BIOS FY MUS FY MUS	30A	LA. HUIK	11.2							24.12					2300	0.0000	0.0033	3.44	0.0520	0.0003	0.0355	300	0.12	0.044	0.02	0.70	110	5014-20	
TO EXISTING SANITART TRONK, FIDE EX. WES-EX. WEZ			-	-						24.12		-			2980														
												-																	
																												1 1	
			1	1						1 1	1						1											1 1	
				+						+ +	+	+ +				+	+	-	<u> </u>									+ +	
				-	+					├ ──	+				L	 		<u> </u>	<u> </u>									+	
											1																		
					I T						1											Τ			T	Γ		1 T	
				1																								1 1	
			-	+						1 1	+	+			-		+	-						-				+ +	
					+		<u> </u>			┥──┤───	+					 			<u> </u>									+	
				1							1						-											I	
										1							1											1 1	
			1	1						<u> </u>	1	1				1	1	L										+ +	
										<u>↓ </u>	+					l		<u> </u>										+	
											1	1				L	-												
				1												1										-		1 1	
			-	-						<u>├ </u>	+						+											+ +	
										<u> </u>					<u> </u>			-										+	
				1												1												1	
			1	1							1	-				1	1							_				+ +	
										<u>↓ </u>	+							-										+ +	
				_							1																		
	7			1	I T			7			1	7								L 1	7	Τ	1	٦	T	Γ		1 T	
				1							-	-								_									
																												1 1	
																												+ +	

DAVID SCHAFFFFP ENCINEEPINC LTD									THE	REGIONA	I MI		ITY (N											SH	HEETNO		OF	5
DAVID SCHAEFFER ENGINEERING LTD.										REGIONA				Indere										1.1.10		31			BRONTE CR	
MARKHAM ONTARIO																					6	single Fami	/: 55	ppn		LO	DCATION:		DRUNTE GR	EN
1 3R OF 7				_				SAL		'A PV	S		EP	DES		N						Townhouse	a: 135	ppn		PRO	IFCT No:		43 604	
TEL: (905) 475-3080								JA		ANI	0			DL								Commercia	al: 90	pph		TROO	DATE:		FERDILARY 1	020
FAX: (905) 475-3081										F	BRON	TE GR	FEN								Commu	nity Service	s 40	oph		DESIC	GNED BY:		V M	020
																		n (PVC)	0.010					EF.S.		CHEO	CKED BY:		WI	
Note: To be conservative, industrial K _m is considered to be 1																		n (Conc)	0.013		h	fil.Flow (NF	0.286	L/s/ha		AS-B	BUILT BY:		K.P.	
																										CHEC	CKED BY:		D.P.	
	MA	NHOLE				TRIBUTA	ARY AREA HECTA	ARE				PO	PULATION	TRIBUTARY			AVG.	AVG.				MAX			SEWER			, i	IPF	
STREET		-	LENGTH			INCRE	MENT			TOTAL		INC	REMENT	· · · ·		TOTAL	m³/s	m³/s	PEAKIN	G MAX	INF.	FLOW	SIZE	SLOPE	Q	VEL	(m/s)	14		REMARK S
	FROM	TO	(m)	SINGLE F.	SEMI. TOWN	OUSE CONE	DO COMMERC CO	OMM. SERV. N	FILT	SINGLE	F. SEMI.	. TOWNHOUS	E CONDO	COMMERC CON	AM.SERV.		NC.	TOTAL	FACTO	R m³/s	m³/s	EXP.			m³/s	FULL	ACT.	TYPE	CLASS	_
Contribution from BLOCK 451 (RESIDENTIAL CONDO), Pipe CONTR	ROL MH 1A - 1	0A	11.7			0.8	5			0.85			400			400	0.0013	0.0013	4.02	0.005	1 0.000:	2 0.0054	200	1.11	0.045	1.43	0.95	PVC	SDR-35	4
	10A	11A	20.4	0.08			-			10.36 5						1775	0.0000	0.0056	3.63	0.0205	5 0.003	0.0235	5 250	0.44	0.051	1.04	1.02	PVC	SDR-35	_
	11A	88A	27.4				+ +	0	1.04	10.40			4			1775	0.0000	0.0056	3.63	0.0205	5 0.003	0.0235	5 250	0.51	0.055	1.12	1.08	PVC	SDR-35	
TO SAW WHET BOULEVARD, PIPE 88A - 89A	-	-		_						10.40	-		-			1775						+	-							
Contribution From DA DOED OPERCENT, Bins 464 404			-										_					-			-	-								
Contribution FIOTEBADGER CRESCENT, FIDE 45A - 48A										0.24						33								10.000				-		
Contribution From BA DOED OBESCENT. Bins 49A - 59A	49A	50A	44.4		0.3	0	+ +			0.44		2/				60	0.0001	0.0002	4.30	0.0008	3 0.000	1 0.0009	200	1.42	0.051	1.62	0.61	PVC	SDR-35	
Contribution From BADGER CRESCENT, FIDE 46A - 50A	504	E E A	40.0			0	+ +			0.82		06				111	0.0001	0.0006	4.15	0.000	0.000	4 0.000	200	4.52	0.050	1.60	0.00	DVC	000.05	
To EDWARD LEAVER TRAIL Pipe 554 - 564	DUA	ACC	40.0		0.	9	+ +			1.40		20				197	0.0001	0.0000	4, 10	0.0020	0.000	+ 0.0050	200	1.00	0.005	1.00	0.90	FVC	SUR-30	
To EDWARD EDITIER Healty Tipo Book Book										1.40						197														
	524	514	66.4		0.	10	+ +			0.20		20				20	0.0001	0.0001	4.24	0.000	0.000	1 0.000	200	2.35	0.065	2.00	0.62	PVC	CDD 25	-
Centribution From BLOCK 452 (RESIDENTIAL CONDO) Pine CONT	ROL MH 2A - F	51A	11.0		0.1	0 0 0	1			0.20			404			101	0.0001	0.0016	3.08	0.000	3 0.000	3 0.0064	200	1 73	0.056	1 70	1 10	PVC	SDR-35	
	514	884	44.9			0.5		0	07	1.26						532	0.0000	0.0017	3.96	0.006	7 0.000	4 0.007	200	2.90	0.073	2 31	1.46	PVC	SDR-35	-
To SAW WHET BOULEVARD, Pipe 88A - 89A	514	UUN								1.26						532	0.0000	0.0017	3.30	0.000	0.000	4 0.007	200	2.00	0.015	2.01	1.40	110	0010-00	-
										1.20						004			<u> </u>	-	1	-	-							_
Contribution From LITTLEFIELD CRESCENT, Pipe 40A - 52A										0.26						36														-
	52A	53A	43.5		0.1	0				0.46		27				63	0.0001	0.0002	4.29	0.0009	0.000	1 0.0010	200	1.79	0.057	1.82	0.68	PVC	SDR-35	
Contribution From BELT LANE, Pipe 44A - 53A										0.26						36														
	53A	54A	43.9		0.:	0				0.92		27	1			126	0.0001	0.0004	4.21	0.0017	7 0.000	3 0.0020	200	1.03	0.043	1.38	0.68	PVC	SDR-35	
Contribution From LITTLEFIELD CRESCENT, Pipe 43A - 54A										0.54						71														
	54A	55A	42.9		0.	5				1.61		21	1			218	0.0001	0.0007	4.13	0.0029	0.000	5 0.0033	3 200	1.61	0.054	1.72	0.94	PVC	SDR-35	
To EDWARD LEAVER TRAIL, Pipe 55A - 56A										1.61						218														
					0.:	2				0.22		30				30						_								
	FUT 100A	FUT 80A	100.0		0.1	9		0	.15	0.46	_	13				43	0.0000	0.0001	4.33	0.0006	0.000	1 0.0007	200	3.50	0.080	2.54	0.77	PVC	SDR-35	
To CHARLES CORNWALL AVENUE, Pipe 80A - 81A			_				_			0.46			_			43				_		_	-							
							_						_					_		_										
AUBREY TURQUAND TRAIL	_																													
	14A	16A	73.3	0.68			+ +			0.68 38		_	_			38	0.0001	0.0001	4.34	0.0005	5 0.000	2 0.0007	200	0.95	0.042	1.32	0.50	PVC	SDR-35	
	16A	17A	35.2	0.2			+ +			0.88 11	_	_	_			49	0.0000	0.0002	4.32	0.000	7 0.000	3 0.0009	200	0.43	0.028	0.89	0.40	PVC	SDR-35	_
	17A	18A	24.3				+ +	0	.05	0.93		_	_			49	0.0000	0.0002	4.32	0.000	7 0.000	3 0.0009	200	0.41	0.027	0.87	0.40	PVC	SDR-35	_
	18A	19A	14.8					0	.03	0.96		-				49	0.0000	0.0002	4.32	0.000	0.000	3 0.0009	200	0.34	0.025	0.79	0.37	PVC	SDR-35	
	19A	90A	73.5	0.31			+ +			1.27 18					_	6/	0.0001	0.0002	4.29	0.000	0.000	4 0.001	200	0.39	0.027	0.85	0.43	PVC	SDR-35	
TO SAW WHET BOOLEVARD, FIDE SUR - STA	-	-	-			_	+ +			1.27			-			6/		-	+	-	+	+	-	-	-					
HYACINTH OPESCENT	-		-				+ +						-							-	-		-							-
In Acian in Chescelar	214	228	104.5	0.76						0.76 42						42	0.0001	0.0001	1 22	0.0006	0.000	2 0.000	200	0.07	0.042	1 24	0.52	PVC	SDD-25	
	224	944	69.4	0.44			+ +			1.20 25						67	0.0001	0.0002	4 29	0.000	0.000	3 0.0013	200	0.74	0.037	1 17	0.54	PVC	SDR-35	
To SAW WHET BOULEVARD, Pipe 94A - 95A			0.4	0.44			+ +			1.20 2.0						67	0.0001	0.0002	4.25	0.000.	0.000.	0.001	200	0.74	0.007	6.07	0.04	1.10	001100	-
											1		1									1	1	1						-
																														-
	23A	24A	35.3	0.25						0.25 14						14	0.0000	0.0000	4,40	0.000	2 0.000	1 0,000:	200	1.05	0.044	1.39	0.38	PVC	SDR-35	
	24A	25A	13.7					0	.02	0.27						14	0.0000	0.0000	4.40	0.0002	2 0.000	1 0.0003	200	0.95	0.042	1.32	0.36	PVC	SDR-35	
	25A	26A	34.4					0	.07	0.34						14	0.0000	0.0000	4.40	0.0002	2 0.000	1 0.0003	3 200	0.90	0.040	1.29	0.37	PVC	SDR-35	
	26A	27A	67.2	0.42						0.76 24						38	0.0001	0.0001	4.34	0.0005	5 0.000	2 0.000	200	0.94	0.041	1.32	0.49	PVC	SDR-35	
	27A	95A	47.0	0.17						0.93 10						48	0.0000	0.0002	4.32	0.000	7 0.000	3 0.0009	200	0.85	0.039	1.25	0.52	PVC	SDR-35	
To SAW WHET BOULEVARD, Pipe 95A - 96A		1								0.93						48														
MEADOWSIDE PATH																														
	28A	29A	50.4	0.45						0.45 25	-					25	0.0001	0.0001	4.37	0.0003	3 0.000	1 0.0005	200	1.05	0.044	1.39	0.44	PVC	SDR-35	_
	29A	30A	36.8	0.34						0.79 19			1			44	0.0001	0.0001	4.33	0.0006	6 0.000	2 0.0008	200	0.43	0.028	0.89	0.39	PVC	SDR-26	_
	30A	96A	51.1	0.24						1.03 14						58	0.0000	0.0002	4.30	0.0008	3 0.000	3 0.001	200	0.35	0.025	0.80	0.40	PVC	SDR-26	
To SAW WHET BOULEVARD, Pipe 96A - 98A										1.03			+			58					-		-	-					L	
	-		1	1					_			1		+			-			-			-	-						-
MINNOW STREET	1000	1.000											-										-	5000						
	32A	58A	117.2	0.78	├			1.86		2.64 43					75	118	0.0004	0.0004	4.22	0.0016	6 0.000	3 0.0023	3 200	0.38	0.026	0.84	0.51	PVC	SDR-35	
TO EDWARD LEAVER TRAIL, Pipe 58A - 59A				1						2.64	1	1	1	1		118			1				1	1	1	1	1	1	1	1

DAVID SCHAEFFER ENGINEERING LTD.								TH	E RE	GIONA	L MU	INICIPALITY C	F HAI	LTON											SHEET No:	4	OF	5
600 ALDEN ROAD, SUITE 500																					0.010812	2 55	pph		LOCATION:		BRONTE GREF	EN .
MARKHAM. ONTARIO																					0.010812	100	pph					
L3R 0E7				-				SAN	TAR	2Y	S	FWFR	D	ESIG	N						C	135	pph		PROJECT No.		12-601	
TEL: (905) 475-3080								UAIN	171	•••											C	90	pph		DATE:	1	FEBRUARY, 20	20
FAX: (905) 475-3081										E	BRON	TE GREEN									C	40	pph		DESIGNED BY:		KM	
																	n (PVC)	0.010							CHECKED BY:		W.L.	
Note: To be conservative, industrial Kay is considered to be 1																	n (Conc	0.013		hfi	Flow (NF)	0.286	L/s/ha		AS-BUILT BY:		K.P.	-
																					in the second				CHECKED BY:		D.P.	-
	MA	NHOLE			TR	BUTARY ARE	HECTARE					POPULATION	TRIBUTAR	Y		AVG.	AVG.				MAX			SEWER		1.	DE	
STREET			LENGTH			INCREMENT			TOTAL			INCREMENT			TOTAL	m³/s	m³/s	PEAKING	MAX	INF.	FLOW	SIZE	SLOPE	Q	VEL (m/s)	"		REMARK S
	FROM	TO	(m)	SINGLE F.	SEMI. TOWNHOUSE	CONDO COM	MERC COMP	M. SERV. NFILT		SINGLEF	F. SEMI.	TOWNHOUSE CONDO	COMMERC	COMM.SERV		INC.	TOTAL	FACTOR	m³/s	m³/s	EXP.			m³/s	FULL ACT.	TYPE	CLASS	
EDWARD LEAVER TRAIL																	_									L		
Contribution From MERTON ROAD , Pipe 54A - 55A									1.61						218	1	_									<u> </u>	<u> </u>	
Contribution From MERTON ROAD , Pipe 50A - 55A			_						1.45						197											<u> </u>		
Contribution From BLOCK 4/5 (URBAN SQUARE)								0.31	0.31						0													<u> </u>
	55A	56A	72.3					0.10	3.47						415	0.0000	0.0013	4.01	0.0053	0.0010	0.0063	200	3.18	0.076	2.42 1.44	PVC	SDR-35	
Contribution From QUEENS PLATE ROAD, Pipe 37A - 56A			-				_		1.13						64											<u> </u>		
Contribution From QUEENS PLATE ROAD , Pipe 71A - 56A							_		0.41						23											-		
Contribution From FEU CITY, CARDENIC, Bing 2404 - 574	56A	5/A	69.1	0.32			_		5.33	18					520	0.0001	0.0017	3.97	0.0066	0.0015	0.0081	200	0.32	0.024	0.77 0.69	PVC	SDR-35	<u> </u>
Contribution From FELICITY GARDENS, Pipe 340A - 57A		504	72.0	0.00			_		0.71	04					40	0.0004	0.0040	2.04	0.0070	0.0040	0.0004	000	0.07	0.000	0.00 0.75	01/0	000.05	
Contribution From MINNOW STREET Bing 234 594	5/A	ABC	73.9	0.38					0.42	21					581	0.0001	0.0018	3.94	0.0073	0.0018	0.0091	200	0.37	0.026	0.83 0.75	PVC	SUR-35	
Contribution From Winning Wey STREET, Fipe 32A - 36A	504	504	047	0.44			_		2.64	05					704	0.0004	0.0000	2.00	0.0000	0.0007	0.0447	000	0.40	0.000	0.05 0.00	DVO	000.05	+
Contribution From IPON RPIDCE POAD Ring 664 504	ABC	ARC	94.7	0.44					9.50	25					124	0.0001	0.0023	3.89	0.0090	0.0027	0.0117	200	0.49	0.030	0.95 0.89	PVC	SUR-30	
Contribution From Nork BRIDGE NORD, Fipe oux - 38A	504	644	70.4	0.40			_		10.02	24					00.4	0.0001	0.0000	2.00	0.0000	0.0001	0.0120	200	0.26	0.000	0.01 0.01	DVC	000.00	-
Contribution From PONDSIDE TRAIL Pine 654 - 614	JSM	UIA	70.4	0.42					1.04	24					604 E0	0.0001	0.0020	3.00	0.0035	0.0031	0.0130	200	0.30	0.020	0.01 0.01	FVC	3014-20	
									1.04																			
	61A	62A	48.9	0.31					12.28	18					880	0.0001	0.0028	3.84	0.0108	0.0035	0.0143	200	0.39	0.027	0.85 0.86	PVC	SDR-26	
	62A	63A	47.8	0.36					12.64	20					900	0.0001	0.0029	3.83	0.0110	0.0036	0.0146	200	0.40	0.027	0.86 0.87	PVC	SDR-26	
	63A	Ex. Trunk	6.5						12.64						900	0.0000	0.0029	3.83	0.0110	0.0036	0.0146	200	0.50	0.030	0.96 0.95	PVC	SDR-26	
To EXISTING SANITARY TRUNK , Pipe Ex. MH 4 - Ex. MH 3									12.64						900													
STAG HOLLOW																										L	L	
	75A	76A	26.6	0.40					0.40	22	_				22	0.0001	0.0001	4.37	0.0003	0.0001	0.0004	200	0.94	0.041	1.32 0.42	PVC	SDR-35	
	76A	77A	38.6	0.21					0.61	12	_				34	0.0000	0.0001	4.35	0.0005	0.0002	0.0006	200	0.47	0.029	0.93 0.37	PVC	SDR-35	<u> </u>
	77A	78A	9.1	0.09			_		0.70	5					39	0.0000	0.0001	4.34	0.0005	0.0002	0.0007	200	0.66	0.035	1.10 0.44	PVC	SDR-35	
	78A	79A	40.1	0.28			_		0.98	16					55	0.0001	0.0002	4.31	0.0008	0.0003	0.0010	200	0.42	0.028	0.88 0.42	PVC	SDR-35	
	79A	82A	56.5	0.30			_		1.28	1/					72	0.0001	0.0002	4.28	0.0010	0.0004	0.0013	200	0.46	0.029	0.92 0.47	PVC	SDR-35	<u> </u>
TO CHARLES CONTRINCE AVENUE, THE B2A - B3A			-				_		1.28						12				-			-				<u> </u>	<u> </u>	-
CHARLES CORNWALL AVENUE																											-	-
		-				0	09		0.09				9		9													
Contribution From FUTURE COMMERCIAL, Pipe CONTROL MH 6A -	80A		16.5			0.	92		1.01				83		92	0.0003	0.0003	4.25	0.0012	0.0003	0.0015	200	1.00	0.043	1.36 0.63	PVC	SDR-35	
Contribution From MERTON ROAD , FUTURE Pipe 100A - 80A									0.46						43													
	80A	81A	74.0					0.37	1.84						135	0.0000	0.0004	4.21	0.0018	0.0005	0.0023	200	0.35	0.025	0.80 0.50	PVC	SDR-35	
Contribution From QUEENS PLATE ROAD , Pipe 72A - 81A									3.01						169													
Contribution From QUEENS PLATE ROAD , Pipe 74A - 81A									1.41						68											<u> </u>		
	81A	82A	72.1	0.18					6.44	10	_				382	0.0000	0.0012	4.03	0.0049	0.0018	0.0067	200	0.35	0.025	0.80 0.68	PVC	SDR-35	<u> </u>
Contribution From STAG HOLLOW, Pipe 79A - 82A							_		1.28						72													<u> </u>
	82A	83A	92.1	0.73			_		8.45	41					495	0.0001	0.0016	3.98	0.0063	0.0024	0.0087	200	0.37	0.026	0.83 0.74	PVC	SDR-35	
	83A	84A	149.9	0.97			_		9.42	54					549	0.0002	0.0017	3.95	0.0069	0.0027	0.0096	200	0.31	0.024	0.75 0.71	PVC	SDR-26	
	044	ACO	04.5	0.40					9.67	25					0/4 61E	0.0001	0.0018	3.94	0.0072	0.0028	0.0100	200	0.37	0.026	0.03 0.77	PVC	SDR-20	
	064	004	01.1	0.73					11.00	25					650	0.0001	0.0020	2.95	0.0091	0.0030	0.0107	200	0.35	0.025	0.00 0.77	PVC	SDR-20	+
	874	Ex Trunk	7.6	0.03					11.23						650	0.0001	0.0021	3.01	0.0081	0.0032	0.0113	200	1.50	0.054	171 135	PVC	SDR-26	-
To EXISTING SANITARY TRUNK , Pipe Ex. MH 4 - Ex. MH 3		Lat right							11.23						650	0.0000	0.0021	0.01	0.0001	0.0002	0.0110	200		0.001				
																												-
																										1		L
														L												<u> </u>	<u> </u>	<u> </u>
															-											<u> </u>	<u> </u>	<u> </u>
												<u> </u>								<u> </u>	<u> </u>					 	<u> </u>	+
				-					-	-	-					+						-				<u> </u>	+	+
				+	+ $+$ $+$				+	-	-	+		<u> </u>		1		<u> </u>	-	<u> </u>		-				<u> </u>	<u> </u>	+
									1	-							-			<u> </u>		<u> </u>	-			<u> </u>	<u> </u>	+
	-		1	1			_		1	+	+			-	1		-	1	1	1		-	-			<u> </u>	<u> </u>	+

TOPOGRAPHIC	C INFORMATIC) n .d. barnes i	LTD., PROJECT N	10.	
LEGAL INFOR	–combined, topogra MATION provided by j.d. ba	APHIC SURVEN	Y DATED MAY 25	o, 2017.	
PROJECT No. 12-30-3 CALCULATED R-PLAN PROJECT No. 12-30-3 PROJECT No. 12-30-3	371-00, SURVEY DATI PROVIDED BY J.D. BA 371-09, SURVEY DATI 371-09-RPLAN. SURV	ED NOVEMBEI RNES LTD., ED AUGUST (ÆY DATED S	R 29, 2018. 09, 2017, EPTEMBER 14, 2	2017.	
PROJECT No. 12-30- PROJECT No. 12-30- PROJECT No. 12-30-	371–11, SURVEÝ DATE 371–11–D, SURVEY D, 371–11–F, SURVEY D,	D JANUARY Ated Deceme Ated April 2	2, 2018. BER 04, 2018. 29, 2019.		
AS-CO	NSTRU	CTE	D		
BENCHMARK N ELEVATIONS SHOWN ON TH	IO. 101 Is plan are related to g 101. having a plipushed f	E EODETIC DATUM	LEVATION = AND ARE DERIVED F	115.838r ROM THE TOW	M N OF
12. 20-08-21 T.M. 11. 19-06-21 W.L.	AS-CONSTRUCTED S MOE SUBMISSION 2	UBMISSION (L	JNDERGROUNDS (DNLY)	
10.19-03-29W.L.9.19-03-13W.L.	3rd RESUBMISSION MOE SUBMISSION 2	ТО СН			
8. 19-02-12 W.L. 7. 18-11-19 W.L.	4th SUBMISSION TO 3rd RESUBMISSION	REGION FOR SIGNATU	JRE		
6. 18-11-06 W.L. 5. 18-10-09 W.L.	3rd RESUBMISSION 3rd SUBMISSION TO	TO REGION REGION			
4. 18-09-12 W.L. 3. 18-06-29 W.L.	MOE SUBMISSION 3rd SUBMISSION TO	TOWN			
2. 18-03-23 W.L. No. DATE BY	2nd SUBMISSION	REVISIONS		APPI	ROVED
DRAWN BY: [SCALE	D.A. CHECKED BY:	W.L. W.L.	JUNE REFERENCES	2017	
Δ			FIFLD NOTES		
MUNICIPAL APPROVAL	-				
APPROVED IN PRINCIF CONSTRUCTION CONF STANDARDS AND SPE	PLE SUBJECT TO DET ORMING TO TOWN OF ECIFICATIONS	AIL OAKVILLE	BELL	HYDRO	
MANAGER OF DEVELOPMENT		DATE		CABLE	
REGIONAL APPROVAL				WAILK	
APPROVED DESIGN OF AND REGIONAL ROAD	F SANITARY, WATER S WORKS APPROVED S	SERVICES UBJECT TO	ORIGINALLY	SIGNED	ΒY
REGION STANDARDS	& SPECIFICATIONS & A MUNICIPALITY	LOCATIONAL	WILL LIU DATED SEP	J, P.ENG TEMBER	30,
RONALD MACKENZIE (ORIGIN LEGISLATIVE AND PLANNING	NALLY SIGNED)	FEB. 15/19 DATE			
		600 A	Alden Road, Suite 50	00	
david schaeffor or	ngineering Itd	Markha	am, Ontario, L3R 0E Tel. (905) 475-308 Fax. (905) 475-308 www.DSEL	7 80 81 5a	
	iameetina ira				
		K١	/	F	
				L L NG	
REGION					
	Halton	1	The Reg Municipa	ional Ility	
<	REGIO	3N	of Halton	-	
RRON	TF GREEN	I COR	ΡΩΡΔΤ	ION	
DIVUN					
	PROJECT				
	BRONTE	GREEI	N SUBDI	VISIO	N
TITLE		241-1	TUU4	© D	SEL
SANI	TARY DE	SIGN	N SHEE	ETS	
MUNICIPAL FILE NO.		REGION	IAL FILE NO.		
PROJECT NO.	SD-XXX.X		DO	-1040	
	12-601	SHEE	T 30 OF	145	

Caivan Communities (Bronte) Ltd. Bronte Green Block C, Town of Oakville July 2023

APPENDIX B

WATER ANALYSIS

Water Analysis (To Be Completed)

Caivan Communities (Bronte) Ltd. Bronte Green Block C, Town of Oakville July 2023

APPENDIX C GEOTECHNICAL INVESTIGATION

Geotechnical Investigation (Soil-Mat Engineers & Consultants Ltd.)

Soil Engineers Ltd.

CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	PETERBOROUGH	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL: (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 440-2040	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (416) 754-8516	FAX: (705) 684-8522	FAX: (905) 725-1315	FAX: (905) 542-2769

A REPORT TO BRONTE GREEN CORPORATION

A SOIL INVESTIGATION FOR PROPOSED RESIDENTIAL DEVELOPMENT

BRONTE GREEN - 1401 BRONTE ROAD SOUTHEAST CORNER OF BRONTE ROAD AND UPPER MIDDLE ROAD

TOWN OF OAKVILLE

REFERENCE NO. 1611-S034(A)

APRIL 2017 (REVISION OF REPORT DATED JANUARY 2017)

DISTRIBUTION

- 3 Copies Bronte Green Corporation
- 1 Copy Soil Engineers Ltd. (Mississauga)
- 1 Copy Soil Engineers Ltd. (Toronto)

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE AND PROJECT DESCRIPTION	2
3.0 FIELD WORK	3
4.0 SUBSURFACE CONDITIONS	5
4.1 Topsoil	5
4.2 Earth Fill	6
4.3 Silty Clay Till	7
4.4 Sandy Silt Till and Silty Sand Till	9
4.5 Sand and Gravelly Sand	11
4.6 Silty Clay	12
4.7 Silt	14
4.8 Sandy Silt and Silty Fine Sand	16
4.9 Shale Bedrock	17
4.10 Interpretation of Refusal to Augering	20
4.11 Test Pit Subsurface Conditions	20
4.12 Compaction Characteristics of the Revealed Soils	21
5.0 GROUNDWATER CONDITIONS	25
6.0 DISCUSSION AND RECOMMENDATIONS	28
6.1 Foundations	21
6.2 Engineered Fill	
6.3 Slab On Grade	
6.4 Underground Services	
6.5 Backfilling in Trenches and Excavated Areas	40
6.6 Sidewalks Interlocking Stone Pavement and Landscaping	4 0
6.7 Pavement Design	44
6.8 Stormwater Management Pond	46
6.9 Stormwater Management Pond Outfall System	49
6 10 Bridge Foundation and Construction	52
6.11 Soil Parameters	53
6.12 Excavation	54
7.0 LIMITATIONS OF REPORT	57

Table 1 - UCS Results	19
Table 2 - Estimated Water Content for Compaction	21
Table 3 - Groundwater Levels	25
Table 4 - Pavement Design (Roads)	44
Table 5 - Pavement Design (Driveways and Driveway Aprons)	44
Table 6 - Founding Levels for SWM Pond Control Structures	48
Table 7 - Soil Characteristics for Tunnelling	50
Table 8 - Earth Pressure Coefficients for Wing Walls and Head Walls	52
Table 9 - Soil Parameters	53
Table 10 - Classification of Soils for Excavation	55

DIAGRAMS

Diagram 1 - Frost Protection Measures (Foundation)	34
Diagram 2 - Sewer Installation in Sound Shale	39
Diagram 3 - Typical Anti-Seepage Collar Details	43

ENCLOSURES

Figures 1 to 26
Figures 27 to 32
Drawing No. 1
Drawing Nos. 2 to 5
Appendix

1.0 **INTRODUCTION**

Further to the meeting held on October 27, 2016 and as per the proposal dated November 8, 2016, addressed to Mr. Sang Kim, of Bronte Green Corporation, a soil investigation was carried out at 1401 Bronte Road, in the Town of Oakville, for a proposed Residential Development.

A Geotechnical Investigation and Slope Stability Assessment was previously conducted at the site, of which the results and recommendations were presented in separate Reports, Reference No. 1207-S148. The Borehole Logs and the Borehole Location Plan of the previous investigation are included in the Appendix.

The purpose of the current investigation was to reveal the subsurface conditions and determine the engineering properties of the disclosed soils for the design and construction of the proposed project, particularly at the locations of the proposed condominium buildings, bridge, and stormwater management pond and outfall. This report, however, will focus on the subdivision, bridge, and stormwater management pond and outfall; a separate report will be provided focussing on the condominium buildings.

The geotechnical findings and resulting recommendations are presented in this Report. In addition, soil investigation was also conducted at locations specified by the hydrogeological consultant, R.J. Burnside & Associates Limited; those results are also presented in this Report.

2.0 SITE AND PROJECT DESCRIPTION

The Town of Oakville is situated on Iroquois Lake plain where a drift overburden overlies a shale bedrock which occurs at a shallow depth. The drift has been partly eroded by the past glaciation and, in places, filled with lacustrine clay, silt, sand and reworked till.

The investigated site consists of a former golf course (Saw Whet Golf Course). The old clubhouse and other structures associated with the golf course have since been demolished. The site borders the western bank of the Fourteen Mile Creek Valley on the east side of Bronte Road, south of Upper Middle Road. The site is currently comprised of man-made berms as part of the former golf course layout, with the remainder of the site around the berms being relatively flat and grass-covered. In addition, an existing pond is present in the west portion of the site.

It is understood that the proposed project consists of a residential subdivision comprising of townhouse units, detached homes and residential condominiums. A channel traverses the north portion of the site in the east-west direction; therefore, it is understood that a bridge is proposed at this crossing. In addition, a stormwater management pond is to be situated in the east portion of the site, with an outfall proposed from the pond to the creek. The development is to be provided with municipal services and roadways meeting current standards.

3.0 FIELD WORK

The field work, consisting of 26 boreholes to depths ranging from 4.9 to 20.0 m, was performed during the period between November 15 and 29, 2016, at the locations shown on the Borehole and Monitoring Well Location Plan, Drawing No. 1. The boreholes requested by R.J. Burnside & Associates Limited are labelled in accordance with their work plan provided prior to conducting the field work; these boreholes are also denoted by the letters 'RJ'. The boreholes conducted for geotechnical purposes are denoted by the letter 'S'. Refusal to augering was encountered at Boreholes S14 and S16.

The holes were advanced at intervals to the sampling depths by a track-mounted, continuous-flight power-auger machine equipped for soil sampling. Standard Penetration Tests, using the procedures described on the enclosed "List of Abbreviations and Terms", were performed at the sampling depths. The test results are recorded as the Standard Penetration Resistance (or 'N' values) of the subsoil. The relative density of the granular strata and the consistency of the cohesive strata are inferred from the 'N' values. Split-spoon samples were recovered for soil classification and laboratory testing.

A 50-mm diameter groundwater monitoring well was installed at 5 of the R.J. Burnside borehole locations, with a shallower nested well installed at 2 of the 5 locations. The suffix 'd' or 's' on the borehole logs denotes a deep or shallow nested well, respectively.

In addition, 'NQ' size (47.6 mm) rock coring was carried out in Boreholes RJMW3 and S15 to assess the quality and soundness of the encountered shale bedrock. The quality of the rock has been assessed by applying the 'Rock Quality Designation'

(RQD) classification, considering the total length of the recovered pieces 10 cm or longer against the length of the core run. The results are expressed as a percentage and are recorded on the Borehole Logs.

Furthermore, test pits were conducted at the site prior to mobilization of the drilling equipment. The information from one test pit, STP29, conducted within the proposed stormwater management pond area has been included in this report to assess the excavation requirements for the proposed pond.

The field work was supervised and the findings were recorded by a Geotechnical Technician.

The elevation at each of the borehole locations was interpreted from the spot elevations and contours shown on the provided topographic plan.

4.0 SUBSURFACE CONDITIONS

Detailed descriptions of the encountered subsurface conditions at the boreholes from the current investigation are presented on the Borehole Logs, comprising Figures 1 to 26, inclusive. The revealed stratigraphy is plotted on the Subsurface Profile, Drawing Nos. 2, 3, 4 and 5, and the engineering properties of the disclosed soils are discussed herein. In addition, the subsurface condition at the test pit location is also discussed herein.

This investigation has disclosed that beneath a veneer of topsoil, and a layer of earth fill in places, the site is generally underlain by strata of silty clay till, sandy silt till, silty sand till, fine to coarse and medium to coarse grained sand, gravelly sand, silty clay, silt, sandy silt and/or silty fine sand at various locations and depths. The soil overlies shale bedrock within the eastern portion of the site at shallow depths.

4.1 **Topsoil** (All Boreholes, except Borehole RJBH3)

The revealed topsoil layer is approximately 8 to 30 cm thick. It is dark brown in colour, indicating that it contains appreciable amounts of roots and humus. These materials are compressible under loads; therefore, the topsoil is considered to be void of engineering value. Due to its humus content, the topsoil will generate an offensive odour and may produce volatile gases under anaerobic conditions. Therefore, the topsoil must not be buried below any structures or deeper than 1.2 m below the exterior finished grade so it will not have an adverse impact on the environmental well-being of the developed area.

Topsoil thicker than that found in the boreholes may occur in places. In order to prevent overstripping, diligent control of the stripping operation will be required.

Since the topsoil is void of engineering value, it can only be used for general landscape contouring purposes. Its suitability for planting and sodding purposes can be further assessed by fertility testing.

4.2 Earth Fill (Boreholes RJMW3, RJTW1, RJBH3, S3, S8, S9, S12 and S13)

The earth fill was found beneath the topsoil layer, extending to depths ranging from $0.8\pm$ to $2.3\pm$ m below the prevailing ground surface. The earth fill consists of silty, sandy, and/or clayey material with traces of gravel and occasional topsoil/organic inclusions.

The obtained 'N' values range from 4 to 12, with a median of 7 blows per 30 cm of penetration, indicating that the earth fill was loosely placed, and has since self-consolidated in places.

The natural water content of the samples was determined and the results are plotted on the Borehole Logs; the values range from 9% to 21%, with a median of 15%, indicating that the earth fill is in a moist to wet condition.

Due to the unknown history of the earth fill, its loose density, and the presence of topsoil and organic inclusions, the fill is unsuitable for supporting any structures in its current condition. In using the fill for structural backfill, or in pavement or slabon-grade construction, it should be subexcavated, inspected, sorted free of topsoil inclusions and any deleterious materials, aerated and properly recompacted in thin lifts. If it is impractical to sort the topsoil and other deleterious materials from the fill, the fill must be wasted and replaced with properly compacted inorganic earth fill.

The fill is amorphous in structure; it will ravel and is susceptible to collapse in steep cuts, particularly if the fill is in a wet condition.

One must be aware that the samples retrieved from boreholes 10 cm in diameter may not be truly representative of the geotechnical and environmental quality of the fill, and do not indicate whether the topsoil beneath the earth fill was completely stripped. This should be further assessed by laboratory testing and/or test pits.

4.3 <u>Silty Clay Till</u> (All Boreholes, except Boreholes S9 and S17)

The silty clay till was generally encountered in the upper soil stratigraphy beneath the topsoil and/or earth fill; in some places, the till is overlain with strata of silt, sand or clay. The silty clay till consists of a random mixture of soils; the particle sizes range from clay to gravel, with the clay fraction exerting the dominant influence on its soil properties. The till is embedded with occasional wet sand and silt seams and layers, cobbles and boulders. The structure of the till is heterogeneous and amorphous, in places, indicating that it is a glacial deposit.

The till within a depth of $0.4\pm$ to $1.5\pm$ m below the prevailing ground surface is permeated with fissures, showing it has been fractured by the weathering process.

The obtained 'N' values range from 6 per 30 cm to 50 per 3 cm, with a median of 37 per 30 cm, showing the consistency of the till is firm to hard, being generally hard. The firm to stiff till is generally restricted to the weathered zone.

The Atterberg Limits of 1 representative sample and the water content of all of the silty clay till samples were determined. The results are plotted on the Borehole Logs and summarized below:

Liquid Limit	29%
Plastic Limit	17%
Natural Water Content	6% to 32% (median 12%)

The above results show that the till is a cohesive material with low plasticity. The natural water content generally lies below its plastic limit, confirming the generally hard consistency of the till as disclosed by the 'N' values.

Grain size analyses were performed on 5 representative samples of the silty clay till; the results are plotted on Figures 27 and 28.

Based on the above findings, the deduced engineering properties pertaining to the project are given below:

- High frost susceptibility and low soil-adfreezing potential.
- Low water erodibility.
- Low permeability, with an estimated coefficient of permeability of 10^{-7} cm/sec, and runoff coefficients of:

Slope	
0% - 2%	0.15
2% - 6%	0.20
6%+	0.28

• A cohesive-frictional soil, its shear strength is primarily derived from consistency and is augmented by internal friction. The strength is, therefore,

inversely dependent on the soil moisture and, to a lesser degree, directly dependent on the soil density.

- It will generally be stable in a relatively steep cut. However, prolonged exposure will allow infiltrating precipitation to saturate the soil fissures and the sand and silt seams and layers; this may lead to localized sloughing.
- A very poor pavement-supportive material, with an estimated California Bearing Ratio (CBR) value of 3% or less.
- Moderately high corrosivity to buried metal, with an estimated electrical resistivity of 3500 ohm·cm.
- 4.4 <u>Sandy Silt Till</u> (Boreholes RJMW1d, RJMW2d, S1, S3, S4, S5 and S6)
 <u>Silty Sand Till</u> (Boreholes RJMW1d, RJMW2d, RJBH1, RJBH2, RJBH3, and S1 to S12, inclusive, except Boreholes S3, S5 and S8)

The sandy silt till and silty sand till were encountered at various locations and depths, generally within the lower soil stratigraphy. The tills consist of a random mixture of soils; the particle sizes range from clay to gravel, with either the silt or sand fraction exerting the dominant influence on their soil properties. The tills are heterogeneous and amorphous, in places, with occasional wet sand and silt seams and layers, cobbles and boulders, showing they are glacial deposits.

The obtained 'N' values for the sandy silt till range from 65 per 30 cm to 50 per 10 cm, with a median of 50 per 15 cm, and the 'N' values for the silty sand till range from 5 per 30 cm to 50 per 3 cm, with a median of 50 per 13 cm. This indicates that the relative density of the tills is loose to very dense, being generally very dense. The loose silty sand till was encountered directly beneath the topsoil at one location, which has also been loosened by the weathered process.

The natural water content of the samples was determined and the results are plotted on the Borehole Logs; the values for the sandy silt till range from 6% to 18%, with a median of 10%, and the values for the silty sand till range from 6% to 15%, with a median of 8%. This indicates that the tills are in a damp to very moist, generally moist condition.

Grain size analyses were performed on 1 representative sample of the sandy silt till and 2 representative samples of the silty sand till; the results are plotted on Figure 29.

Based on the above findings, the deduced engineering properties pertaining to the project are given below:

- High frost susceptibility and moderately low water erodibility.
- Relatively low to low permeability, with an estimated coefficient of permeability of 10⁻⁵ to 10⁻⁶ cm/sec, and runoff coefficients of:

Slope	
0% - 2%	0.11 to 0.15
2% - 6%	0.16 to 0.20
6% +	0.23 to 0.28

- Frictional soils, their shear strength is primarily derived from internal friction and is augmented by cementation. Therefore, their strength is primarily soil density dependent.
- In steep cuts, they will be stable; however, under prolonged exposure, localized sheet collapse will occur, particularly in the weathered zone and where the wet sand and silt layers are prevalent.
- Fair pavement-supportive materials, with an estimated CBR value of 8% to 10%.

• Moderate to moderately low corrosivity to buried metal, with an estimated electrical resistivity of 4000 to 5000 ohm·cm.

4.5 <u>Sand</u> (Boreholes RJMW1d, RJMW2d, RJBH2, S11 and S13) and <u>Gravelly Sand</u> (Boreholes RJMW1d, RJMW2d, RJBH3, and S6 to S13, inclusive)

The sand deposits were generally encountered within the lower soil stratigraphy, except at Boreholes S11 and S13, where sand was encountered closer to the ground surface; the sands tend to extend to the maximum investigated depth at most of the borehole locations where they were encountered. The sand was primarily fine to coarse or medium to coarse grained and contained traces to some silt and gravel in places. The gravelly sand particles are subangular in shape. The sorted structure shows that the sands are glaciolacustrine deposits.

The obtained 'N' values for the sand range from 11 per 30 cm to 50 per 5 cm, with a medium of 49 per 30 cm, and the 'N' values for the gravelly sand range from 40 per 30 cm to 50 per 5 cm, with a median of 50 per 15 cm. This indicates that the relative density of the sand is compact to very dense, being generally dense, while the relative density of the gravelly sand is dense to very dense, being generally very dense.

The natural water content of the samples was determined and the results are plotted on the Borehole Logs; the values for the sand range from 6% to 18%, with a median of 12%, and the values for the gravelly sand range from 6% to 15%, with a median of 10%. This indicates that the sands are in a moist to wet, generally wet condition and are water-bearing. Due to the pervious nature of the sands, some of the water may have drained during sample retrieval and, therefore, the determined value may not represent the actual water content.

A grain size analysis was performed on 1 representative sample of the sand; the result is plotted on Figure 30.

Based on the above findings, the deduced engineering properties pertaining to the project are given below:

- Low to moderate frost susceptibility, depending on the silt content.
- High water erodibility.
- Susceptible to migration through small openings under seepage pressure.
- Pervious, with an estimated coefficient of permeability of 10⁻² to 10⁻³ cm/sec, and runoff coefficients of:

Slope	
0% - 2%	0.04
2% - 6%	0.09
6%+	0.13

- Frictional soils, their shear strength is derived from internal friction and is soil density dependent.
- In steep cuts, the sands will slough; they will run with seepage and boil under a piezometric head of 0.4 m.
- Good pavement-supportive materials, with an estimated CBR value of 25% to 30%.
- Low corrosivity to buried metal, with an estimated electrical resistivity of 6500 to 7000 ohm·cm.

4.6 Silty Clay (Boreholes RJMW1d, S8, S11 and S17)

The silty clay was found in the upper zone of the soil stratigraphy, in most cases beneath the topsoil or earth fill layers; it contains a trace to some sand and is laminated with

occasional wet silt seams and layers. The laminated structure shows that the silty clay is a lacustrine deposit.

The clay within a depth of $0.8\pm$ to $1.0\pm$ m below the prevailing ground surface, in places, is permeated with fissures, showing it has been fractured by the weathering process.

The obtained 'N' values range from 7 per 30 cm to 50 per 10 cm, with a median of 13 per 30 cm, indicating that the consistency of the silty clay is firm to hard, being generally stiff.

The Atterberg Limits of 1 representative sample and the water content of all of the silty clay samples were determined. The results are plotted on the Borehole Logs and summarized below:

Liquid Limit	25%
Plastic Limit	15%
Natural Water Content	11% to 22% (median 19%)

The above results show that the clay is a cohesive material with low plasticity. The natural water content generally lies between its plastic and liquid limits, confirming the consistency of the clay as disclosed by the 'N' values.

A grain size analysis was performed on 1 representative sample of the silty clay; the result is plotted on Figure 31.

Based on the above findings, the deduced engineering properties pertaining to the project are given below:

- High frost susceptibility and high soil-adfreezing potential.
- Low water erodibility, with the laminated silt layers being erodible.
- Low permeability, with an estimated coefficient of permeability of 10^{-7} cm/sec, and runoff coefficients of:

Slope	
0% - 2%	0.15
2% - 6%	0.20
6% +	0.28

- A cohesive soil, its shear strength is derived from consistency and augmented by the internal friction of the silt. Its shear strength is moisture dependent and, due to the dilatancy of the silt, the overall shear strength of the wet silty clay is susceptible to impact disturbance; i.e., the disturbance will induce a build-up of pore pressure within the soil mantle, resulting in soil dilation and a reduction of shear strength.
- In steep cuts, the sound clay may collapse as the wet silt slowly sloughs.
- A very poor pavement-supportive material, with an estimated CBR value of 3% or less.
- Moderately high corrosivity to buried metal, with an estimated electrical resistivity of 2500 to 3000 ohm·cm.

4.7 <u>Silt</u> (Boreholes RJMW1d, RJTW1, RJBH1, S8, S9, S10, S12 and S13)

The silt was found at various boreholes and depths; it contains traces of clay to being clayey and a trace to some sand, with a trace of gravel and occasional sand layers in places. The laminated structure shows that the silt is a glaciolacustrine deposit.

The obtained 'N' values range from 6 per 30 cm to 50 per 10 cm, with a median of 15 per 30 cm, indicating that the relative density of the silt is loose to very dense, being generally compact.

The natural water content of the samples was determined and the results are plotted on the Borehole Logs; the values range from 14% to 22%, with a median of 18%, indicating that the silt is in a very moist to wet, generally wet condition. The wet samples displayed dilatancy when shaken by hand.

Grain size analyses were performed on 2 representative samples of the silt; the results are plotted on Figure 32.

Based on the above findings, the deduced engineering properties pertaining to the project are given below:

- High frost susceptibility and high soil-adfreezing potential.
- High water erodibility; it is susceptible to migration through small openings under seepage pressure.
- A soil of high capillarity and water retention capacity.
- Relatively low permeability, with an estimated coefficient of permeability of 10^{-5} to 10^{-6} cm/sec, and runoff coefficients of:

Slope	
0% - 2%	0.11 to 0.15
2% - 6%	0.16 to 0.20
6%+	0.23 to 0.28

• A frictional soil, its shear strength is derived from internal friction; therefore, its shear strength is density dependent. Due to its dilatancy, the strength of the wet silt is susceptible to impact disturbance; i.e., the disturbance will

induce a build-up of pore pressure within the soil mantle, resulting in soil dilation and a reduction of shear strength.

- In excavation, the very moist to wet silt will slough and run slowly with seepage bleeding from the cut face. It will boil under a piezometric head of 0.4 m.
- A poor pavement-supportive material, with an estimated CBR value of 5%.
- Moderate to moderately low corrosivity to buried metal, with an estimated electrical resistivity of 4500 to 5000 ohm·cm.

4.8 <u>Sandy Silt</u> (Borehole S10) and <u>Silty Fine Sand</u> (Borehole S12)

The sandy silt deposit was encountered beneath the topsoil whereas the silty fine sand layer was found in the mid zone of the revealed soil stratigraphy beneath a layer of silt and overlying the silty clay till. The deposits contain a trace of clay, with topsoil inclusions within the sandy silt layer. The sorted structure indicates that the sandy silt and silty fine sand are glaciolacustrine deposits. The sandy silt has been loosened by the weathering process.

The obtained 'N' value for the sandy silt is 9 per 30 cm indicating that its relative density is loose. From sample examinations, the silty fine sand appears to be in a fairly compact state as confirmed by the soil conditions encountered above and below the sand.

The natural water content of the samples was determined and the results are plotted on the Borehole Logs; the value for the sandy silt is 17%, and the value for the silty fine sand is 19%. This indicates that the sandy silt and silty fine sand are in a wet condition; they displayed dilatancy when shaken by hand.

Based on the above findings, the deduced engineering properties pertaining to the project are given below:

- High frost susceptibility and high soil-adfreezing potential.
- High water erodibility; they are susceptible to migration through small openings under low to moderate seepage pressure.
- Soils of high capillarity and water retention capacity.
- Relatively pervious, with an estimated coefficient of permeability of 10^{-4} cm/sec, and runoff coefficients of:

Slope	
0% - 2%	0.07
2% - 6%	0.12
6% +	0.18

- Frictional soils, their shear strength is primarily derived from internal friction and is soil density dependent. Due to their dilatancy, the strength of the wet silt and sand is susceptible to impact disturbance; i.e., the disturbance will induce a build-up of pore pressure within the soil mantle, resulting in soil dilation and a reduction of shear strength.
- In excavation, the wet silt and sand will slough in steep cuts, run slowly with water seepage, and boil under a piezometric head of 0.4 m.
- Poor pavement-supportive materials, with estimated CBR values of 5%.
- Moderately low corrosivity to buried metal, with an estimated electrical resistivity of 5500 to 6000 ohm·cm.

4.9 Shale Bedrock (Boreholes RJMW3, RJMW5. RJMW6, S14, S15, S16 and S17)

Shale bedrock was encountered in the boreholes in the eastern portion of the site at depths ranging from $0.8\pm$ to $8.5\pm$ m below the prevailing ground surface; the

shallower bedrock was generally encountered with the southeast portion of the site. The lower zone of the silty clay till above the shale bedrock, in places, appears to be derived from a clay-shale reversion.

The shale is reddish-brown in colour, indicating that it is of Queenston Formation. It is thinly to thickly bedded and consists predominantly of mudstone with occasional hard limestone and dolomite bands. The presence of shale fragments found in the lower layer of the overlying soils render it difficult to delineate the surface of the bedrock. The shale is susceptible to disintegration and swelling upon exposure to air and water, with subsequent reversion to a clay soil, but the laminated limy and sandy layers would remain as rock slabs.

The bedrock within the investigated depth can be penetrated by power-augering with some difficulty in grinding through the hard layers found at lower depths. The water content values of the samples obtained from the sampler range from 4% to 11%, with a median of 5%. The obtained 'N' values from the shale bedrock range from 52 per 30 cm to 50 per 3 cm, with a median of 50 per 15 cm. The upper layer of the shale within depths ranging from $1.0\pm$ to $3.0\pm$ m from the surface of the bedrock generally is in a weathered condition, becoming sound with depth.

Rock coring was carried out in the shale bedrock starting at depths of $8.5\pm$ m and $6.1\pm$ m below the prevailing ground surface at Boreholes RJMW3 and S15, respectively. The recovery of NQ rock cores range from 50% to 100%; however, the RQD values range from 0% to 70%, indicating the shale is a very poor to fair rock.

From examinations, the encountered shale is well cemented with intermittent limestone layers. Uniaxial Compressive Strength (UCS) tests were carried out on

3 core samples. The tested specimens, taken at varying depths, were selected and the results are presented in Table 1.

Specimen	Borehole	Depth (m)	UCS (MPa)
RC1	RJMW3	9.3	27.9
RC2	S15	8.7	27.2
RC3	S15	10.7	37.9

Table 1 - UCS Results

The results of the UCS tests indicate that the inherent compressive strength of the tested specimens is relatively low.

The shale has low permeability, and occasional pockets of groundwater may be trapped in its fissures. This water is often under moderate subterranean artesian pressure, which is reflected by the groundwater observed in Boreholes RJMW5 and RJMW6. Upon release through excavation, the water is likely to drain readily with a limited yield.

The weathered rock can be excavated with considerable effort by a heavy-duty backhoe equipped with a rock-ripper; however, excavation will become progressively more difficult with depth into the sound shale. Efficient removal of the sound shale may require the aid of pneumatic hammering.

The excavated spoil may contain large amounts of hard limy and sandy rock slabs, rendering it virtually impossible to obtain uniform compaction. Therefore, unless the spoil is sorted, it is considered unsuitable for engineering applications. Limy shale fragments larger than 15 cm should either be pulverized by mechanical means

or left exposed for weathering by freezing, thawing and wetting. The shale will revert to a clayey soil which can be properly compacted using mechanical means.

In sound shale excavation, slight lateral displacement of the excavation walls is often experienced. This is due to the release of residual stress stored in the bedrock mantle and the swelling characteristics of the rock.

4.10 Interpretation of Refusal to Augering (Boreholes S14 and S16)

Refusal to augering in the shale was encountered at a depth of $4.9\pm$ m below the prevailing ground surface. It is inferred that due to the difficulty augering through the shale, the bedrock was becoming sound with depth.

4.11 Test Pit Subsurface Conditions (STP29)

One (1) test pit, STP29, was conducted within the proposed stormwater management pond envelope slightly west of Borehole S15, using an excavator equipped with a rock-ripper. The purpose of the test pit was to determine the excavation condition in the shale bedrock using an excavator which will be used for the pond construction.

The results of the test pit indicated that weathered shale bedrock was encountered at a depth of $1.4\pm$ m below the ground surface. Difficulty in excavating the bedrock was encountered at a depth of $3.7\pm$ m, with the bedrock becoming sound at a depth of $4.0\pm$ m, at which point the test pit was terminated.

The bedrock properties at the test pit are the same as described in Section 4.9 of this report.

4.12 <u>Compaction Characteristics of the Revealed Soils</u>

The obtainable degree of compaction is primarily dependent on the soil moisture and, to a lesser extent, on the type of compactor used and the effort applied. As a general guide, the typical water content values of the revealed soils for Standard Proctor compaction are presented in Table 2.

	Determined Natural	Water Content (%) for Standard Proctor Compaction	
Soil Type	Water Content (%)	100% (optimum)	Range for 95% or +
Earth Fill	9 to 21 (median 15)	12 to 14	8 to 19
Silty Clay Till	6 to 32 (median 12)	16	12 to 21
Sandy Silt Till	6 to 18 (median 10)	12	8 to 16
Silty Sand Till	6 to 15 (median 8)	10 to 11	6 to 16
Sand	6 to 18 (median 12)	10	5 to 15
Gravelly Sand	6 to 15 (median 10)	7	3 to 12
Silty Clay	11 to 22 (median 19)	15 to 18	11 to 23
Silt	14 to 22 (median 18)	13	8 to 17
Sandy Silt	17	12	8 to 16
Silty Fine Sand	19	11	6 to 16
Broken Shale	4 to 11 (median 5)	16	12 to 21

 Table 2 - Estimated Water Content for Compaction

The above values show that the majority of the in situ soils are suitable for a 95% or + Standard Proctor compaction. However, the excavated shale and a portion of the silty clay till is too dry and will require the addition of water prior to structural compaction. In addition, the weathered soils and a portion of the silts and sands are too wet and will require aeration or mixing with drier soils prior to structural compaction. Aeration of these materials can be achieved by spreading them thinly on the ground in the dry, warm weather.

The earth fill and weathered soils should be sorted free of organic inclusions and any deleterious material prior to structural compaction.

The tills and clay should be compacted using a heavy-weight, kneading-type roller. The silts and sands can be compacted by a smooth roller with or without vibration, depending on the moisture content of the soils being compacted. The lifts for compaction should be limited to 20 cm, or to a suitable thickness as assessed by test strips performed by the equipment which will be used at the time of construction.

When compacting the very stiff to hard silty clay till and cemented, dense to very dense sandy silt till and silty sand till on the dry side of the optimum, the compactive energy will frequently bridge over the chunks in the soils and be transmitted laterally into the soil mantle. Therefore, the lifts must be limited to 20 cm or less (before compaction). It is difficult to monitor the lifts of backfill placed in deep trenches; therefore, it is preferable that the compaction of backfill at depths over 1.0 m below the subgrade be carried out on the wet side of the optimum. This would allow a wider latitude of lift thickness. Wetting of the sound clay till may be required.

One should be aware that with considerable effort, a 90% \pm Standard Proctor compaction of the wet silts and sands is achievable. Further densification is prevented by the pore pressure induced by the compactive effort; however, large random voids will have been expelled and, with time, the pore pressure will dissipate and the percentage of compaction will increase. There are many cases on record where after a few months of rest, the density of the compacted mantle had increased to over 95% of its maximum Standard Proctor dry density.

If the compaction of the soils is carried out with the water content within the range for 95% Standard Proctor dry density but on the wet side of the optimum, the surface of the compacted soil mantle will roll under the dynamic compactive load. This is unsuitable for road construction since each component of the pavement structure is to be placed under dynamic conditions which will induce the rolling action of the subgrade surface and cause structural failure of the new pavement. The slab-on-grade, foundations or bedding of the underground services will be placed on a subgrade which will not be subjected to impact loads. Therefore, the structurally compacted soil mantle with the water content on the wet side or dry side of the optimum will provide adequate subgrade strength for the project construction.

The presence of boulders and large shale fragments will prevent transmission of the compactive energy into the underlying material to be compacted. If an appreciable amount of boulders and shale fragments over 15 cm in size is mixed with the material, it must either be sorted or must not be used for structural backfill and/or construction of engineered fill.

As noted, the shale is susceptible to disintegration and will revert to a clay soil. The shale spoil which has been exposed to weathering may be selected for use as structural fill. To achieve this, the shale must be excavated by a rock-ripper to break

up the limy shale and sandstone slabs and piled thinly on the ground for optimum exposure to weathering. If shale spoil is to be used immediately for structural fill, it should be pulverized to sizes of 15 cm or less and must be compacted with lifts of 15 cm or less and consistently wetted. It should be compacted to achieve at least 95% of its maximum Standard Proctor dry density. The structurally compacted shale debris fill must be left for a period of at least 1 winter, preferably 2 winters, to allow the shale to swell prior to the construction of the foundations. In order to reduce the time required for the shale to swell, the shale to be reused must be pulverized and mixed with the clayey soil under the supervision of a geotechnical firm prior to its use as an engineered fill material.

It should be noted that if the shale spoil is to be left on the ground surface for a period of 1 or 2 winters for weathering, its swelling characteristic will result in a significant increase in soil volume, even in a compacted state. This phenomenon must be considered in the cut and fill calculations.

5.0 GROUNDWATER CONDITIONS

The boreholes were checked for the presence of groundwater and the occurrence of cave-in upon their completion. The data are plotted on the Borehole Logs and summarized in Table 3.

	Borobolo	Soil Colour Changes	Measured C Cave-in* Level	Froundwater/ On Completion
BH No.	Depth (m)	Depth (m)	Depth (m)	El. (m)
RJMW1d	16.8	10.6**	N/A	-
RJMW2d	20.0	12.2	N/A	-
RJMW3	13.1	13.1+	Dry	-
RJMW5	7.6	7.6+	5.8	116.4
RJMW6	6.1	6.1+	5.5	117.9
RJTW1	4.9	2.3	Dry	-
RJBH1	8.1	4.6	7.3	120.2
RJBH2	7.8	7.8+	5.2/7.3*	120.6/118.5*
RJBH3	7.7	7.7+	2.1	124.5
S1	7.7	7.7+	7.3	122.0
S2	7.7	7.7+	7.3	122.0
S3	7.8	7.8+	Dry	-
S4	8.1	8.1+	7.3*	121.6*
S5	7.7	7.7+	7.3*	122.3*
S6	7.7	7.7+	5.8	120.8
S7	7.8	7.8+	7.0	120.0
S8	7.9	2.3	6.1*	122.4*

Table 3 - Groundwater Levels

	Borobolo	Borehole Soil Colour Changes Brown/Red to Crev Measured Groundwater Cave-in* Level On Comple		
BH No.	Depth (m)	Depth (m)	Depth (m)	El. (m)
S9	8.1	1.9	5.2/7.0*	122.7/120.9*
S10	8.1	8.1+	5.8	121.8
S11	7.8	2.3	1.5	127.7
S12	7.8	3.3	6.4*	123.7*
S13	7.7	3.0	3.0*	126.8*
S14	4.9	4.9+	Dry	-
S15	11.2	11.2+	Dry	-
S16	4.9	4.9+	Dry	-
S17	6.2	6.2+	Dry	-

 Table 3 - Groundwater Levels (cont'd)

* Cave-in level (In wet sand and silt layers, the level generally represents the groundwater at the time of investigation.)

** Soil changes back to brown/red and then potentially to grey again at a lower depth.

As shown above, the measured groundwater levels range from $1.5\pm$ to $7.3\pm$ m below the prevailing ground surface in 12 out of 26 boreholes. In addition, 7 out of 26 boreholes caved at depths ranging from $3.0\pm$ to $7.3\pm$ m below the prevailing ground surface. The rest of the boreholes remained dry upon completion of the field work. The groundwater level will fluctuate with the seasons and may be affected by the water level at Fourteen Mile Creek.

The soil colour changes from brown or red to grey at depths ranging from $1.9\pm$ to $12.2\pm$ m below the prevailing ground surface, at select locations; however, the colour of the revealed soils throughout the majority of the site remained brown or red to the maximum investigated depth. The brown/red colour indicates that the soils have oxidized.

During the wet season, infiltrated precipitation may, in places, be trapped in the soil fissures, and in the sand and silt layers embedded in the tills, rendering the occurrence of perched groundwater at shallower depths. Its yield, if any, will generally be limited and it will often dissipate in dry seasons.

It should be noted that the groundwater levels stated above were measured upon completion of the boreholes prior to stabilization. For further detailed groundwater activity, please refer to the hydrogeological work being undertaken by R.J. Burnside & Associates Limited. In order to facilitate the study, a 50-mm diameter groundwater monitoring well was installed at 5 borehole locations: RJMW1d (with a shallower nested well, RJMW1s), RJMW2d (with a shallower nested well, RJMW2s), RJMW3, RJMW5 and RJMW6. The well construction information is provided on the respective borehole logs.

If groundwater is encountered from the silty clay till and silty clay, the yield is expected to be small and limited, due to the low permeability of the soils, and the yield of groundwater from the silty sand till and sandy silt till may be some to moderate, while the yield of groundwater from the silts and sands will be moderate to appreciable, and likely persistent, depending on their extent and continuity. Groundwater under subterranean artesian pressure may occur in places within the shale bedrock, which is generally considered to be a poor aquifer. Therefore, the yield of groundwater from the bedrock, if encountered, will be appreciable initially; however, if allowed to drain freely, it will often dissipate or be depleted with time.

6.0 DISCUSSION AND RECOMMENDATIONS

This investigation has disclosed that beneath a veneer of topsoil, and a layer of earth fill in places, the site is generally underlain by strata of firm to hard, generally hard silty clay till; loose to very dense, generally very dense sandy silt till and silty sand till; compact to very dense, generally dense fine to coarse and medium to coarse grained sand; dense to very dense, generally very dense gravelly sand; firm to hard, generally stiff silty clay; loose to very dense, generally compact silt; loose sandy silt and/or compact silty fine sand at various locations and depths. The soils within a depth of $0.4\pm$ to $1.5\pm$ m from the prevailing ground surface have generally been weathered. The soil overlies shale bedrock within the eastern portion of the site at depths ranging from $0.8\pm$ to $8.5\pm$ m below the prevailing ground surface; the upper layer of the shale bedrock within a depth of $1.0\pm$ to $3.0\pm$ m from the bedrock surface is in a weathered condition.

Groundwater/cave-in levels were detected in 17 of the 26 boreholes upon completion of the field work at depths of $1.5\pm$ to $7.3\pm$ m below the prevailing ground surface. The rest of the boreholes remained dry upon their completion. The groundwater level will fluctuate with the seasons and may be affected by the water level at Fourteen Mile Creek. Perched groundwater derived from infiltrated precipitation may occur at shallow depths during wet seasons.

If groundwater is encountered from the silty clay till and silty clay, the yield is expected to be small and limited, and the yield of groundwater from the silty sand till and sandy silt till may be some to moderate, while the yield of groundwater from the silts and sands will be moderate to appreciable, and likely persistent, depending on their extent and continuity. In the shale bedrock, the yield may be appreciable initially in localized places due to possible occurrence of groundwater pockets under

subterranean artesian pressure; however, if allowed to drain freely, it will often dissipate or be depleted with time.

The geotechnical findings which warrant special consideration are presented below:

- The topsoil is unsuitable for engineering applications and must be removed. For the environmental as well as the geotechnical well-being of the future development, it should not be buried below any structures or deeper than
 1.2 m below the exterior finished grade. Fertility testing can be carried out to assess the suitability of the topsoil as landscaping material.
- 2. Due to its unknown history, loose density and the presence of topsoil and organic inclusions, the earth fill is unsuitable for supporting any structures in its current condition. In using the fill for structural backfill, or in pavement or slab-on-grade construction, it should be subexcavated, inspected, sorted free of topsoil inclusions and any deleterious materials, aerated and properly recompacted in thin lifts. If it is impractical to sort the topsoil and other deleterious materials from the fill, the fill must be wasted and replaced with properly compacted inorganic earth fill.
- 3. The badly weathered soils are not suitable to support any structural loads. The weathered soils must be subexcavated, sorted free of any topsoil inclusions or deleterious material and aerated before being used as structural backfill or for the construction of engineered fill at the site.
- 4. The sound natural soils below the topsoil, earth fill and weathered soils are suitable for normal spread and strip footing construction. The footing subgrade must be inspected by a geotechnical engineer, or a geotechnical technician under the supervision of a geotechnical engineer, or a building inspector with geotechnical experience, to ensure that its condition is compatible with the design of the foundation.

- Extended footings and/or cut and fill may be required for the site grading. It is generally more economical to place engineered fill for normal footing, sewer and road construction.
- Some of the in situ soils have high soil-adfreezing potential. Special measures must be implemented in the project construction to minimize the risk of damage to the foundations caused by frost action.
- 7. Existing ponds must be properly decommissioned and backfilled for the construction of the project.
- For slab-on-grade construction, the slab should be constructed on a granular base, 20 cm thick, consisting of 20-mm Crusher-Run Limestone, or equivalent, compacted to its maximum Standard Proctor dry density.
- 9. A Class 'B' bedding, consisting of compacted 20-mm Crusher-Run (graded) Limestone, is recommended for the construction of the underground services. Where water-bearing silts and sands are present, the pipe joints should be leak-proof, or wrapped with an appropriate waterproof membrane. Where extensive dewatering is required, a Class 'A' bedding should be considered.
- Where underground services or building foundations are to be placed into the shale bedrock, the trench sides should be slightly sloped rather than vertical due to the residual stress relief and the swelling characteristics of the shale. The side slopes should be lined with a cushioning layer such as compressible Styrofoam.
- 11. Where the proposed services are to be constructed adjacent to and/or beneath the existing services, the existing services must be properly secured.
- Excavation should be carried out in accordance with Ontario Regulation 213/91.
- 13. In general, open-cut excavation can be carried out in the weathered shale by using a backhoe equipped with a rock-ripper; however, where deep excavation is required, pneumatic hammering with chisel points may be necessary for efficient rock removal.

The recommendations appropriate for the project described in Section 2.0 are presented herein. One must be aware that the subsurface conditions may vary between boreholes. Should subsurface variances become apparent during construction, a geotechnical engineer must be consulted to determine whether the following recommendations require revision.

6.1 Foundations

The borehole logs and borehole plan for the geotechnical investigation conducted in 2012 are presented in the Appendix.

For the proposed subdivision, it is recommended that the normal spread and strip footings be placed below the topsoil, earth fill and weathered soils onto the sound natural soils, engineered fill or shale bedrock. Based on the borehole findings of the 2012 investigation and the current investigation, a Maximum Allowable Soil Pressure (SLS) of 300 kPa and a Factored Ultimate Soil Bearing Pressure (ULS) of 500 kPa are recommended for design of the footings for the proposed residential subdivision at a founding level of 1.0 to 1.5 m or + below the prevailing ground surface at most borehole locations. At Boreholes 22, 24 and MW25, due to the depth of the fill and relatively loose sand encountered in these areas, the recommended founding levels are at depth of 3.0 to 7.5 m or + below the prevailing ground surface.

One must be aware the recommended soil pressures and corresponding founding depths are given as a guide for foundation design and must be confirmed by a subgrade inspection performed by a geotechnical engineer at each of the building locations.

In areas where foundations are to be extended, it may be more cost effective to subexcavate to a size 30% larger than the designed footing width and fill with lean concrete up to the normal footing elevation immediately after the suitable founding soil is exposed.

The existing fill and weathered soils can be subexcavated and replaced with engineered fill. Furthermore, where extended footings are required or where fill is required to raise the grade, engineered fill suitable for normal footing construction can be considered. A Maximum Allowable Soil Pressure (SLS) of 150 kPa and a Factored Ultimate Soil Bearing Pressure (ULS) of 250 kPa are recommended for footings founded on engineered fill. The fill must be certified by the geotechnical consultant that supervised and inspected the fill placement. Details of engineered fill are provided in Section 6.2 of this report.

The recommended bearing pressures (SLS) for normal footings incorporate a safety factor of 3. The total and differential settlements of the footings are estimated to be 25 mm and 15 mm, respectively.

Due to the presence of topsoil, earth fill and weathered soils, the footing subgrade must be inspected by a geotechnical engineer, or a geotechnical technician under the supervision of a geotechnical engineer, or a building inspector with geotechnical experience, to assess its suitability for bearing the designed foundations.

Footings exposed to weathering, and in unheated areas, should have at least 1.2 m of earth cover for protection against frost action.

If excavation into the shale is to be carried out close to the foundation walls, the sides of excavation into sound shale should be shielded by compressible Styrofoam

(or equivalent). This will provide a cushioning layer against movement of the shale that may damage the basement walls.

Perimeter subdrains and dampproofing of the foundation walls will be required. All the subdrains should be encased in a fabric filter to protect them against blockage by silting.

It should be noted that if groundwater seepage is encountered during the footing excavations, or where the subgrade of the normal foundations is found to be wet, the subgrade should be protected by a concrete mud-slab immediately after exposure. This will prevent construction disturbance and costly rectification.

Some of the in situ soils have high soil-adfreezing potential. Where these material are used to backfill against foundations, the foundation walls must be constructed of concrete and either backfilled with non-frost-susceptible pit-run granular, or should be properly shielded with a polyethylene slip-membrane extending below the frost depth to alleviate the risk of frost damage. If the proposed structures have a basement and groundwater seepage is detected at the time of foundation excavation, under-floor subdrains may be installed and they must be connected to sump-wells, or to the drains which have a positive outlet. Also, a vapour barrier should be installed to prevent upfiltration of soil moisture that may wet the floor. The recommended measures are schematically presented in Diagram 1.

[/] Reference No. 1611-S034(A)

Diagram 1 - Frost Protection Measures (Foundation)

The necessity to implement the above measures should be assessed at the time of construction.

The foundations should meet the requirements specified in the latest Ontario Building Code, and the structure should be designed to resist an earthquake force using Site Classification 'C' (very dense soil and soft rock).

6.2 Engineered Fill

The existing fill and weathered soils can be upgraded to or replaced with engineered fill, and where earth fill is required to raise the site or extended footings are required, it is generally more economical to place engineered fill for normal footing, underground services and pavement construction. The engineering requirements for a certifiable fill for pavement construction, municipal services, slab-on-grade, and footings designed with a Maximum Allowable Soil Pressure (SLS) of 150 kPa and a Factored Ultimate Soil Bearing Pressure (ULS) of 250 kPa are presented below:

- All of the topsoil and organics must be removed, and the subgrade must be inspected and proof-rolled prior to any fill placement. The existing earth fill and badly weathered soils must be subexcavated, sorted free of topsoil inclusions and deleterious materials, if any, aerated and properly compacted. The subgrade should be inspected and proof-rolled prior to filling.
- 2. Existing ponds within the property should be properly decommissioned and all sediment and soft soils must be removed from the sides and bottom of the pond prior to placement of engineered fill.
- 3. Inorganic soils must be used, and they must be uniformly compacted in lifts of 20 cm thick to 98% or + of their maximum Standard Proctor dry density, up to the proposed finished grade and/or slab-on-grade subgrade. The soil moisture must be properly controlled on the wet side of the optimum. If the foundations are to be built soon after the fill placement, the densification process for the engineered fill must be increased to 100% of the maximum Standard Proctor compaction.
- 4. If imported fill is to be used, the hauler is responsible for its environmental quality and must provide a document to certify that the material is free of hazardous contaminants.
- 5. If the engineered fill is to be left over the winter months, adequate earth cover, or equivalent, must be provided for protection against frost action.
- 6. The engineered fill must extend over the entire graded area; the engineered fill envelope and finished elevations must be clearly and accurately defined in the field, and they must be precisely documented by qualified surveyors. Foundations partially on engineered fill must be reinforced by two 15-mm steel reinforcing bars in the footings and upper section of the foundation and basement walls, or be designed by a structural engineer, to properly distribute the stress induced by the abrupt differential settlement (estimated to be 15± mm) between the natural soils and engineered fill.

- 7. The engineered fill must not be placed during the period from late November to early April, when freezing ambient temperatures occur either persistently or intermittently. This is to ensure that the fill is free of frozen soils, ice and snow.
- 8. Where the ground is wet due to subsurface water seepage, an appropriate subdrain scheme must be implemented prior to the fill placement, particularly if it is to be carried out on sloping ground or a bank.
- 9. Where fill is to be placed on a bank steeper than 1 vertical:3 horizontal, the face of the bank must flattened to 3+ so that it is suitable for safe operation of the compactor and the required compaction can be obtained.
- 10. The fill operation must be inspected on a full-time basis by a technician under the direction of a geotechnical engineer.
- 11. The footing and underground services subgrade must be inspected by the geotechnical consulting firm that inspected the engineered fill placement. This is to ensure that the foundations are placed within the engineered fill envelope, and the integrity of the fill has not been compromised by interim construction, environmental degradation and/or disturbance by the footing excavation.
- 12. Any excavation carried out in certified engineered fill must be reported to the geotechnical consultant who inspected the fill placement in order to document the locations of the excavation and/or to inspect reinstatement of the excavated areas to engineered fill status. If construction on the engineered fill does not commence within a period of 2 years from the date of certification, the condition of the engineered fill must be assessed for re-certification.
- 13. Despite stringent control in the placement of the engineered fill, variations in soil type and density may occur in the engineered fill. Therefore, the strip footings and the upper section of the foundation walls constructed on the engineered fill may require continuous reinforcement with steel bars, depending on the uniformity of the soils in the engineered fill and the thickness

of the engineered fill underlying the foundations. Should the footings and/or walls require reinforcement, the required number and size of reinforcing bars must be assessed by considering the uniformity as well as the thickness of the engineered fill beneath the foundations. In sewer construction, the engineered fill is considered to have the same structural proficiency as a natural inorganic soil.

If the shale spoil is intended for use as structural fill, it must be piled thinly on the ground for optimum exposure to weathering. Any remaining hard limy or sandy slabs must be pulverized to sizes less than 15 cm or must not be used for structural backfill and/or construction of engineered fill. It should be noted that if the shale spoil is to be left on the ground surface for weathering, it will swell and result in a significant increase in soil volume. This phenomenon must be considered in the cut and fill calculations.

6.3 Slab-On-Grade

The subgrade for the slab-on-grade must consist of sound natural soils, shale bedrock or properly compacted inorganic fill. In preparation of the subgrade, it must be inspected and assessed by proof-rolling. The topsoil must be removed; the earth fill, badly weathered soils or any soft or loose soils should be subexcavated, sorted free of any deleterious material, aerated and uniformly compacted to 98% or + of its maximum Standard Proctor dry density. If the deleterious materials cannot be sorted, the soils should be replaced by properly compacted, organic-free earth fill.

Any new material for raising the grade should consist of organic-free soil compacted to at least 98% of its maximum Standard Proctor dry density.

If the subgrade has been loosened due to construction traffic, it must be proof-rolled before placement of the granular base.

The slab should be constructed on a granular base, 20 cm thick, consisting of 20-mm Crusher-Run Limestone, or equivalent, compacted to its maximum Standard Proctor dry density.

A Modulus of Subgrade Reaction of 25 MPa/m can be used for the design of the floor slab.

The slab-on-grade in open areas should be designed to tolerate frost heave, and the grading around the slab-on-grade and building structures must be such that it directs runoff away from the structures.

6.4 Underground Services

The subgrade for the underground services should consist of sound natural soils or properly compacted organic-free earth fill. Where topsoil, organic earth fill or badly weathered soils are encountered, it should be subexcavated and replaced with bedding material compacted to at least 95% or + of its Standard Proctor compaction.

A Class 'B' bedding is recommended for the underground services construction. The bedding material should consist of compacted 20-mm Crusher-Run Limestone, or equivalent, or as approved by a geotechnical engineer. The bedding material must meet the requirements prescribed by the Ontario Provincial Standards (OPS), Region of Halton and Town of Oakville. Pipe bedding consisting of HL-6 is acceptable provided the bedding is wrapped with filter cloth. In the areas where extensive dewatering is required, a Class 'A' bedding will be required.

Where wet or water-bearing silts or sands occur, the pipe joints should be leakproof, or the joints should be wrapped with a waterproof membrane, to prevent subgrade upfiltration through the joints.

Where underground services are to be placed in sound shale, the trench sides should be sloped rather than vertical, due to the residual stress relief and the swelling characteristics of the shale. The side slopes should be no steeper than 2 vertical: 1 horizontal. The rock face can be lined with a cushioning layer such as Styrofoam, to reduce the residual stress exerted on the buried structure, and then backfilled with sand up to 0.3 m above the crown of the pipe and flooded. The recommended scheme is illustrated in Diagram 2.

Diagram 2 - Sewer Installation in Sound Shale

In order to prevent pipe floatation when the sewer trench is deluged with water, a soil cover at least equal in thickness to the diameter of the pipe should be in place at all times after completion of the pipe installation.

Openings to subdrains and catch basins should be shielded with a fabric filter to prevent blockage by silting.

Since the silty clay has moderately high corrosivity to buried metal, all metal fittings for the underground services should be protected against soil corrosion. In determining the mode of protection, an electrical resistivity of 2500 ohm cm should be used. This, however, should be confirmed by testing the soil along the water main alignment at the time of services construction.

6.5 Backfilling in Trenches and Excavated Areas

The on-site inorganic soils are generally suitable for use as trench backfill. However, the soils should be sorted free of any topsoil inclusions and other deleterious materials prior to the backfilling. The soils should be sorted free of any large pieces (over 15 cm in size) of limestone bands and shale fragments, or the large pieces must be broken into sizes suitable for structural compaction.

The excavated shale can be pulverized to sizes less than 15 cm and thoroughly mixed with the overburden soils. The trench can then be backfilled by levelling the debris using a bulldozer with lifts no more than 20 cm (loose) in thickness. Compaction should be carried out by a vibratory sheepsfoot roller, with water constantly sprayed on each lift.

The backfill in trenches and excavated areas should be compacted to at least 95% of its maximum Standard Proctor dry density. In the zone within 1.0 m below the pavement subgrade, the materials should be compacted with the water content 2% to 3% drier than the optimum, and the compaction should be increased to at least 98% of the respective maximum Standard Proctor dry density. This is to provide the

required stiffness for pavement construction. In the lower zone, the compaction should be carried out on the wet side of the optimum; this allows a wider latitude of lift thickness. Wetting of the sound till may be necessary to achieve this requirement. Backfill below any slab-on-grade which is sensitive to settlement must be compacted to at least 98% of its maximum Standard Proctor dry density.

In normal underground services construction practice, the problem areas of settlement largely occur adjacent to manholes, catch basins, services crossings, foundation walls and columns. The lumpy clays and broken shale are generally difficult to compact in these close quarters, and it is recommended that a sand backfill should be used. Imported sand backfill should also be used in areas which are inaccessible to a heavy compactor. Unless compaction of the backfill is carefully performed, the interface of the native soils and the sand backfill will have to be flooded for a period of several days.

The narrow trenches for services crossings should be cut at 1 vertical: 2 or + horizontal so that the backfill can be effectively compacted. Otherwise, soil arching will prevent the achievement of proper compaction. The lift of each backfill layer should either be limited to a thickness of 20 cm, or the thickness should be determined by test strips.

One must be aware of the possible consequences during trench backfilling and exercise caution as described below:

• When construction is carried out in freezing winter weather, allowance should be made for these following conditions. Despite stringent backfill monitoring, frozen soil layers may inadvertently be mixed with the structural trench backfill. Should the in situ soils have a water content on the dry side of the optimum, it would be impossible to wet the soils due to the freezing condition, rendering difficulties in obtaining uniform and proper compaction. Furthermore, the freezing condition will prevent flooding of the backfill when it is required, such as in a narrow vertical trench section, or when the trench box is removed, or when backfill consists of shale mixture. The above will invariably cause backfill settlement that may become evident within 1 to several years, depending on the depth of the trench which has been backfilled.

- In areas where the construction is carried out during the winter months, prolonged exposure of the trench walls will result in frost heave within the soil mantle of the walls. This may result in some settlement as the frost recedes, and repair costs will be incurred prior to final surfacing of the new pavement and the slab-on-grade construction.
- To backfill a deep trench, one must be aware that future settlement is to be expected, unless the side of the cut is flattened to at least 1 vertical: 1.5+ horizontal, and the lifts of the fill and its moisture content are stringently controlled; i.e., lifts should be no more than 20 cm (or less if the backfilling conditions dictate) and uniformly compacted to achieve at least 95% of the maximum Standard Proctor dry density, with the moisture content on the wet side of the optimum.
- It is often difficult to achieve uniform compaction of the backfill in the lower vertical section of a trench which is an open cut or is stabilized by a trench box, particularly in the sector close to the trench walls or the sides of the box. These sectors must be backfilled with sand. In a trench stabilized by a trench box, the void left after the removal of the box will be filled by the backfill. It is necessary to backfill this sector with sand, and the compacted backfill must be flooded for 1 day, prior to the placement of the backfill above this sector; i.e., in the upper sloped trench section. This measure is necessary in order to

prevent consolidation of inadvertent voids and loose backfill which will compromise the compaction of the backfill in the upper section. In areas where groundwater movement is expected in the sand fill mantle, antiseepage collars should be provided. Typical anti-seepage collar details are illustrated in Diagram 3.

6.6 Sidewalks, Interlocking Stone Pavement and Landscaping

Interlocking stone pavement, sidewalks and landscaping structures in areas which are sensitive to frost-induced ground movement must be constructed on a freedraining, non-frost-susceptible granular material such as Granular 'B'. The material

must extend to 0.3 to 1.2 m below the sidewalk, slab or pavement surface, depending on the degree of tolerance for ground movement, and be provided with positive drainage, such as weeper subdrains connected to manholes or catch basins. Alternatively, the landscaping structures, sidewalks and interlocking stone pavement should be properly insulated with 50-mm Styrofoam, or equivalent.

6.7 Pavement Design

The recommended pavement design for various roads meeting the Town of Oakville standards is given in Table 4.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	40	HL-3
Asphalt Binder Residential Industrial, Collector and Bus Route	50 80	HL-8
Granular Base	150	Granular 'A' or equivalent
Granular Sub-base Residential Industrial, Collector and Bus Route	350 450	50-mm Crusher-Run Limestone or equivalent

Table 4 - Pavement Design (Roa	ads)
--------------------------------	------

For driveways and driveway aprons, the recommended pavement design meeting the Town of Oakville standards is given in Table 5.

Course	Thickness (mm)	OPS Specifications
Asphalt Surface	50	HL-3A
Granular Base	150	19-mm Crusher-Run Limestone

 Table 5 - Pavement Design (Driveways and Driveway Aprons)

In preparation of the subgrade, the topsoil should be stripped and removed, and the subgrade surface must be proof-rolled. The earth fill, weathered soils and any soft/loose subgrade must be subexcavated, sorted free of any deleterious materials, aerated and properly compacted. If the deleterious materials cannot be sorted, the soils should be replaced by properly compacted, organic-free earth fill or granular materials. Earth fill used to raise the grade for pavement construction should consist of organic-free soil uniformly compacted to 95% or + of its maximum Standard Proctor dry density.

All the granular bases should be compacted to 100% of their maximum Standard Proctor dry density.

In the zone within 1.0 m below the road subgrade, the backfill should be compacted to at least 98% of its maximum Standard Proctor dry density, with the water content 2% to 3% drier than the optimum. In the lower zone, a 95% or + Standard Proctor compaction is considered adequate.

The pavement subgrade will suffer a strength regression if water is allowed to saturate the mantle. The following measures should, therefore, be incorporated into the construction procedures and pavement design:

- If the pavement construction does not immediately follow the trench backfilling, the subgrade should be properly crowned and smooth-rolled to allow interim precipitation to be properly drained.
- Areas adjacent to the pavement should be properly graded to prevent ponding of large amounts of water during the interim construction period.
- Curb subdrains will be required. The subdrains should consist of filtersleeved weepers to prevent blockage by silting.

• If the pavement is to be constructed during wet seasons and extensively soft subgrade occurs, the granular sub-base should be thickened in order to compensate for the inadequate strength of the subgrade. This can be assessed during construction.

Along the perimeter where surface runoff may drain onto the pavement, a swale or an intercept subdrain system should be installed to prevent infiltrating precipitation from seeping into the granular bases (since this may inflict frost damage on the flexible pavement). The subdrains should consist of filter-wrapped weepers, and they should be connected to the catch basins and storm manholes in the paved areas. The subdrains should be backfilled with free-draining granular material.

6.8 Stormwater Management Pond (Boreholes S14 and S15, and Test Pit STP29)

The stormwater management (SWM) pond is located in the east portion of the site.

According to the SWM Pond detail drawing, dated January 2017, prepared by David Schaeffer Engineering Ltd., the side slopes of the pond range from $1.5\pm$ to $6.5\pm$ m in height; this includes the dividing slopes between the pond and forebays. The proposed elevation for the bottom of the pond is El. 118.40 m, with the top elevation ranging from approximately El. 123.75 m to El. 124.90 m. The designed permanent pool will be at El. 121.40 m.

Based on the borehole and test pit findings, the area of the proposed pond consists of silty clay till overlaying shale bedrock at a depth of $1.5\pm$ to $3.0\pm$ m below the prevailing ground surface, or El. $121.7\pm$ to $122.7\pm$ m. The boreholes and test pit were found to be dry upon their completion.

The silty clay till has an estimated coefficient of permeability of 10⁻⁷ cm/sec with an estimated percolation time of 80+ min/cm, while the shale bedrock is considered to be relatively impermeable. As such, the seepage of groundwater into the pond constructed will likely be equal to or less than the amount of water lost through evaporation. The impact on the storage volume of the pond will be minimal. The in situ silty clay till and shale bedrock are suitable for the pond construction. If necessary, a clay liner, at least 1.0 m thick, compacted to at least 98% of its maximum Standard Proctor dry density, should be installed on the sides or bottom of the pond if permeable sand or silt layers, or cracks within the shale bedrock are encountered within the pond envelope and should extend to 1.0 m (minimum) above the permanent pool level. The extent of the clay liner and its implementation can be assessed at the time of the pond construction. The in situ clay material is suitable for use as a clay liner material, if required.

The side slopes should be surface compacted. The side slopes are proposed with gradients of 1 vertical:3 to 7 horizontal, with the side slope below the designed permanent pool elevation being no steeper than 1 vertical:4 horizontal; this is considered to be geotechnically acceptable. Where the deep pool area is entirely within the shale bedrock, a side slope of 1 vertical:3 horizontal is acceptable. All the proposed slopes must be vegetated and/or sodded to prevent erosion.

One should be aware that minor maintenance may be required after rapid drawdown as the water recedes from a high level to a lower level.

For construction of the pond and earth berm around the pond, the topsoil and topsoil fill must be removed and the subgrade must be proof-rolled. The existing earth fill and weathered soils should be subexcavated, inspected, sorted free of any deleterious materials, aerated and properly compacted. Inorganic clay material

compacted to at least 98% of its maximum Standard Proctor dry density in 20 cm lifts, must be used. The in situ silty clay is suitable for berm construction.

The footings for all control structures for the SWM pond and associated outfall will be placed onto the natural sound clay till, or likely shale bedrock. The Maximum Allowable Soil Pressures (SLS) and Factored Ultimate Soil Bearing Pressures (ULS), along with the suitable founding levels for the design footings are presented in Table 6.

	Recommended Maximum Allowable Soil Pressure (SLS)/ Factored Ultimate Soil Bearing Pressure (ULS) and Suitable Founding Level				
RH	300 k 500 k	Pa (SLS) Pa (ULS)	500 kPa (SLS) 800 kPa (ULS)		
No.	Depth (m)	El. (m)	Depth (m)	El. (m)	
S14	1.0 or +	123.7 or -	2.4 or +	122.3 or -	
S15	1.0 or +	123.2 or -	1.8 or +	122.4 or -	
S16	-	-	1.0 or +	121.7 or -	
S17	-	-	1.0 or +	120.0 or -	

Table 6 - Founding Levels for SWM Pond Control Structures

The footings must be placed below the frost depth of 1.2 m, or below the scouring depth, whichever is deeper. The footing subgrade must be inspected by a geotechnical engineer prior to concrete pouring to ensure its conformity to the design.

6.9 **Stormwater Management Pond Outfall System** (Boreholes S14, S15, S16 and S17, and Test Pit STP29)

The SWM Pond detail drawing indicates that the proposed storm sewer is to run in the north-south direction from the proposed SWM pond to the existing slope. The sewer is to be installed by trenchless technology where it is to cross under the existing 2400 mm diameter CPP sanitary sewer, and also at the outfall at the existing slope. The remainder of the sewer is to be installed by open-cut.

Based on drawings provided, the storm sewer is to be installed in the shale bedrock.

Storm Sewer Construction using Open-Cut Method

Where the concrete storm sewer is to be constructed using the open-cut method, the excavation must be carried out in accordance with Ontario Regulation 213/91. The sides should be 1 vertical:1 or + horizontal, or they should be stabilized by shoring or the use of a trench box. In shale bedrock, a cut steeper than 1 vertical: 1 horizontal may be allowed, provided that the bedding plane of the rock is horizontal and loose rocks protruding from the excavation are removed for safety.

Recommendations presented in Section 6.4 should be followed for underground services construction.

Trenchless Construction Method

Trenchless construction will be carried out through the shale; this will likely consist of micro tunnelling or horizontal directional drilling (HDD). The noted characteristics of the shale per 0.3 m wide strip are listed in Table 7.

Material	Characteristics
Shale	Soft Rock, slowly ravelling, stand-up time of over 60 min to 24 hours

Table 7 - Soil Characteristics for Tunnelling

Where a liner is required for the sewer construction, it should be designed with an overburden load per linear metre as given in the following:

 $Q = W \times B^2 + traffic load$ $W = 24.0 \text{ kN/m}^3$ B = diameter of liner in metres

The soil friction on the liner can be calculated by multiplying the overburden at the midpoint of the liner by the frictional coefficient of 0.35.

If HDD is proposed, it must be properly designed by a qualified HDD contractor. Appropriate measures such as earth cover and regulation of drilling pressure must be implemented by the HDD contractor in order to prevent frac-out; however, due to the presence of shale bedrock and cohesive soils along the alignment, the occurrence of frac-outs is unlikely.

The tunnelling must be carefully carried out, and if it is suspected that a cavity has occurred above or around the liner, trial grouting should be implemented.

In some instances, shale contains occasional pockets of groundwater trapped in the rock fissures, and the groundwater may be under moderate subterranean artesian pressure. Upon release through excavation, this water will likely drain readily with limited yield. Detailed discussion and planning must be carried out with the

tunnelling contractor to assess the cost impact and time required to complete the tunnelling.

Due to the residual stress relief and swelling characteristics of the sound shale, a steel liner must be installed to prevent the services from suffering stress damage.

Pit Construction

The cuts for the access pits must be carried out in a manner in accordance with Ontario Regulation 213/91. The pit must be cut at 1 vertical:1 or + horizontal, and no steeper than 2 vertical:1 horizontal in the shale bedrock. Recommendations presented in Sections 6.4 and 6.12 should be followed for trenching within shale bedrock.

In order to prevent overstressing along the sides of the pits, the excavated spoil should be placed a distance away from the edge of the pits equal to 2 times the depth of the pits.

If groundwater is encountered at shallow depths, dewatering may be required for the pit construction.

Slope Concern

The installation of the sewer and the construction of the headwall and wingwalls will disturb the slope at the outfall. Where this is the case, the slope should be re-engineered, and the re-engineered slope should be graded at 1 vertical: 3 or + horizontal.

6.10 Bridge Foundation and Construction

For the proposed bridge, it is recommended that the normal spread and strip footings be placed below the topsoil, earth fill and weathered soils onto the sound natural soils, engineered fill or shale bedrock. As a general guide, Maximum Allowable Soil Pressures (SLS) of 300 kPa and 500 kPa, and Factored Ultimate Soil Bearing Pressures (ULS) of 500 kPa and 800 kPa, are recommended for design of the footings at founding depths of 1.0 m or + and 3.3 m or +, respectively, below the prevailing ground surface.

Bridge foundations, as well as wing walls and headwalls, should have at least 1.2 m of soil cover for frost protection, or should extend to a depth below the expected scouring depth, whichever is greater.

To backfill the wing walls, headwalls and abutments, the lateral earth pressure coefficients are given in Table 8.

	Active K _a	Active K _a with Compacted Loads	At Rest K ₀	Passive K _p
Granular 'A'	0.30	0.50	0.45	3.00
Granular 'B'	0.35	0.60	0.55	2.80
Compacted Fill	0.45	0.70	0.60	2.20

Table 8 - Earth Pressure Coefficients for Wing Walls and Head Walls

The design of the walls and abutments should incorporate the lateral earth pressure due to compactive loads.

In order to prevent water from ponding against the structures and to avoid a build-up of ice pressure during cold weather, a drainage system must be provided behind the

walls. Weep holes should also be provided against the back of the walls and the walls should be backfilled with free-draining granular material to facilitate the drainage of infiltrating water.

All of the backfill must consist of inorganic material and be uniformly compacted to 95% or + of its maximum Standard Proctor dry density.

6.11 Soil Parameters

The recommended soil parameters for the project design are given in Table 9.

Unit Weight and Bulk Factor					
	Unit Weight <u>(kN/m³)</u>		Est <u>Bul</u>	timated <u>k Factor</u>	
	Bulk	Submerged	Loose	Compacted	
Earth Fill	20.0	11.5	1.20	0.98	
Silty Clay Till	22.0	12.5	1.33	1.05	
Sandy Silt Till and Silty Sand Till	22.5	12.5	1.33	1.10	
Sands	20.0	10.8	1.25	0.95	
Silty Clay	20.5	11.5	1.30	1.00	
Silt	21.0	10.5	1.20	1.00	
Sandy Silt and Silty Fine Sand	20.5	10.5	1.20	0.98	
Broken Shale	24.0	14.0	1.50	1.15	

Table 9 - Soil Parameters

Table 9 - S	oil Parameters	(cont'd)
-------------	----------------	----------

Lateral Earth Pressure Coefficients			
	Active K _a	At Rest K ₀	Passive K _p
Earth Fill and Silty Clay	0.40	0.56	2.50
Silty Clay Till	0.33	0.50	3.00
Sandy Silt/Silty Sand Tills, Silts and Silty Fine Sand	0.32	0.48	3.12
Sands	0.29	0.46	3.39
Broken Shale	0.25	0.35	4.00
Coefficients of Friction			
Between Concrete and Granular Base			0.60
Between Concrete and Sound Natural Soils 0.40		0.40	
Maximum Allowable Soil Pressure (SLS <u>For Thrust Block Design</u>	5)		
Engineered Fill		7	5 kPa
Sound Natural Soils		10)0 kPa

6.12 Excavation

Where the new services are to be cut close to any existing underground services, one must be aware that the backfill for the existing underground services is amorphous in structure and is susceptible to sloughing and sudden side collapse. Extreme caution must be exercised when excavating the existing backfilled services trenches; the sides of the cuts in the backfill will readily slough and may collapse suddenly. The existing services must be properly secured for the new/replacement services construction. The stability of the new trench and the existing services must be ensured by flattening the slope of the cut, by shoring or by the use of a trench box.

Excavation should be carried out in accordance with Ontario Regulation 213/91.

Excavations in excess of 1.2 m should be sloped at 1 vertical:1 horizontal for stability. In the earth fill, weathered soils, and/or where groundwater is encountered, the sides of excavations may need to be flattened to 1 vertical:1.5 or + horizontal for stability.

For excavation purposes, the types of soils are classified in Table 10.

Material	Туре
Sound Shale Bedrock	1
Sound Natural Soils and weathered Shale Bedrock	2
Earth Fill, weathered Soils, and dewatered Silts and Sands	3
Saturated Silts and Sands	4

Table 10 - Classification of Soils for Excavation

Excavation into the weathered shale, or the tills containing boulders or large shale fragments, may require extra effort and the use of a heavy-duty backhoe. Boulders and shale fragments larger than 15 cm in size are not suitable for structural backfill and/or construction of engineered fill.

If groundwater is encountered from the silty clay till and silty clay, the yield is expected to be small and limited, due to the low permeability of the soils, and the yield of groundwater from the silty sand till and sandy silt till may be some to moderate, while the yield of groundwater from the silts and sands will be moderate to appreciable, and likely persistent, depending on their extent and continuity.

In shale bedrock, a cut steeper than 1 vertical:1 horizontal may be allowed, provided that the bedding plane of the rock is horizontal and loose rocks protruding from the excavation are removed for safety. The weathered shale or the hard clay till containing shale fragments will require extra effort for excavation using heavy-duty mechanical equipment, and a rock-ripper will be required to facilitate the excavation. This method can generally be employed to excavate the weathered shale to a depth of $3.0\pm$ m below the bedrock surface. Excavation into the sound shale may require the aid of pneumatic hammering.

Where excavation is to be carried out in the wet or water-bearing silts and/or sands, the possibility of flowing sides and bottom boiling dictates that the ground be predrained by pumping from closely spaced sump-wells or, if necessary, the use of a well-point dewatering system. This should be assessed by test pumping prior to the project construction when the intended bottom of excavation is determined. In order to provide a stable subgrade for the services or foundation construction, the groundwater should be depressed at least 1.0 m below the subgrade level.

Alternatively, sheeting structures can be installed around the excavation. The sheeting structure should be driven to a depth below the bottom of the excavation at least equal to the height of water above the bed of excavation. The sheeting structure must be properly designed to sustain the earth pressure, hydrostatic pressure and applicable surcharge loads.

Prospective contractors must be asked to assess the in situ subsurface conditions for soil cuts by digging test pits to at least 0.5 m below the intended bottom of excavation. These test pits should be allowed to remain open for a period of at least 4 hours to assess the trenching conditions.

7.0 LIMITATIONS OF REPORT

This report was prepared by Soil Engineers Ltd. for the account of Bronte Green Corporation and for review by its designated consultants and government agencies. Use of the report is subject to the conditions and limitations of the contractual agreement. The material in it reflects the judgement of Mumta Mistry, B.A.Sc., and Bernard Lee, P.Eng., in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

SOIL ENGINEERS LTD.

Mumta Mistry, B.A.Sc.

LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

- AS Auger sample
- CS Chunk sample
- DO Drive open (split spoon)
- DS Denison type sample
- FS Foil sample
- RC Rock core (with size and percentage recovery)
- ST Slotted tube
- TO Thin-walled, open
- TP Thin-walled, piston
- WS Wash sample

PENETRATION RESISTANCE

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows for each foot of penetration of a 2-inch diameter, 90° point cone driven by a 140-pound hammer falling 30 inches. Plotted as '—•—'

Standard Penetration Resistance or 'N' Value:

The number of blows of a 140-pound hammer falling 30 inches required to advance a 2-inch O.D. drive open sampler one foot into undisturbed soil. Plotted as ' \bigcirc '

- WH Sampler advanced by static weight
- PH Sampler advanced by hydraulic pressure
- PM Sampler advanced by manual pressure
- NP No penetration

SOIL DESCRIPTION

Cohesionless Soils:

<u>'N' (blov</u>	ws/ft)	Relative Density
0 to	4	very loose
4 to	10	loose
10 to	30	compact
30 to	50	dense
over	50	very dense

Cohesive Soils:

Undrained <u>Strength (l</u>	Shear <u>(sf)</u>	<u>'N' (</u>	blov	Consistency	
less than 0.25 to 0.50 to 1.0 to 2.0 to	0.25 0.50 1.0 2.0 4.0 4.0	0 2 4 8 16	to to to to to	2 4 8 16 32 32	very soft soft firm stiff very stiff hard
0,01		0		24	11011 0

Method of Determination of Undrained Shear Strength of Cohesive Soils:

- x 0.0 Field vane test in borehole; the number denotes the sensitivity to remoulding
- \triangle Laboratory vane test
- □ Compression test in laboratory

For a saturated cohesive soil, the undrained shear strength is taken as one half of the undrained compressive strength

METRIC CONVERSION FACTORS

1 ft = 0.3048 metres11b = 0.454 kg

1 inch = 25.4 mm1 ksf = 47.88 kPa

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

Page: 2 of 2

ROJ	ECT LOCATION: Bronte Green - 140 Southeast Corner of Town of Oakville	l Bror Bron	nte Ro te Ro	oad ad and	Upper N	/lidd	le Ro	ad	DF	RILL	.ING	DAT	TE:	Nov	vemb	er 21	, 2016)
:l. n)	SOIL DESCRIPTION		SAMP	LES	cale (m)	10	 Dyna 30 4 50 	amic C) ar Stre 100	cone (50 Length	blows 70 (kN/m 50	/30 cm) 90 1 1 2) 200		م ا	atterbo⊃L ■	erg L	imits LL		
pth 1)		Number	Type	N-Value	Depth S	10) ^{Pen}	etration (blows)	n Res s/30 c 50	istanc :m) 70	e 90		• Mo	20	e Cor	ntent	(%) 10	
′.5 0	Ground Surface				0 -													
,																		
					1													
	50-mm PVC NESTED WELL				-													
					2 -													
					3 –		_											
					-													
					4 –													
					-													
					5 -													
.0																		
5	Installed 50 mm Ø PVC monitoring well to				6 -													
	5.5 m (1.5 m screen) Sand backfill from 3.4 to 5.5 m Bentonite holeplug from 0.3 to 3.4 m Provided with a 4x4 steel monument casing with top and bottom caps, and lock				-													-
					-													-
																		-
					8 –													-
					-													-
					9 -													-
					-													-
					10 -													
																		1

RO.	IECT LOCATION: Bronte Green - 1401 Southeast Corner of Town of Oakville	Bror Bron	ite Ro te Ro	oad ad and	l Upper I	Vid	dle F	Road	L	DRIL	.LII	VG I	DAT	E:	Nov	/em	ber ´	17, 2	2016)	
EI.			SAMP	PLES	(m)	1	• D	ynami 30 I	c Con 50 I I Streng	e (blo 7 1 th (kN	ws/30 70 /m²)	cm) 90 I		A	tterb	erg	Limi Ll	ts			
m) epth m)	SOIL DESCRIPTION	Number	Type	N-Value	Depth Scale	1	50 0 P	10 renetra (bl	00 L L ation R ows/30 50	150 Resista 0 cm)	20 1	90		Mo 10	pistur 20	e Co	onter	nt (%	5)	◯ WATER LEV	
5.7	Ground Surface																				
0																					
	50-mm PVC NESTED WELL				2															- - - -	
					4															• • •	
					5																
<u>3.8</u>	END OF BORFHOLF				6																
	Installed 50 mm Ø PVC monitoring well to 6.9 m (1.5 m screen) Sand backfill from 4.7 to 6.9 m Bentonite holeplug from 0.3 to 4.7 m Provided with a 4x4 steel monument casing with top and bottom caps, and lock				8															- - - -	
					9															-	
					11 -															- -	

Project LOCATION: Branch Green - 1401 Bronk Road DELLING DATE: Nomber 16, 2018 Subhusid, Corner of Boother Read and Upper Middle Road Torm of Odokile Image: Subhusid Corner of Boother Read and Upper Middle Road Tim DSUL Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Depin DSUL Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read and Upper Middle Road Image: Subhusid, Corner of Boother Read And Upper Middle Road Image: Subhusid, Corner of Boother Read And Upper Middle Road Image: Subhusid, Corner of Boother Read And Upper Middle Road Image: Subhusid, Corner of Boother Read And Upper Middle Road Image: Subhusid, Corner of Boother Read And Upper Middle Road Image: Subhusid, Corner of Boother Read And Upper Middle Road Image: Subhusid, Corner of Middle Road Image: Subhusid, Corner of Boother Road Image: Subhusid, Corner of Boother Road Image: Subhusid, Corner of Boother Road Image: Subhusid, Corner of Boother Road Image: Sub	JOB PROJ	NO.: 1611-S034 LOG OF	B ential	OF Deve	REF elopmen	IOL ^{nt}	_E	N	0.	: (MET	S ́ гно	1 0 0 0	F Be	ORIN	F IG:	Fligh	RE I	NO. Iger	: 10
End SOULDESCRIPTION SAMPLES • Premier from the sound ray may be to end and to the sound ray may be to end and to the sound ray product one to a constrained product one constrained product one to a constrained product one to a constr	PRO.	JECT LOCATION: Bronte Green - 1401 Southeast Corner of Town of Oakville	Bror Bron	nte Ro ite Ro	oad oad and	Upper	Middle	e Roa	L d	ORII	LLII	VG L	DAT	E: N	ovem	(Soli ber 1	d-Ste 6, 20	em))16	
(m) 42 8 6 0 1	El. (m) Depth	SOIL DESCRIPTION	er	SAMP	PLES	Scale (m)	Dynamic Cone (blows/30 cm) 10 30 50 70 90 Atterberg Limits PL LL Destroited projectors												R LEVEL
1293 Cround Surface Image: Control Surface Image: Co	(m)		Numb	Type	N-Valı	Depth	0 10	io cm)	70	90 I	Moisture Content (%) 10 20 30 40						WATE		
0.0 25 cm TOPSOL. 1 00 7 9 cown, firm to hard 2 00 31 1 0 14 SILTY CLAY TILL 3 00 29 2 0 1 0 12 1 1 traces of sand and gravel 3 00 29 2 0 3 0 12 1 1 0 12 1 14 12 1 14 12 1 14 12 1 14 12 1 14 12 1 14 12 14 12 14 12 14	129.3	Ground Surface																	
124.7 Red. very dense 0 00 5 00 30 124.7 Red. very dense 0 0 0 0 0 0 124.7 Red. very dense 0 0 5 0 30 0 <t< td=""><td>0.0</td><td>25 cm TOPSOIL Brown, firm to hard</td><td>1</td><td>DO</td><td>7</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td></t<>	0.0	25 cm TOPSOIL Brown, firm to hard	1	DO	7	0	0								•				
1247 1 1 0 1 1 1 0 5 0 3 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0		SILTY CLAY TILL	2	DO	31	1 -		0						14					
Itraces of sand and gravel Image: cobbles and boulders Image: cobbles and boulders 124.7 Red, very dense Image: cobbles and boulders 124.7 Red, very dense Image: cobbles and boulders 124.7 Red, very dense Image: cobbles and boulders 122.2 Image: cobbles and boulders Image: cobbles and boulders 123.2 Image: cobbles and boulders Image: cobbles and boulders 123.2 Image: cobbles and boulders Image: cobbles and boulders 123.2 Image: cobbles and boulders Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders 121.7 Red, very dense Image: cobbles and boulders			3	DO	29			0						12 ●					
124.7 4 5 DO 35 4 0 </td <td></td> <td>traces of sand and gravel occ. wet sand and silt seams and layers, cobbles and boulders</td> <td>4</td> <td>DO</td> <td>57</td> <td>2 -</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>12 ●</td> <td></td> <td></td> <td></td> <td></td> <td></td>		traces of sand and gravel occ. wet sand and silt seams and layers, cobbles and boulders	4	DO	57	2 -				0				12 ●					
124.7					25	3 -								11					
124.7. 6. DO. 50/13. 4.6 Red, very dense SILTY SAND TILL 6. DO. 50/13. 12.2. 6.1 6.1 Red, very dense SANDY SILT TILL 7. DO. 76. 12.1.7 Red, very dense SANDY SILT TILL 7. DO. 76. 12.1.7 Red, very dense SANDY SILT TILL 7. DO. 76. 12.1.7 Red, very dense SILTY SAND TILL 7. DO. 76. 12.1.7 Red, very dense SILTY SAND TILL 8. DO. 50/13. 12.1.7 Red, very dense SILTY SAND TILL 8. DO. 50/13. 12.1.7 SILTY SAND TILL 12.1.7 Red, very dense SILTY SAND TILL 8. DO. 50/13. 12.1.7 Nore gravello gravelly yome gravel to gravelly 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			5		35	_													
4.6 Red, very dense 6 DO 50/13 123.2 6.1 Red, very dense 7 DO 76 123.2 6.1 Red, very dense 7 DO 76 121.7 Red, very dense 7 DO 76 121.7 Red, very dense 8 0 0 121.7 Some gravel to gravely some gravely some gravel to gravely some gravely some gravel to gravely some gravely some	124.7					4 -							6						
123.2 6.1 Red, very dense 7 DO 76 SANDY SILT TILL traces of clay and gravel occ. wet sand and silt seams and layers, cobbles and boulders 7 DO 76 121.7 Red, very dense 8 DO 50/13 121.6 Red, very dense 8 DO 50/13 121.7 a trace of clay some gravel to gravelly occ. wet sand and silt seams and layers, cobbles and boulders 8 DO 50/13 121.6 Red, very dense 8 DO 50/13 8 121.7 Bore gravelly some gravel to gravelly soc. wet sand and silt seams and layers, cobbles and boulders 8 0 50/13 9 10 10 10 10 10 10 10 11 10	4.6	Red, very dense SILTY SAND TILL traces of clay and gravel occ. wet sand and silt seams and layers, cobbles and boulders	_6_	DO	50/13	5 -													
SANDY SILT TILL traces of clay and gravel occ. wet sand and silt seams and layers, cobbles and boulders 7 00 • 121.7 Red, very dense 8 00 50/13 7.7 SILTY SAND TILL a trace of clay some gravel to gravelly occ. wet sand and silt seams and layers, cobbles and boulders 8 00 50/13 9 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 12 0 0 0 0 0 0 0 0 11 10 </td <td><u>123.2</u> 6.1</td> <td>Red, very dense</td> <td>_</td> <td></td> <td></td> <td>6 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>123.2</u> 6.1	Red, very dense	_			6 -								12					
121.7 121.6 Red, very dense SILTY SAND TILL a trace of clay some gravel to gravelly occ. wet sand and silt seams and layers, cobbles and boulders BND OF BOREHOLE		SANDY SILT TILL traces of clay and gravel occ. wet sand and silt seams and			/6						0								
121.6 Red, very dense 8 DO<50/13	121.7	layers, cobbles and boulders				-							6	3					Ā
vocc. wet sand and silt seams and layers, cobbles and boulders 9 10	<u>121.6</u> 7.7	Red, very dense SILTY SAND TILL a trace of clay some gravel to gravelly	8_	DO	50/13	8 -													mpletion
		occ. wet sand and silt seams and layers, cobbles and boulders END OF BOREHOLE				- 9													m on co
						_													El. 122.0
						10 -													N.L. @ F
						11 -													~
C Soil Engineers 1 td						-													
\square i j j j j j j j j j j			S) Dil	En	gin	т 1ее	ers	: L	.tc	<u>.</u>		<u> </u>						

JOB	NO.: 1611-S034 LOG OF	B	OF	REF	IOI	E N	IO .:	S7	FIC	GURE NC). <i>:</i> 16
PROJ	IECT DESCRIPTION: Proposed Reside	ential	Deve	elopmen	nt		ME	THOD O	F BORING: F	light-Auge	r
PRO.	IECT LOCATION: Bronte Green - 1401 Southeast Corner of Town of Oakville	Bror Bron	nte Ro ite Ro	oad oad and	Upper	Middle Ro	DRI pad	LLING E	(S DATE: Novembe	>olid-Stem r 23, 2016)
			SAMF	PLES		• Dyn 10 3	amic Cone (bl 0 50	Attorborg Li	mite		
El.					E)	X She	ear Strength (kl	N/m ²)	PL	LL	Ē
(m)	SOIL DESCRIPTION				cale	50	100 150	200		┥	K LEV
(m)		Jumbei	ype	I-Value	Jepth S	0 Per	netration Resist (blows/30 cm)	tance) 70 90	Moisture Con	tent (%)	VATEF
127.0	Ground Surface	2		2							>
0.0	20 cm TOPSOIL Firm to hard	1	DO	8	0				17		
	wea <u>th</u> ered				_				15		
	SILTY CLAY TILL	2	DO	17	1 -	0					
	<u>brown</u> red				. –				14		
	traces of sand and gravel	3	DO	32	2 -						
	occ. Wet sand and silt seams and layers, cobbles and boulders	4	DO	40	_		0		12		
					3 -	-			9		
		5	DO	50/13							
					_						
					4 -						
122.4 4.6	Red, very dense	6	DO	50/5	_						
	SILTY SAND TILL traces of clay and gravel				5 -	-					
	occ. wet sand and silt seams and layers, cobbles and boulders				-						
120.9					6 -				10		
6.1	Red, very dense	7	DO	53	_		0				
	GRAVELLY SAND				-						
	a trace to some slit				/ -	-					÷
119.2		8	DO	50/15	_				→ 11		letion
7.0	END OF BOREHOLE				8 -						dwoo
					-						uou
					9 -	-					20.0 r
					_						E.
					10 -	-					@
					_						3
					4.4						
					-						,
					- 10						
		Sa	oil	En	gir	neer	s Lto	d.			1 of 1
					-					Page:	1 10 1

Reference No: 1611-S034

U.S. BUREAU OF SOILS CLASSIFICATION

Reference No: 1611-S034

U.S. BUREAU OF SOILS CLASSIFICATION

Reference No: 1611-S034

U.S. BUREAU OF SOILS CLASSIFICATION

Reference No: 1611-S034

Reference No: 1611-S034

U.S. BUREAU OF SOILS CLASSIFICATION

GRAIN SIZE DISTRIBUTION

Reference No: 1611-S034

U.S. BUREAU OF SOILS CLASSIFICATION

Soil Engineers Ltd.

CONSULTING ENGINEERS

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

100 NUGGET AVENUE, TORONTO, ONTARIO M1S 3A7 • TEL: (416) 754-8515 • FAX: (416) 754-8516

BARRIE	MISSISSAUGA	OSHAWA	NEWMARKET	GRAVENHURST	PETERBOROUGH	HAMILTON
TEL: (705) 721-7863	TEL: (905) 542-7605	TEL; (905) 440-2040	TEL: (905) 853-0647	TEL: (705) 684-4242	TEL: (905) 440-2040	TEL: (905) 777-7956
FAX: (705) 721-7864	FAX: (905) 542-2769	FAX: (905) 725-1315	FAX: (416) 754-8516	FAX: (705) 684-8522	FAX: (905) 725-1315	FAX: (905) 542-2769

APPENDIX

BOREHOLE LOGS (FIGURES 1 TO 27) AND BOREHOLE LOCATION PLAN (DRAWING NO. 1) FROM SOIL REPORT REFERENCE NO. 1207-S148, DATED JANUARY 2013

REFERENCE NO. 1611-S034(A)

LOG OF BOREHOLE NO: 1

FIGURE NO: 1

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW2 FIGURE NO: 2A

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW2 FIGURE NO: 2B

METHOD OF BORING: Flight-Auger

DATE: August 9, 2012

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

SAMPLES \times Shear Strength (kN/m2) Atterberg Limits Ē WATER LEVEL Depth SOIL Depth Scale LL 50 100 150 200 DESCRIPTION N-Value Number Elev. Penetration Resistance Moisture Content (%) Type (m) Ο (blows/30cm) 30 50 7 10 , 70 10 20 30 90 40 10.0 10 119.8 Reddish-brown, very dense, wet FINE TO COARSE SAND 50/ ∎⊽ some silt, a trace of gravel 150 10.8 10 DO 50/ 15 • 119.0 END OF BOREHOLE 11 Installed 50-mm diameter PVC monitoring well to 10.7 m with sand backfill from 8.4 to 10.7 m. Bentonite seal from 0.0 to 8.4 m. Mounted with a 12 steel protective casing. 13 14 15 16 W.L. @ El. 119.1 m on completion 17 18 19 20 Soil Engineers Ltd.

LOG OF BOREHOLE NO: 3

FIGURE NO: 3

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 4

FIGURE NO: 4

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW5 FIGURE NO: 5

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW6D FIGURE NO: 6A

METHOD OF BORING: Flight-Auger

DATE: August 7, 2012

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

SAMPLES \times Shear Strength (kN/m2) Atterberg Limits E WATER LEVEL Depth Depth Scale SOIL 50 100 150 200 DESCRIPTION N-Value Number Elev. Penetration Resistance Moisture Content (%) Type (m) Ο (blows/30cm) 10 30 50 , 70 10 20 30 90 40 0.0 Ground Surface 0 126.4 15 cm TOPSOIL 12 • DO 1 28 (Brown/reddish-brown, very stiff to hard weathered 10 1 SILTY CLAY, TIII 2 DO 80 sandy, a trace of gravel DO 3 50 • occ. sand and silt seams and layers, cobbles and boulders 2 Ā 12 DO 64 \cap 4 . 3 1 5 DO 91 4.0 4 122.4 Reddish-brown, very dense 8 13c SILTY SAND, Till 6 DO 50/ • 13 5 a trace to some clay a trace of gravel occ. silt and clay seams and layers, Ŧ cobbles and boulders 6 50/ 13c 124.3 m on completion El. 120.9 m on completion 7 DO 50/ 13 7.0 7 119.4 Reddish-brown, very dense, wet 12 3c DO 50/ . 8 FINE TO COARSE SAND 13 <u>⊞</u>® 8 W.L. @ E Cave-In (some silt, a trace of gravel empty spoon and auger 9 50/ except for cobble at the 5.1cm tip of spoon 9 DO 50/ 5.1 10.0 10 Soil Engineers Ltd.

LOG OF BOREHOLE NO: MW6D FIGURE NO: 6B

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW6S FIGURE NO: 7

METHOD OF BORING: Flight-Auger

DATE: August 7, 2012

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

SAMPLES \times Shear Strength (kN/m2) Atterberg Limits Ē WATER LEVEL Depth Depth Scale SOIL LL 50 100 150 200 DESCRIPTION N-Value Number Elev. Penetration Resistance Moisture Content (%) Type (m) Ο (blows/30cm) 30 50 7 10 , 70 10 20 30 90 40 0.0 Ground Surface 0 126.3 1 BOREHOLE FOR SHALLOW NESTED WELL INSTALLATION ONLY (NO SAMPLING) 2 3 4 Ā 5 6 El. 121.4 m on completion 7 7.6 118.7 END OF BOREHOLE 8 Installed 50-mm diameter PVC 0 W.L monitoring well to 7.6 m with sand backfill from 5.2 to 7.6 m. Bentonite seal from 0.0 to 5.2 m. Mounted with a steel protective casing. 9 10 Soil Engineers Ltd.

LOG OF BOREHOLE NO: 7

FIGURE NO: 8

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

										DATE:	Augu	st 15,	2012	2			
		SA	MP	LES			Shea	ar Strer	ath (kN	l/m2)		Δt	terher	a Limi	its		
Denth	201				E E				igur (kr	wiii <i>z</i>)		7.		g Lini	13		VEL
Depth	SOIL			0	Scale		50	100	150	200		PL					S LE
Elev. (m)	DESCRIPTION	nbei	e	/alue	th S		Penet	ration I	Resista	nce		Moi	sture	Conte	nt (%))	ТЕР
()		Nur	Typ	~	Dep	10) (I 30	50 50	50Cm) 70	90		10	20	30	40)	WA
0.0	Ground Surface				0_									27			
127.9	30 cm TOPSOIL	1A		6									10	•	++	+	
	Brown, firm, weathered	1B				Ť							•			+	
0.8	SILTY CLAY	_										11					
127.1	Brown/reddish-brown, hard	2	DO	40	1	\vdash		++				•			++	-	
						}	+					14			++	—	
		3	DO	48	2			- 9									
	SILTY CLAY, TIII														\square		
		4	ро	62		╂┼─			$\overline{}$						++	+	
	sandy, a trace of gravel		D O	50/	3	1 →		5	0/ 5cm			9			++	+	
	occ. sand and silt seams and layers, cobbles and boulders	5		15				Ψ									
															++	—	
					4										++	+	
						╊┼┤		5	0/						++	+	1
10		6	DO	50/					5cm			12 ●					
4.9 123.0	END OF BOREHOLE			15	5	₽							_			+	
						\vdash									++	+	
															\square		
					6	┋┼┼╴	+ +		_				+		++	+	
					0												
						 									++	_	
															++	-	
					7												
						[_		++	+	
																	tion
						₽									++	+	nple
					8_										++	-	L COL
																	y or
						1+	+ +								++	+	ā
					9												
															++	—	
						╊┼╴	++					++			++	+	
												\square			\square	—	
					10	⊢⊢											
			50	il I	En	qi	ne	ers	s L	td.							

LOG OF BOREHOLE NO: 8

FIGURE NO: 9

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 9

FIGURE NO: 10

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

										Ľ	DATE	: Au	gust ´	5, 20)12					
		SA	MP	LES		Γ	imesShe	ear S	Streng	th (kN	/m2)			Atter	berg	Limit	s		Т	
Depth	SOIL				le (m				0		,		P		0					EVEI
Flev	DESCRIPTION	er		er	Sca		50	10	0 1	50	200			-			<u> </u>		_	IR LE
(m)		qun	ype	-Valı	epth			etrati (blo	ws/30	cm)	ice		• N	/loistu	re C	onten	1t (%))		АТЕ
0.0	Cround Surface	z	<u>г</u>	z		Ľ		30	50	70	9	0	10	20)	30	40	0	+	\$
125.9	15 cm TOPSOIL	1A																	_	
	Brown/reddish-brown, very stiff to hard	1B	DO	19			4					_	1	3	+	_	\vdash	+	_	
	weathered														\pm			\pm	_	
		2	DO	55	1	1	\vdash					_		3	\rightarrow	_	\vdash	+	_	
	SILTY CLAY, TIII														\pm				_	
						1	\vdash					_	12	2	+	_	\vdash	+	4	
		3	DO	53	2														_	
	sandy, a trace of gravel						- -					_			+	—	\vdash	+	_	
	cobbles and boulders	4	DO	50					$\overline{0}$				1 1 ●						_	
						1-	\vdash	$\left \right $	50/	$\left \right $		+	$\left \right $	+	+	—	\vdash	+	4	
		5	DO	50/					15c	m			10 ●							
					1	₽	\vdash					_			+	—	\vdash	+	-	
															\pm			_		
4.0 121.9	Brown very dense wet	-			4	₽	\vdash					-			+	_	\vdash	+	-	Ā
-															\pm					
	FINE TO COARSE SAND			50/		₽	\vdash		50/ 15c	m -		_		15	+	+	\vdash	+	_	
		6		15	5				Ψ						\pm				_	Ŧ
	some silt, a trace of gravel					₽┤	\vdash					_			+	_	\vdash	+	-	
5.6						Ð									_			_		
120.3	Reddish-brown, very dense, wet				6	╊┤	$\left - \right $	$\left \right $	50/	$\left \right $		+		++	+	+	\vdash	+	-	
	SILTY SAND. TIL	7	DO	50/		⇇			15c	m			10		_			_		uo
	·····, ····		Î	15		╊┤	$\left - \right $	$\left \right $	+	$\left \right $		+		+	+	+	\vdash	+	-	tion
	a trace of clay and gravel					⇇									+			_		nplei com
	cobbles and boulders				7	₽	\vdash		_			_			+	_	\vdash	+	_	n on
						⇇			50/						_			_		т о 1.0 г
7.8		8	DO	50/		$\left \right $	$\left - \right $	$\left \right $	15c	┍┥┥		+		+	+	+	\vdash	+	-	21.9 1.12
118.1	END OF BOREHOLE			15	8	Ħ									#	+	\square	+		Е. 1 Ш
						$\left \right $	\vdash		_			+		+	+	+	\vdash	+	-	- n - a
						₽									\pm	+	\square	+		W.L Cav
					0	$\left \right $	\vdash		-	$\left \right $	+	+	$\left \right $	+	+	+	\vdash	+	-	
					9_	Þ									#	\pm	Ц	#		
						\mathbb{H}	\vdash	$\left \right $	+	+	+	+	+	+	+	+	\vdash	+	-	
						⇇									+	1	Ц	\pm		
					10	$\underline{\vdash}$													<u> </u>	
		S	50	il I	En	g	ine	e	rs	Lt	td.									

LOG OF BOREHOLE NO: 10 FIGURE NO: 11

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 11 FIGURE NO: 12

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 12 FIGURE NO: 13

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW13 FIGURE NO: 14

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

METHOD OF BORING: Flight-Auger

DATE: August 14 and 15, 2012

		SA	MPI	ES	_ آ	>	< She	ear S	Stren	gth ((kN/n	n2)			ļ	Atterb	erg l	Limit	s		Γ	E.
Depth	SOIL				ale (r		50	10	0	150	20	00			PL				LL			LEVE
Elev.	DESCRIPTION	lber	Ð	alue	th Sc		Pene	etrat	ion F	Resis	stanc	e			M	oistur	e Co	onten	t (%))	1	TER
(11)		Nun	Typ	>-z	Dep	10	<u> </u>	(blc 30	ws/3 50	0cm	1) 70	90		1	0	20		30	40)		WA ⁻
0.0	Ground Surface	1.0			0_						-		_		1	F					┤╻┓	
124.0	Brown/reddish-brown, stiff to hard weathered	1B	DO	14							1			9							-	
	Wednered								1						1	5	-				11	
	SILTY CLAY, TIII	2	DO	35				0														
									+							17	+				11	
	sandy, a trace of gravel	3	DO	24	2				=													
	occ. sand and silt seams and layers, cobbles and boulders	4	DO	50/						őcm			+		1 •							
				7.6									10	0/								
3.0 121.6	Reddish-brown	5	DO	100/	3_								<u>2.5</u>	ic∰n ●								
				2.5																		
					4																-11	
	SHALE BEDROCK	6A	AS	_					50)/				5							┨║	
		6	DO	50/		\square			- NI - O	Pcm											-11	
	occ. sound layers			NP	5_				+				-				+				-	
	easy augering from 3.0 to 6.1 m hard augering from 6.1 to 9.1 m					\square	_				_			_							-11	
		7A	AS	-							1			6							-111	
									+												11	
									+		_		+				+				11	
					7																11	
									+													
					8_								_									
					9																-	u
9.4																					-	pletic
115.2	END OF BOREHOLE								_	_	_		-				_				-	com
	Refusal to augering. Installed 50-mm diameter PVC				10	\square							_								-	ry on
	monitoring well to 9.4 m with sand backfill from 7.3 to 9.4 m Bentonite																				-	Ō
	seal from 0.0 to 7.3 m. Mounted with a steel protective casing				11	Ħ															-	
	steel protective casing.																				_	
																					1	
					12																	
					_							,										
		S	0		= <i>n</i>	gī	ne) e	rs	5 L	_t	đ.										

LOG OF BOREHOLE NO: 14

FIGURE NO: 15

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

									DA	TE:	August	13, 20	12				
		SA	MP	LES		×s	hear St	rength	(kN/m2	2)		Atterk	berg L	imits		Τ	
Depth	SOIL				le (m			Ū		,	P	4	Ū	11	I		EVEI
Flev	DESCRIPTION	er		en	Sca	50 	100	150) 200)		-		<u> </u>	- 		ER LI
(m)		lumb	ype	I-Val	Depth		(blov	vs/30cr	m)	00	• I 10	Moistu	re Co	ntent (.%)		VATE
0.0	Ground Surface		-	2					70	90	10	20		30	40	_	>
123.6	18 cm TOPSOIL	- 1A					\square				10			\square	\square		
	Reddish-brown, stiff to hard weathered	1B	DO	14								<u>19</u>	_		+	-	
		—					\square				6				\mp		
	SILTY CLAY, TIII	2	DO	57	1_	╏┼┼┼	+	+0	++		-ĕ+			++	++	-	
							\square	50/			8				\square	_	
	sandy, a trace of gravel	3	DO	50/				0			Ť				++	_	
	cobbles and boulders				2			50/							++		
2.3 121.3	Roddich brown weathered	4		50/				2.5cm	n		4						
	Reddish-brown			2.5		┨─┤─┼	++	+		_			_	++	++	_	
					3			50/ NPcm	1								
	SHALE BEDROCK	5 5A		50/ NP		┋┼┼┼	++	+			6		_	++	++	_	
															\mp		
						┨─┼─┼	++		+			++		++	++	-	
	occ. sound layers hard augering from 3.0 to 6.1 m														\square		
								50/ NPcm	1							_	
		6 6A	DO AS	50/			\square	•			6				\square		
					5_	╏┼┼┼	+		+				-			-	
															\square		
																_	
6.1		7A	AS	-	6	╏┼┼┼	++		++		–	+	_	++	++	_	
117.5	END OF BOREHOLE																
						┨┼┼┼	+	+	++		++	+	_	++	++	_	
					7										\mp		
														++		_	
														\square	\square		etion
					8							+		++	++	_	pldmo
															\square	_	on co
																	Dry
							+	+	-		$-\Box$	+		+	+	\neg	
					9_												
						┨┼┼┼╴	++	+		+	+	+		++	++	_	
							$\pm \pm$							\ddagger	\pm		
					10												
		S	50	il L	En	gin	eel	rs	Ltc	1.							

LOG OF BOREHOLE NO: 15 FIGURE NO: 16

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 16 FIGURE NO: 17

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW17 FIGURE NO: 18

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 18 FIGURE NO: 19

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

									DA	TE: A	ugust	13, 20)12			
		SA	MP	LES		XS	Shear Str	enath	(kN/m	2)		Atter	bera l	imits		
Dopth					e (u			ongen	(_/						VEL
Depin		L .		n n	Scale	50	100	150	200	ט	F	»L			-	LE Z
Elev. (m)	DESCRIPTION	mbe	e	/alu	oth S	Pe	enetration	n Resi	istance		•	Moistu	re Cc	ontent (%)	ŢĒ
. ,		n Z	Ţ	ź	Del	10	30	50	70	90	10	20)	30	40	٨٨
0.0	Ground Surface	<u> </u>			0_							19				4
124.7	30 cm TOPSOIL	1A		21)					16	_	++	+	-
	Brown/reddish-brown, weathered	1B		21								•				-
	very stiff to hard							++			<u> </u>	13	_	++	++	-
		2	DO	43			$+ \phi$					•	-	+	++	-
													\perp			_
	sandy, a trace of gravel	3	DO	65		+++			\rightarrow		1	2	+	++	++	-
	occ. sand and silt seams and layers, cobbles and boulders				2											-
								50/						++	++	_
		4	ро	50/				15cm			9		+	+		-
	rock fragments	<u> </u>		15				Ĭ								_
3.0 121.7	Reddich-brown			50/	3			50/ 0.01ci	m		3		+	+	++	-
		5	DO	0.01				ф 			Ŭ					-
	SHALE BEDROCK				1 :							_	_	++	++	_
					4								-	+	+	-
	occ. sound layers										4		_			
	very hard augering from 4.6 to 5.9 m	6A	AS	-		+++		50/			•		+	++	++	-
		6	DO	50/				φ φ					-	+	++	-
				NP	5									\square]
						╞┼┼┼		++				++	+	++-	++	-
											4					-
5.9		7A	AS	-		┟┼┼┼		++			•		+	++	++	-
118.8	END OF BOREHOLE				6								_	+	++	-
	Refusal to augering.]
														+		-
					7											-
						┠┼┼┼					++		_	+ + -	++	-
								+							++	– u
														\square		L T
					8								_	+		- cou
																- uo A
						┠┼┼┤	++	+	+	+	++		+	++	++	
					9			+		+	++	+	+	+	++	-
													_	\square	\square]
						╏┼┼┼		+	+	+	++	+	+	++	++	-
													\pm			1
					10											_
		S	50	il l	En	gin	eer	'S	Ltc	<u>ار ا</u>						

LOG OF BOREHOLE NO: MW19 FIGURE NO: 20

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 20 FIGURE NO: 21

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: MW21 FIGURE NO: 22

METHOD OF BORING: Flight-Auger

DATE: August 7, 2012

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

SAMPLES \times Shear Strength (kN/m2) Atterberg Limits E WATER LEVEL Scale (Depth SOIL 50 100 150 200 DESCRIPTION N-Value Elev. Number Depth : Penetration Resistance Moisture Content (%) Type (m) Ο (blows/30cm) 10 30 50 , 70 10 20 30 90 40 Ground Surface 0.0 0 126.4 23 cm TOPSOIL, Fill 1A • С DO 18 Brown 1B EARTH, Fill 6 silty clay with topsoil inclusions 0.9 13 1 125.5 DO 55 Reddish-brown, hard 2 SILTY CLAY, TIII 19 3 DO 48 ė 2 sandy, a trace of gravel 50/ occ. sand and silt seams and layers, 50 cobbles and boulders DO 50/ 4 15 2.7 1237 Brown, very dense 3 9 SILTY SAND, Till 5 DO 65 a trace of clay, some gravel occ. silt seams and layers, cobbles and boulders 4.0 4 122.4 Brown, very dense, wet ∇ 15 15c FINE TO COARSE SAND AND 6 DO 50/ ROCK FRAGMENTS 15 5 NPcm 5.5 ľĦ. 7 DO 50/ 120.9 END OF BOREHOLE NP 6 Installed 50-mm diameter PVC monitoring well to 5.5 m with sand El. 121.8 m on completion backfill from 3.0 to 5.5 m. Bentonite seal from 0.0 to 3.0 m. Mounted with a steel protective casing. 7 8 0 ٧.L 9 10 Soil Engineers Ltd.

LOG OF BOREHOLE NO: 22

FIGURE NO: 23

METHOD OF BORING: Flight-Auger

DATE: August 13, 2012

JOB DESCRIPTION: Proposed Residential Development

		SA	MPI	ES		×	She	ear S	Stren	gth (kN/m	า2)	Τ		Atte	erbei	rg Li	mits			
Depth	SOIL				ale (m				_		_	,		F	۲L		0	I	LL		EVEL
Elev.	DESCRIPTION	ber		lue	h Sca		50 Pene	10 etrati	o ion F	150 Resis	20 tanc	20 e	-	-			0		-		ER L
(m)		Num	Type	N-Va	Dept	10	C	(blo 30	ws/3 50	80cm) 70	90		• 10	Mois	ture 20	Con 3	ntent 0	(%) 40		WAT
0.0	Ground Surface				0_										_		ı			_	
132.4	10 cm TOPSOIL, Fill	1A	DO	36				0					4								
		1B											•								
		2	DO	40	1				,					1	2						
	EARTH, Fill (borehole located on	<u> </u>					-	\dashv					┢		-	+	$\left \right $	_	-		
	a berm between fairways)																				
		3	DO	20	2		<u> </u>														
	silty clay and silty sand materials														_	-					
	some gravel	4	DO	9		0								-10 •							
					3																
		5	DO	23			\mathbf{b}								14 •	-					
3.8 128.6	Brown, compact	6		00	4									9							
		6		22			+						-	-	-						
	FINE TO COARSE SAND																				
	a trace of siltwet	7	DO	12	5	þ									•						Ţ
	a trace to some gravel						_						_		_				_		¥
5.6		-			·																
126.8	Grey, compact, wet				6																
	SANDY SILT			16									_		-1	<u>_</u>			_		tion
		0		10																	letion mple
7.0	a trace of clay occ. sand seams and layers				7																somp on co
125.4	Reddish-brown, hard												_		-						4 m 6
	sandy, a trace of gravel occ. sand and silt seams and lavers.									55/ 15cm				9							7.5 m 127.
7.8 124.6	cobbles and boulders	9	DO	55/	8				(•					_		@ EI.
	END OF BOREHOLE														_						e-ln (0) - 1
																					W.L Cav
					- -		-						┢		+		$\left \right $	-	-		
							_								-						
					10		+						-		+		$\left \right $	_		+	
	_					I	-		1	•					-						
		S	50	il l	Ξn	gi	ne	e	rs	s L	_t(d.									

LOG OF BOREHOLE NO: 23

FIGURE NO: 24

JOB DESCRIPTION: Proposed Residential Development

LOG OF BOREHOLE NO: 24

FIGURE NO: 25

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

														Aug	ust	9, 2	012	<u>'</u>				
		SA	MP	LES			\times Sł	near	Stre	ength	n (kN	l/m2	<u>'</u>)			Att	erbe	erg L	imite	3		
Depth	SOIL				lle (m					0	,		,		F	۰L		0		LL		EVEI
Elev.	DESCRIPTION	ber		ne	l Sca		50 Poi		100 ation	15 Res	0 sistar	200				Ē				<u> </u>		ERL
(m)		Mumk	Type	N-Va	Depth	10	0	(bl 30	ows/	/30c	m) 70	100	90		• 10	Mois	sture	+ Cor	ntent 30	t (%) 40	† 1	MATI
0.0	Ground Surface				0					·									ĩ			
129.5	Brown	1		26		╊┼	-				_		_		-10	-	_	+	\vdash	\rightarrow		-
	EARTH, Fill			20			Ť								Ť			\perp	Ħ	_		
	silty clay and silty sand materials with topsoil inclusions	2A	D O	00		╂┼	+				+		-	\vdash	7	+	+	+	$\left \right $	\rightarrow		-
<u> </u>	Brown, compact, damp to wet	2B		26		\square	+				_			-5	_			\vdash	\square	—		-
							_								7							-
	FINE TO COARSE SAND	3	DO	16	2	<u></u>	<u>o</u>	_							•	_		+	\vdash	+		-
	some silt, a trace of gravel						_						_					\perp	\square	_	_	1
		4	DO	14			5									1	8		\square			-
2.9	<u>wer</u>					} ⊢+	+	-			+		-	\vdash	+	+		+	$\left \right $	<u> </u>	_	-
126.6	Brown, very dense, wet	5	ро	65			+				0					14		\perp	\square	$ \rightarrow$		-
	SILTY FINE SAND					╂┼	+	+			-		-	\vdash	+	+	+	+	H	+		-
10	a trace of clay occ. silt seams and layers						_	_			_				_	_		+	\square	_		-
4.0	Grey, hard	-			4 -	Ħ	+											\perp	⊢			-
	SILTY CLAY, TIII					╊┼	+	-			+		-	\vdash	+	+	+-	+	\vdash	\rightarrow	_	-
	sandy, a trace of gravel	6	DO	32			+	6							1	2		\perp	\square	_	_	-
	occ. sand and silt seams and layers, cobbles and boulders				5_		_											\pm			_	_ \
56						↓ +	+	-			+		_	\vdash	+	+	_	+	$\left \right $	\rightarrow		-
123.9	Reddish-grey, very dense					Ħ	\mp											\downarrow	Ħ		_	-
6.2	a trace of clay and gravel	7		50/	6_	╂┼	-			50/ 15cm D						-		+	+	+	_	-
123.3	cobbles and boulders	<u> </u>		15		\square	_								_			—	\square	_		pletic
	END OF BOREHOLE					Ħ	_											\perp				com
					7	╊┼	+	+			_		-	\vdash	+	+		+	\vdash	\rightarrow	+	- uo u
							+											1	\square	_	—	24.61
																						- III
					8	╊	+	-			_		-		_	-		+	+	+	_	 С
						ET.	_											+	\square	<u> </u>	_	ave-I
																						Ö
					9	F	$\overline{+}$	-			-			\square	-	+		F	Ħ	$\overline{+}$	_	-
						Ħ	\pm									+		+	╞	_	+	1
						╊┼	+	-				_		\vdash	+	-		+	⊢	+	+	-
					10_]
		S	50	il I	En	gi	n	96	er	S	L	ta	Ι.									

LOG OF BOREHOLE NO: MW25 FIGURE NO: 26A

METHOD OF BORING: Flight-Auger

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

DATE: August 14, 2012 SAMPLES \times Shear Strength (kN/m2) Atterberg Limits E WATER LEVEL Depth Depth Scale SOIL LL 50 100 150 200 DESCRIPTION N-Value Number Elev. Penetration Resistance Moisture Content (%) Type (m) (blows/30cm) 30 50 7 Ο 10 , 70 10 20 30 90 40 0.0 Ground Surface 0 127.0 10 cm TOPSOIL, Fill 1A . \cap 7 DO 35 Dark brown/reddish-brown 1B . 13 1 EARTH, Fill DO 12 2 (borehole located on a berm) DO 0 3 14 silty clay with topsoil inclusions and 2 organics φ DO 20 4 3 23 5 DO 15 3.8 123.2 13 Brown/reddish-brown, hard 4 DO 35 6 0 13 SILTY CLAY, TIII 7 DO 45 5 sandy, a trace of gravel occ. sand and silt seams and layers, cobbles and boulders 6 10 15cm 50/ DO 8 15 7 Dry on completion 8 15c DO 50/ 9 15 8 50/ changing to shale 9 9.1 117.9 10 DO 50/ Reddish-brown NP 10A AS SHALE BEDROCK easy augering from 9.1 to 10.7 m 1. 10.0 10 Soil Engineers Ltd.

JOB NO: 1207-S148

LOG OF BOREHOLE NO: MW25 FIGURE NO: 26B

METHOD OF BORING: Flight-Auger

DATE: August 14, 2012

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

SAMPLES \times Shear Strength (kN/m2) Atterberg Limits Ē WATER LEVEL Depth Depth Scale SOIL LL 50 100 150 200 DESCRIPTION N-Value Number Elev. Penetration Resistance Moisture Content (%) Type (m) Ο (blows/30cm) 30 50 7 10 , 70 10 20 30 90 40 10.0 10 117.0 Reddish-brown 50/ SHALE BEDROCK 11 DO 50/ 11A AS NP 11 occ. sound layers hard augering from 10.7 to 12.2 m 12 12.2 114.8 END OF BOREHOLE Installed 50-mm diameter PVC 13 monitoring well to 12.0 m with sand backfill from 9.8 to 12.2 m. Bentonite seal from 0.0 to 9.8 m. Mounted with a steel protective casing. 14 15 16 17 Dry on completion 18 19 20 Soil Engineers Ltd.

JOB NO: 1207-S148

LOG OF BOREHOLE NO: 26 FIGURE NO: 27

JOB DESCRIPTION: Proposed Residential Development

JOB LOCATION: 1401 Bronte Road, Town of Oakville

APPENDIX D

DRAWINGS

- Drawing GEN-1 General Notes
- Drawing SP-1 Site Servicing Plan
- Drawing GR-1 Site Grading Plan
- Drawing STM-1 Post-Development Storm Drainage Plan
- Drawing SAN-1 Sanitary Drainage Plan
- Drawing ESC-1 Erosion and Sediment Control Plan