Phase Two Environmental Site Assessment

Part of Lot 20, Concession 2 Oakville, Ontario

Revision 1

Prepared For:

ARGO Neyagawa Corporation 4900 Palladium Way, Unit 105 Burlington, Ontario L7M 0M7

DS Project No: 21-455-100

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Executive Summary

DS Consultants Ltd. (DS) was retained by the ARGO Neyagawa Corporation (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the property described as Part of Lot 20, Concession 2, Oakville, Ontario, herein referred to as the "Phase Two Property" or "Site". It is DS' understanding that the Phase Two ESA has been requested in support of the proposed redevelopment of the Site for residential purposes.

The Phase Two Property is an irregularly shaped 11.29 hectares (27.90 acres) parcel of land situated within a mixed agricultural and residential neighbourhood in the Town of Oakville, Ontario. The Phase Two Property is located on the northwest corner of the intersection of Neyagawa Boulevard and Burnhamthorpe Road West.

This Phase Two ESA was completed in general accordance with the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (O.Reg. 153/04) (as amended). The objective of this Phase Two ESA is to assess whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase One ESA previously completed on the Site indicated that the Site appears to have been part of an agricultural and residential homestead prior to 1880. A small orchard was observed in the Country Atlas adjacent to the historical homestead. By 1934 the residential dwelling and orchard were no longer visible and the property was utilized for agricultural purposes. By 2013 the southwestern portion of the Site was leased as a landscape company storage area. The Site has otherwise been vacant and the land use remained as agricultural. A total of ten (10) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, which were considered to be contributing to six (6) APECs on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (COPCs) identified is presented in the table below:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- Site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1A	Southwestern portion of the Property	#30 – Importation of Fill Material of Unknown Quality	On Site PCA-1	PHCs, BTEX, Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-1B	Southwestern portion of the Property	#30 – Importation of Fill Material of Unknown Quality	On Site PCA-4	Metals, PAHs	Soil

Table E-1: Summary of APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on- Site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1C	Southern portion of the Property	#30- Importation of Fill Material of Unknown Quality	On Site PCA-9	Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-2	Southwestern portion of the Property	N/S – Storage of miscellaneous construction material and debris	On Site PCA-2	PHCs, VOCs, BTEX, Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-3	Western portion of the Property	#40 – Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On Site PCA-7	Metals, As, Sb, Se, CN-, OCPs	Soil
APEC-4	Southern Portion of the Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-Site PCA-10	PHCs, VOCs, BTEX, Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil and Groundwater

N/S - Not specified in Table 2, Schedule D, of O.Reg. 153/04

Notes:

PAHs = Polycyclic Aromatic Hydrocarbons

PHCs = Petroleum Hydrocarbons

VOCs = Volatile Organic Compounds

BTEX = Benzene, Toluene, Ethylbenzene, Xylene

OCPs = Organochlorine Pesticides

Based on the findings of the Phase One ESA it was concluded that a Phase Two ESA was recommended to assess the soil and groundwater conditions on the Phase Two Property with respect to the APECs identified.

The Phase Two ESA was completed in conjunction with the geotechnical and hydrogeological assessments and involved the advancement of nine (9) boreholes (MW22-1A, MW22-1B, MW22-2, MW22-9, MW22-10, BH22-11, MW22-12, BH22-13 and MW22-14), completed between May 17 and May 25, 2022. The boreholes were advanced to a maximum depth of 17.0 metres below ground surface (mbgs) under the supervision of DS personnel. Additionally, six (6) boreholes (BH22-3 to BH22-8) were hand augured between May 17 and May 19 to a depth of between 0.8 to 1.5 mbgs by DS personnel.

Groundwater monitoring wells were installed in seven (7) of the boreholes advanced on Site. All seven (7) monitoring wells were installed to facilitate the assessment of groundwater flow and to monitor the groundwater levels on Site. One (1) of the monitoring wells (designated MW22-2) was used to facilitate the collection of groundwater samples, the remainder of the wells were utilized for groundwater level and flow direction, as well as hydrogeological investigation. The borehole locations were determined based on the findings of the Phase One ESA.

Soil samples were collected and submitted for chemical analysis as follows:

- Eight (8) samples for analysis of Metals and ORPs. An additional nine (9) samples, including one (1) QAQC field duplicate, were submitted for analysis of pH only;
- Four (4) samples for analysis of PHCs and BTEX;
- Six (6) soil samples (including two (2) QA/QC duplicates) for analysis of VOCs;
- Seven (7) soil samples (including two (2) QA/QC duplicates) for analysis of polycyclic aromatic compounds (PAHs);
- Three (3) soil samples for analysis of organochlorine pesticides (OCPs).

Groundwater samples were collected from monitoring well MW22-2, and submitted for chemical analysis of PHCs, VOCs, Metals, ORPs, and PAHs on May 30, 2022. Groundwater samples were also collected from monitoring well MW22-2 and submitted for chemical analysis of PHCs on June 28, 2022.

The soil and groundwater analytical results were compared to "the "Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils (Table 2 SCS) as contained in the April 15, 2011 Ontario Ministry of Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act".

Based on the results of the Phase Two ESA, DS presents the following findings:

A surficial topsoil layer approximately 100 to 250 mm thick was encountered BH22-3, BH22-8, MW22-10 and BH22-11. Fill material was encountered in boreholes MW22-1A, MW22-1B, MW22-2 and BH22-5 and it consisted of clayey silt, sandy silt and sand without any indication of deleterious materials. The fill material was generally heterogeneous and ranged in thickness from 1.0 to 1.5 mbgs. Re-worked native soils were encountered in boreholes MW22-9, MW22-10, BH22-11, MW22-12, BH22-13, MW22-14. The reworked native soils and native overburden material encountered below the fill material generally consisted of clayey silt till/sandy silt till/ silty clay till and extended to depths ranging from 4.6 to 13.7 mbgs. Shale Bedrock was encountered in MW22-1B, MW22-2 and MW22-14 at a depth of between 12.2 to 15.2 mbgs;

The depth to groundwater was measured in all monitoring wells installed during the course of this investigation. The groundwater levels were found to range between 0.80 to 8.43 mbgs, with corresponding elevations of 174.12 to 180.86 metres above sea level (masl). Based on the groundwater elevations recorded, the groundwater flow direction appears to be south to southeast towards the Osenego Creek. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.

Based on a review of the findings of this Phase Two ESA, DS presents the following conclusions and recommendations:

- The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met, as of the Certification Date of June 28, 2022. No further sub-surface investigation is required regarding the environmental quality of the soil and groundwater at the Phase Two Property.
- Any excess soils generated by the Site redevelopment activity may be subject to the rules and requirements of O.Reg. 406/19, which is scheduled to come back into effect January 1, 2023. Surplus soils generated by future earthworks may require additional chemical characterization prior to export.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

Table of Contents

1.0	Introduction	. 1
1.1	Site Description	. 1
1.2	Property Ownership	2
1.3	Current and Proposed Future Use	. 2
1.4	Applicable Site Condition Standards	. 2
2.0	Background Information	. 3
2.1	Physical Setting	3
	2.1.1 Water Bodies and Areas of Natural Significance	3
	2.1.2 Topography and Surface Water Draining Features	4
2.2	Past Investigations	4
	2.2.1 Previous Report Summary	4
	2.2.1 Use of Previous Analytical Results	6
3.0	Scope of the Investigation	. 6
3.1	Overview of Site Investigation	6
3.2	Media Investigated	. 7
	3.2.1 Rationale for Inclusion or Exclusion of Media	7
	3.2.2 Overview of Field Investigation of Media	7
3.3	Phase One Conceptual Site Model	. 8
	3.3.1 Potentially Contaminating Activity Affecting the Phase One Property	8
	3.3.2 Contaminants of Potential Concern	9
	3.3.3 Underground Utilities and Contaminant Distribution and Transport	9
	3.3.4 Geological and Hydrogeological Information	9
	3.3.5 Uncertainty and Absence of Information	10
3.4	Deviations from Sampling and Analysis Plan	10
3.5	Impediments	10
4.0	Investigation Method	10
4.1	General	10
4.2	Drilling and Excavating	11
4.3	Soil Sampling	12
4.4 4 E	Field Screening Measurements	12
4.5	Groundwater Nonitoring well installation	13
4.0	Groundwater Sampling	13
4.8	Sediment Sampling	14
4.9	Analytical Testing	14
4.10	Residue Management Procedures	14
	4.10.1 Soil Cuttings from Drilling and Excavations	14
	4.10.2 Water from Well Development and Purging	14

	4.10.3 Fluids from Equipment Cleaning	14
4.11	Elevation Surveying	14
4.12	Quality Assurance and Quality Control Measures	15
	4.12.1 Sample containers, preservation, labelling, handling and custod	ly for
	samples submitted for laboratory analysis, including any deviations from th	ie SAP
	15	
	4.12.2 Description of equipment cleaning procedures followed durin sampling	ng all 15
	4.12.3 Description of how the field quality control measures referred	to in
	subsection 3 (3) were carried out	16
	4.12.4 Description of and rational for, any deviations from the procedures s	set out
	in the quality assurance and quality control program set out in the SAP	16
50	Review and Evaluation	16
51	Geology	10
5.2	Ground Water Elevations and Flow Direction	17
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	17
	5.2.2 Results of Interface Probe Measurements	17
	5.2.3 Product Thickness and Free Flowing Product	17
	5.2.4 Groundwater Elevation	17
	5.2.5 Groundwater Flow Direction	17
	5.2.6 Assessment of Potential for Temporal Variability in Groundwater	Flow
	Direction	18
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the	Water
	Table 18	. ator
5.3	Ground Water Hydraulic Gradients	18
	5.3.1 Horizontal Hydraulic Gradient	18
	5.3.2 Vertical Hydraulic Gradient	18
5.4	Fine-Medium Soil Texture	19
	5.4.1 Rational for use of Fine-Medium Soil Texture Category	19
	5.4.2 Results of Grain Size Analysis	19
	5.4.3 Rational for the Number of Samples Collected and Analyzed	20
5.5	Soil Field Screening	20
5.6	Soil Quality	20
	5.6.1 Metals and ORPs	20
	5.6.2 Petroleum Hydrocarbons	20
	5.6.1 Volatile Organic Compounds	20
	5.6.2 Polycyclic Aromatic Hydrocarbons	21

	5.6.3 Organochlorine Pesticides	. 21
	5.6.4 Commentary on Soil Quality	. 21
5.7	Ground Water Quality	.21
	5.7.1 Metals and ORPs	. 21
	5.7.2 Petroleum Hydrocarbons	. 21
	5.7.3 Polycyclic Aromatic Hydrocarbons	. 22
	5.7.4 Volatile Organic Compounds	. 22
	5.7.5 Commentary on Groundwater Quality	. 22
5.8	Sediment Quality	.22
5.9	Quality Assurance and Quality Control Results	.23
5.10	Phase Two Conceptual Site Model	.24
6.0	Conclusions	24
6.1	Qualifications of the Assessors	.26
6.2	Signatures	.27
6.3	Limitations	.28
7.0	References	29
TABLES		
Table E-1: S	Summary of APECs	1

Table 1-1: Phase Two Property Information	1
Table 1-2: Phase Two Property Ownership	2
Table 3-1: Rationale of Sampling Media	7
Table 3-2: Field Investigation of Media	7
Table 3-3: Summary of PCAs Contributing to APECs	8
Table 4-1: Summary of Drilling Activities	11
Table 4-2: Field Screening Equipment	12
Table 4-3: Summary of Sample Bottle Preservatives	15
Table 5-1: Summary of Geologic Units Investigated	16
Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations	18
Table 5-3: Summary of Vertical Hydraulic Gradient Calculations	18
Table 5-4: Summary of Grain Size Analyses	19
Table 5-5: Summary of PHCs Exceedances in Groundwater	21
Table 5-6: Summary of QA/QC Results	23

Enclosures

LIST OF TABLES

- Table 1 Summary of Monitoring Well Installation and Groundwater Data
- Table 2 Summary of Soil Samples Submitted for Chemical Analysis
- Table 3 Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 4 Summary of APECs Investigated
- Table 5 Summary of Metals and ORPs in Soil
- Table 6 Summary of PHCs (incl. BTEX) in Soil
- Table 7 Summary of VOCs in Soil
- Table 8 Summary of PAHs in Soil
- Table 9 Summary of OCPs in Soil
- Table 10 Summary of Metals and ORPs in Groundwater
- Table 11 Summary of PHCs in Groundwater
- Table 12 Summary of VOCs in Groundwater
- Table 13 Summary of PAHs in Groundwater
- Table 14 Summary of Maximum Concentrations in Soil
- Table 15 Summary of Maximum Concentrations in Groundwater

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Phase Two Property Site Plan
- Figure 3 Phase Two Study Area
- Figure 4 PCA within Phase Two Study Area
- Figure 5 Borehole Location Plan with APECs
- Figure 6A Groundwater Elevations Contours and Flow Direction Shallow
- Figure 6B Groundwater Elevations Contours and Flow Directions Deep
- Figure 7A Summary of Metals and ORPs in Soil
- Figure 7B Summary of PHCs + BTEX in Soil
- Figure 7C Summary of VOCs in Soil
- Figure 7D Summary of PAHs in Soil
- Figure 7E– Summary of OCPs in Soil
- Figure 8A Summary of Metals and ORPs in Groundwater
- Figure 8B Summary of PHCs in Groundwater
- Figure 8C Summary of VOCs in Groundwater
- Figure 8D Summary of PAHs in Groundwater
- Figure 9 Pathways and Receptors

APPENDICES

- Appendix A Sampling and Analysis Plan
- Appendix B Borehole Logs
- Appendix C Laboratory Certificates of Analysis
- Appendix D Phase Two CSM

1.0 Introduction

DS Consultants Ltd. (DS) was retained by ARGO Neyagawa Corporation (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) of the land described as Part of Lot 20, Concession 2, Oakville, Ontario, herein referred to as the "Phase Two Property" or "Site". It is DS' understanding that the Phase Two ESA has been requested in support of the proposed redevelopment of the Site for residential purposes.

It is the opinion of DS that the intended future residential property use is considered to be a more sensitive property use as defined under O.Reg. 153/04 (as amended) than the former commercial land use; therefore the filling of a Record of Site Condition (RSC) with the Ontario Ministry of Environment, Conservation and Parks (MECP) is mandated under O.Reg. 153/04.

The Phase Two ESA was completed in general accordance with the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended) but was limited to the areas of the Site accessible at the time of the investigation. The objective of this Phase Two ESA is to assess whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is an irregularly shaped 11.3 hectares (28.0 acres) parcel of land situated within an agricultural and residential neighbourhood in the Town of Oakville, Ontario. The Phase Two Property is located immediately northwest of the intersection of Neyagawa Boulevard and Burnhamthorpe Road West and was vacant at the time of this investigation. A Site Location Plan depicting the general location of the Phase Two Property is provided in Figure 1.

For the purposes of this report, Burnhamthorpe Road West is assumed to be aligned in an east-west orientation, and Neyagawa Boulevard in a north-south orientation. A Plan of Survey for the Phase Two Property was not available at the time of this assessment.

The Site is currently vacant and the majority of the property was comprised of agricultural fields.

Additional details regarding the Phase Two Property are provided in the table below.

Criteria	Information	Source
Legal Description	PART LOT 20 CON 2 NDS TRAFALGAR, PART 1 20R9368 LYING W OF PART 1, PE200 EXCEPT PART 4 20R13713 & PARTS 1, 2 HR1104980 AND PART 1 20R20812, Town of Oakville, Ontario	Ontario Land Registry
Property Identification Number (PIN)	24929-6762 (LT)	Ontario Land Registry

Table 1-1:	Phase Two	Property	/Information

1

Criteria	Information	Source	
Current Site Occupants	Vacant	Site Reconnaissance	
Site Area	11.3 hectares (28.0 acres)	Ontario Land Registry	

1.2 Property Ownership

The ownership details for the Phase Two Property are provided in the table below.

Table 1-2: Phase Two Property Ownership

Property Owner	Contact
Argo Neyagawa Corp.	Bartosz Lopat 4900 Palladium Way Unit 105, Burlington, ON L7M 0W7 Phone: 905-462-4970 Email: bart@argoland.com

1.3 Current and Proposed Future Use

The Phase Two Property is currently vacant and the majority of the property was comprised of agricultural fields. The southwestern portion of the Site was formerly leased to a landscaping company to store various landscaping equipment and trailers on-Site. It is DS's understanding that the Client intends to redevelop the Site for residential use.

1.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Phase Two Property are considered by the Qualified Person (QP) to be the Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils as contained in the April 15, 2011 Ontario Ministry of Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "Table 2 SCS".

The selection of the Table 2 SCS is considered appropriate based on the following rationale:

- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Phase Two Property will be residential;
- The Site is not located within 30 m of a water body, as defined in 0. Reg 153/04;
- The pH of the soils analyzed during this Phase Two ESA are within the accepted range specified under O.Reg. 153/04 (as amended);
- Bedrock was not encountered within 2 metres of the ground surface.

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

During the Site visit, standing water was not observed on the Property. The nearest body of water to the Phase Two Property is the East Sixteen Mile Creek, located approximately 500 m to the north. The Natural Heritage Areas database published by the Ministry of Natural Resources (MNR) was reviewed in order to identify the presence/absence of areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands, environmentally significant areas, habitats of threatened or endangered species, and wilderness areas. The regional and municipal Official Plans were also reviewed as part of this assessment.

According to the MNRF the following species at risk are present within 1 km of the Site:

- The endangered Northern Bobwhite Northern Bobwhites live in savannahs, grasslands, around abandoned farm fields, along brushy fencerows and other similar sites
- The threatened Silver Shiner silver shiners prefer moderate to large size streams with swift currents that are free of weeds and have clean gravel or boulder bottoms.
- The Midland Painted Turtle a species of special concern. Painted turtles inhabit waterbodies, such as ponds, marshes, lakes and slow-moving creeks, that have a soft bottom and provide abundant basking sites and aquatic vegetation.
- The threatened Eastern Meadowlark Eastern Meadowlarks breed primarily in moderately tall grasslands, such as pastures and hayfields, but are also found in alfalfa fields, weedy borders of croplands, roadsides, orchards, airports, shrubby overgrown fields, or other open areas. Small trees, shrubs or fence posts are used as elevated song perches.
- The threatened Bobolink historically, Bobolinks lived in North American tallgrass prairie and other open meadows. With the clearing of native prairies, Bobolinks moved to living in hayfields.
- The Snapping Turtle a species of special concern. Snapping Turtles spend most of their lives in water. They prefer shallow waters so they can hide under the soft mud and leaf litter, with only their noses exposed to the surface to breathe. During the nesting season, from early to mid-summer, females travel overland in search of a suitable nesting site, usually gravelly or sandy areas along stream.
- The eastern Milksnake a species of special concern. Eastern Milksnakes tend to use open habitats such as rocky outcrops, fields and forest edge. In rural areas this snake may be common, especially around barns where they thrive on the abundant mice.

The Site does not contain any streams, savannahs, grassland, abandoned farm fields (the agricultural lands present are actively in use), prairie, meadows, rocky outcrops, fields or forests. The Site does contain two isolated ponds, given the distance of these ponds from the nearest creek (the East Sixteen

Mile Creek located 500m north of the Site), as well as the active use of the Site as an agricultural field, and the presence of the 407 Highway between the creek and ponds, Snapping and Midland Painted Turtles are unlikely to occur on the Site.

If required, an environmental specialist could be retained to undertake a Site-specific ecological assessment, however at this time further assessment is not warranted.

2.1.2 Topography and Surface Water Draining Features

The topography of the Phase Two Property is generally flat, with a surface elevation of 185 metres above sea level (masl). The neighbouring properties are generally at a similar elevation, and the topography within the Phase Two Study Area generally slopes to the south, towards Osenego Creek located 1 km south of the property and towards Lake Ontario, located approximately 9 km south of the property. There are no drainage features (e.g. ditches, swales, etc.) present on-Site. Surface water flow associated with precipitation events is anticipated to run overland and drain into the municipal storm sewer catch basins.

2.2 Past Investigations

2.2.1 Previous Report Summary

The following environmental reports were provided for DS to review:

- "Phase I Environmental Site Assessment, Concession 2, NDS PT LOT 20, Reference Plan 20R-16344, Oakville, Ontario", prepared for 2433170 Ontario Inc., prepared by Chung & Vander Doelen (CVD) Engineering Ltd., dated December 13, 2016 (CVD 2016 Phase I ESA)
- "Phase One Environmental Site Assessment, Part of Lot 20, Concession 2, Oakville, Ontario", prepared for ARGO Neyagawa Corporation, prepared by DS Consultants Ltd., dated February 22, 2022 (DS 2022 Phase One ESA)

CVD 2016 Phase I ESA

The CVD 2016 Phase I ESA was conducted in general accordance with CSA document entitled "Phase I Environmental Site Assessment" (CSA Document Z768-01), dated November 2001 (reaffirmed 2006), and included a review of readily available historical records and reasonably ascertainable regulatory information, a Site Reconnaissance, interviews, evaluation of information, and reporting. The following pertinent information was noted by DS:

- During the time of this investigation CVD (2016) concluded that the Site was an undeveloped rural agricultural land with a portion of the Site leased to a private contractor (landscaper) for the storage of miscellaneous landscaping equipment.
- Stockpiles of imported concrete and asphalt debris and miscellaneous granular material were observed on the southwestern portion of the Site.

- The west adjacent residential property was assumed to have a historic AST associated with the storage of furnace oil for heating purposes.
- During the Site reconnaissance CVD (2016) observed black granular material stored on the south adjacent property to be encroaching onto the southeastern portion of the Phase One Property.

CVD (2016) concluded that the aforementioned PCAs were of low environmental concern and did not recommend further investigation.

2022 DS Phase One ESA

The Phase One ESA was conducted for the purpose of pre-purchase due diligence. The Phase One identified that the Site appears to have been part of an agricultural and residential homestead prior to 1880. A small orchard was observed in the Country Atlas adjacent to the historical homestead. By 1934 the residential dwelling and orchard were no longer visible and the property was utilized as an active agricultural field. By 2013 the southwestern portion of the Site was leased as a storage area to a landscaping contractor. The Phase One Property has otherwise been vacant and is still operating as an agricultural field.

A total of ten (10) PCAs were identified within the Phase One Property and Phase One Study Area, six (6) of which are contributing to six (6) APECs:

- The following issues of potential environmental concern (PCAs)were identified on the Phase One Property:
 - Historic aerial imagery and CVD's (2016) report indicates that the southwestern portion of the Site – which was reportedly leased to a landscaping company – was occupied by more than ten soil stockpiles of varying sizes over time. CVD (2016) describes the material as imported concrete, asphalt debris and miscellaneous granular material. The landscaping company was not available to identify the source of the soil.
 - Historic aerial imagery indicates that the southwestern portion of the Site which was reportedly leased to a landscaping company was occupied by various vehicles as well as miscellaneous materials and refuse.
 - During the Site reconnaissance CVD (2016) observed black granular material stored on the south adjacent property to be encroaching onto the southeastern portion of the Phase One Property.
 - According to the Halton County Atlas from 1880, the Phase One Property appears to have a residential dwelling with an orchard located along the western boundary of the Site.

- In the 1934 aerial imagery, the residential dwelling and orchard are no longer visible on the Phase One Property. However, the area where the historic residential dwelling and orchard were appears to be graded.
- The neighboring properties within the Phase One Study Area generally consist of residential and agricultural land uses. The following issue was identified on the Phase One Study Area to contribute to a PCA:
 - The south adjacent Property was occupied by a residential dwelling and a Quonset Hut at the time of the Site reconnaissance, and was used for residential and commercial purposes. There were two (2) ASTs on the property.

Based on the findings, it was concluded that a Phase Two ESA would be recommended in order to investigate the aforementioned APECs and to assess the environmental soil and groundwater conditions on the Phase One Property.

2.2.1 Use of Previous Analytical Results

Not applicable. No previous analytical results were available for DS to review.

3.0 Scope of the Investigation

The scope of the Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Phase Two ESA was conducted in general accordance with O.Reg. 153/04 (as amended). The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the Site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- Retained a MECP licenced driller to advance a total of nine (9) boreholes on the Phase Two Property, to depths ranging between 9.1 to 17.0 mbgs on May 18 to 25, 2022 in conjunction with a Geotechnical and Hydrogeological Investigation. Seven (7) of the boreholes (MW22-1A, MW22-1B, MW22-2, MW22-9, MW22-10, MW22-12, and MW22-14) were instrumented with groundwater monitoring wells upon completion. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using an RKI Eagle 2 MultiGas Detector in methane elimination, and examined for visual and olfactory indications of soil impacts;

- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;
- In addition to the above, six (6) boreholes were drilled using an AMS Hand Held Auger, to depths ranging between 0.8 to 1.5 mbgs on May 17 to 19, 2022.
- Conducted groundwater level measurements in the monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction;
- Surveyed all monitoring wells to a geodetic benchmark;
- Developed monitoring well MW22-2 prior to sampling. Groundwater samples were collected for all COPCs identified in the Phase One ESA;
- Compared all soil and groundwater analytical data to the applicable MECP SCS; and
- Prepared a Phase Two ESA Report in general accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Groundwater	Included	Groundwater was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on- Site.
Sediment	Excluded	Sediment is not present on the Phase Two Property.
Surface Water	Excluded	No water bodies – as defined by O. Reg 153/04 – were present on the Site, only man-made ponds were present. Surface water sampling was not completed as a result.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation
Soil	A total of nine (9) boreholes were advanced on the Phase Two Property to a maximum depth of between 9.1 to 17.0 mbgs. and six (6) soil samples were collected from depth of between 0.8 to 1.5 mbgs using AMS hand held auger. Soil samples were collected and submitted for analysis of all relevant COPCs.
Groundwater	A total of seven (7) monitoring well were installed on the Phase One Property for the purpose of this Phase Two ESA investigation. Representative groundwater sample was collected from a single monitoring well (MW22-2) and submitted for analysis of all relevant COPCs. The remaining wells were utilized for hydrostratigraphic characterization.

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at Part of Lot 20, Concession 2, Oakville, Ontario. The Phase One Conceptual Site Model is presented in Figures 4 and 5 and visually depict the following:

- Any existing buildings and structures
- Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks
- Areas of Potential Environmental Concern

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 4. The PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
1	PCA-30: Importation of Fill Material of Unknown Quality	Historic aerial imagery and CVD's (2016) report indicates that the southwestern portion of the Site – which was reportedly leased to a landscaping company – was occupied by more than ten soil stockpiles of varying sizes over time. CVD (2016) describes the material as imported concrete, asphalt debris and miscellaneous granular material. The landscaping company was not available to identify the source of the soil.	PCA is on- Site
2	PCA N/S - Storage of miscellaneous construction material and debris	Historic aerial imagery indicates that the southwestern portion of the Site – which was reportedly leased to a landscaping company – was occupied by various vehicles as well as miscellaneous materials and refuse.	PCA is on- Site
4	PCA-30: Importation of Fill Material of Unknown Quality	During the Site reconnaissance CVD (2016) observed black granular material stored on the south adjacent property to be encroaching onto the Phase One Property.	PCA is on the south adjacent property.
7	PCA-40:Pesticides(includingHerbicides,Fungicides and Anti-FoulingAgents)Manufacturing,Processing, Bulk Storage andLarge-Scale Applications	According to the Halton County Atlas from 1880, the Phase One Property appears to have a residential dwelling with an orchard located along the western boundary of the Site.	PCA is on- Site

Table 3-3: Summary of PCAs Contributing to APECs

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
9	PCA-30: Importation of Fill Material of Unknown Quality	In the 1934 aerial imagery, the residential dwelling and orchard are no longer visible on the Phase One Property. However, the area where the historic residential dwelling and orchard were appears to be graded.	PCA is on the south adjacent property.
10	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	The south adjacent Property was occupied by a residential dwelling and a Quonset Hut at the time of the Site reconnaissance, and was used for residential and commercial purposes. There were two (2) ASTs on the property.	PCA is on the south adjacent property.

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

3.3.2 Contaminants of Potential Concern

A summary of the contaminants of potential concern identified for each respective APEC is presented in Table 3-3 above. The following contaminants of potential concern were identified for the Phase One Property: PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, EC, Cr (VI), Hg, Iow or high pH, EC, SAR, OCPs and PAHs.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Underground utilities were not identified at the Phase One Property. Plans were not available to confirm the depths of these utilities, however if present they are estimated to be installed at depths ranging from 2 to 3 metres below ground surface.

The depth to groundwater at the Phase One Property has been calculated at depths of between 0.80 to 8.43 mbgs; therefore, the utility corridors (if present) may intersect the water table and act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property.

3.3.4 Geological and Hydrogeological Information

The topography of the Phase Two Property is generally flat, with a surface elevation of 185 metres above sea level (masl). Two ponds/depressions are present on the Phase Two Property. The nearest large body of water is East Sixteen Mile Creek, located approximately 500 m north of the Phase One Property. The topography within the Phase Two Study Area generally slopes to the south, towards Osenego Creek located 1km south of the property and towards Lake Ontario, located approximately 9 km south of the property. The shallow groundwater flow direction within the Phase Two Study Area is inferred to be parallel with the local topography, extending south/southeast towards Osenego Creek.

The Site is situated within a Till Moraines physiographic region. The surficial geology within the Phase Two Study area is described as "clay to silt-textured till (derived from glaciolacustrine deposits or shale)", and the bedrock is described as shale, limestone, dolostone and siltstone from the Queenston Formation. The bedrock in the Phase Two Study Area was encountered at an approximate depth range of 10.7-17.0 metres below ground surface (mbgs).

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended). All responses to database requests were received prior to completion of this report, with the exception of the MECP FOI request. If the MECP FOI request produces information which may alter the conclusions of this report, an addendum will be provided to the Client. This report reflects the best judgement of DS based on the information available at the time of the investigation.

Information used in this report was evaluated based on proximity to the Site, anticipated direction of local groundwater flow, and the potential environmental impact on the Site as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Phase Two ESA followed the methodology outlined in the following documents:

• Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);

10

- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A Site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase One ESA. The selected borehole locations are presented on Figure 5. The borehole locations were cleared of underground public and private utility services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Parameter	Details				
May 2022					
Drilling Contractor	Groundworks Drilling Inc.				
Drilling Dates	May 18, 2022 – May 26, 2022				
Drilling Equipment Used	Track-mounted CME 55				
Measures taken to minimize the potential for cross contamination	 Soil sampling was conducted using a 50 mm stainless steel split spoon sampler. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination; Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; and Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. 				
Sample collection frequency	ground surface to 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.				
	May 2022				
Date of Investigation	May 17 – May 19, 2022				
Equipment Used	AMS Hand Held Auger				
Measures taken to minimize the potential for cross contamination	 The AMS Hand Held Auger was brushed free of debris in between each sample; Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; and Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. 				
Sample collection frequency	Soil samples were collected between 0.8 and 1.5 mbgs.				

Table 4-1: Summary of Drilling Activities

4.3 Soil Sampling

Soil samples were collected using 50 mm stainless steel split spoon sampler or AMS Hand Held Auger tool. Discrete soil samples were collected from the split-spoon samplers/augers by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample containers were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling and recorded on field borehole logs. The borehole logs are presented under Appendix B. Additional detail regarding the lithology encountered in the boreholes is presented under Section 5.1.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious olfactory evidence of potential contamination was noted. Visual evidence of potential contamination was noted in soil within the mixed fill on Site. Additional details are available in Section 5.5.

The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's '*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'*.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Parameter	Details
Make and Model of Field Screening	RKI Eagle 2, Model 5101-P2
Instrument	Serial Number: E2G721
Chemicals the equipment can detect	VOCs with dynamic range of 0 parts per million (ppm) to
and associated detection limits	2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures

Table 4-2:	Field Screenin	a Equipment
		gequipment

Parameter	Details			
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit			
Calibration reference standards	PID: Isobutylene CGD: Hexane			
Procedures for checking calibration of equipment	In-field re-calibration of the CGI was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the calibration had drifted by more than +/- 10%.			

A summary of the soil headspace measurements is provided in the borehole logs, provided under Appendix B.

4.5 Groundwater Monitoring Well Installation

Monitoring wells were installed upon completion of seven (7) of the boreholes advanced on the Phase Two Property. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 3.1 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug. Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective monument casings. Details regarding the monitoring well construction can be found in Table 1 (Enclosed), and on the borehole logs provided in Appendix B. Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

Monitoring well MW22-2 was developed prior to sampling. In accordance with DS SOPs for monitoring well development, the wells were developed by removing a minimum of three standing water column volumes using dedicated inertial pumps comprised of Waterra polyethylene tubing and dedicated foot valves.

4.6 Groundwater Field Measurement of Water Quality Parameters

Field measurements of water quality parameters including temperature, specific conductivity, pH, turbidity, dissolved oxygen, oxidation-reduction potential and turbidity were collected at the time of pre-sampling purging, due to the low yield and slow recovery of the monitoring wells. The measurements were conducted at regular intervals to determine whether stabilized geochemical conditions had been established in the monitoring well, indicating representative groundwater conditions. The field measurements have been archived and can be provided upon request.

4.7 Groundwater Sampling

Groundwater samples were collected a minimum of 24 hours after the development of MW22-2, using the low flow methodology. The monitoring wells were purged to dryness using WatterraTM

tubing. The monitoring wells were allowed to recover prior to sampling. The groundwater sample was collected using a peristaltic pump with dedicated 6.4 mm ID polyethylene tubing.

Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro in-line filters. The groundwater was transferred directly into laboratory supplied containers and preserved as appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation. Sediment sampling was not conducted as a result.

4.9 Analytical Testing

The soil and groundwater samples collected were submitted to Bureau Veritas under chain of custody protocols. Bureau Veritas is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. Bureau Veritas conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.10 Residue Management Procedures

4.10.1 Soil Cuttings from Drilling and Excavations

The soil cuttings generated by the borehole drilling program were stored in 205 L drums and were left on Site for disposal by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.10.2 Water from Well Development and Purging

Excess water derived from well purging activities was stored in 20-L sealed plastic pails. Upon receipt of the groundwater analytical results the groundwater was re-infiltrated locally.

4.10.3 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 205 L drums and temporarily store on Site by a MECP approved waste-hauler for disposal at a MECP-approved waste management facility.

4.11 Elevation Surveying

The ground surface elevations of the boreholes/monitoring wells were surveyed using a Sokkia GCX-2 GNSS RTK receiver, based on global positioning systems satellites, with datum NAD83, UTM zone 17T. The ground surface elevations can be found on the borehole logs presented in Appendix B.

4.12 Quality Assurance and Quality Control Measures

4.12.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Media	Parameter	Sample Container				
	PHCs F1 VOCs	40 mL methanol preserved glass vial with septum lid.				
Soil	PHCs F2-F4 metals and ORPs PAHs	120 mL or 250 mL unpreserved glass jar with Teflon [™] -lined lid.				
	PHCs F1 VOCs	40 mL glass vial with septum lid, containing sodium bisulphate preservative.				
	PHCs F2-F4	250 mL amber glass bottle with sodium bisulphate preservative				
	PAHs	250 mL amber glass bottle (unpreserved)				
	Inorganics	500 mL high density polyethylene bottle (unpreserved)				
Groundwater	Metals	125 mL high density polyethylene bottle containing nitric acid preservative				
	Hexavalent	125 mL high density polyethylene bottle containing ammonium				
	Chromium	sulphate/ammonium hydroxide preservative				
	Mercury	125 mL glass bottle containing hydrochloric acid preservative				
	Cyanide	125 mL high density polyethylene bottle containing sodium hydroxide preservative				

Table 4-3: Summary of Sample Bottle Preservatives

Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.12.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval to reduce the potential for cross contamination. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination. Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of Alconox[™] and distilled water. The Alconox[™] solution was rinsed off using distilled water.

4.12.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis. A laboratory prepared trip blank accompanied the groundwater samples during each sampling event and was submitted for laboratory analysis of VOCs.

All field screening devices (i.e. RKI Eagle 2, YSI Water Quality Meter) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

4.12.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix B. The boundaries of soil indicated on the borehole logs and described below are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A surficial topsoil layer approximately 100 to 250 mm thick was encountered BH22-3, BH22-8, MW22-10 and BH22-11. Fill material was encountered in boreholes MW22-1A, MW22-1B, MW22-2 and BH22-5 and it consisted of clayey silt, sandy silt and sand without any indication of deleterious materials. The fill material was generally heterogeneous and ranged in thickness from 1.0 to 1.5 mbgs. Re-worked native soils were encountered in boreholes MW22-9, MW22-10, BH22-11, MW22-12, BH22-13, MW22-14. The reworked native soils and native overburden material encountered below the fill material generally consisted of clayey silt till/sandy silt till/ silty clay till and extended to depths ranging from 4.6 to 13.7 mbgs. Shale Bedrock was encountered in MW22-1B, MW22-2 and MW22-14 at a depth of between 12.2 to 15.2 mbgs. A summary of the geologic units encountered is provided in Table 5-1 below.

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Topsoil	0.1-0.25	180.9	180.7	
Fill Material	1.0-1.5	180.7	179.7	Mixed fill with clayey silt to silty clay, sandy silt, sand and gravel

Table 5-1: Summary of Geologic Units Investigated

Clayey silt till/sandy silt till/ silty clay till	1.2-6.1	189.4	167.2	Brown, some sand, moist
Lower Clayey Silt/Shale Complex	0.1-2.2	172.6	165.7	Reddish brown, moist
Shale Bedrock	Unknown	165.7	Unknown	Weathered bedrock

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

A total of one (1) monitoring well was installed on the Phase Two Property in order to assess the groundwater quality in relation to APEC-4. The monitoring well was generally screened to intersect the first water bearing information encountered, in order to allow for the assessment of LNAPL, and to provide information regarding the quality of the groundwater at the water table. Six (6) other monitoring wells were installed on the Phase Two Property to support the hydrogeological investigation completed concurrently with this Phase Two ESA. MW22-1A, MW22-9, MW22-12, MW22-14 were screened at depth ranging from 6.1 – 9.1 mbgs within silty clay till unit encountered. MW22-1B was screened at depth ranging from 12.2-15.2 mbgs within the sandy silt till/clayey silt till unit encountered on the lower water bearing zone. The findings of the hydrogeological investigation are enclosed under a separate report.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1 (Enclosed). The groundwater level measurements were collected using a Solinst interface probe (model 122). The depth to groundwater was found to range between 0.80 and 8.43 mbgs on June 8, 2022. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1 (enclosed). Generally, the groundwater elevation was found to range from 174.12 to 180.86 masl in aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was interpreted using the groundwater elevations calculated for the monitoring wells installed on the Phase Two Property. Based on the groundwater elevations recorded, the groundwater flow direction appears to be south to southeast towards the Osenego Creek. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and

similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The shallow aquifer investigated is inferred to be an unconfined aquifer, based on the soil stratigraphy observed in the boreholes advances on the Phase Two Property. It is possible that temporal variations in groundwater elevations may occur on the Phase Two Property in response to seasonal weather patterns.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The groundwater table at the shallow water bearing formations was encountered at depths ranging from 0.80 to 8.43 mbgs on the Phase Two Property. There is potential for the utility trenches to act as preferential pathways for contaminant migration. However, no groundwater impacts were identified, therefore the potential for preferential migration of contaminants is no of concern at this time.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on June 8, 2022.

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient			
Clayey Silt/Silty Clay Till	Minimum: 0.0001347 Average: 0.01607 Maximum: 0.05631			

Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations

5.3.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient was calculated based on the groundwater levels recorded on June 8, 2022.

 Table 5-3: Summary of Vertical Hydraulic Gradient Calculations

Monitoring Well Nest	Calculated Vertical Hydraulic Gradient		
MW22-1A MW22-1B	0.9472 (downward)		

5.4 Fine-Medium Soil Texture

5.4.1 Rational for use of Fine-Medium Soil Texture Category

A total of nineteen (19) grain size analyses were conducted as part of this investigation in conjunction with the Geotechnical Investigation. The results of the grain size analyses indicate that more than two-thirds of the soils encountered are medium to fine textured. However, for the purpose of determining the Site Condition Standards the more conservative coarse grain standards are applied.

5.4.2 Results of Grain Size Analysis

A summary of the soil samples analyzed, and the corresponding grain size results is presented in the table below:

Sample	% Gravel	% Sand	% Silt	% Clay	% Silt +Clay	Classification
BH22-1B SS8	6	31	43	20	63	Medium-fine textured
BH22-1B SS11	13	29	42	16	58	Medium-fine textured
BH22-9 SS8	6	28	43	23	66	Medium-fine textured
BH22-9 SS9	22	27	39	12	51	Medium-fine textured
BH22-10 SS6	5	27	43	25	68	Medium-fine textured
BH22-10 SS8	6	33	42	19	61	Medium-fine textured
BH22-11 SS7	4	32	46	18	64	Medium-fine textured
BH22-11 SS9	8	29	44	19	63	Medium-fine textured
BH22-11 SS11	1	24	69	6	75	Medium-fine textured
BH22-12 SS4	7	24	48	21	69	Medium-fine textured
BH22-12 SS7	8	29	43	20	63	Medium-fine textured
BH22-12 SS12	5	25	49	21	70	Medium-fine textured
BH22-12 SS13	13	50	30	7	37	Coarse textured
BH22-13 SS4	8	23	48	21	69	Medium-fine textured
BH22-13 SS8	7	32	42	19	61	Medium-fine textured
BH22-13 SS11	13	31	46	10	56	Medium-fine textured
BH22-14 SS6	6	28	46	20	66	Medium-fine textured
BH22-14 SS7	6	28	46	20	66	Medium-fine textured
BH22-14 SS10	3	22	63	12	75	Medium-fine textured

Table 5-4: Summary of Grain Size Analyses

5.4.3 Rational for the Number of Samples Collected and Analyzed

In general, one sample was analyzed per stratigraphic unit encountered in order to characterize the various strata encountered.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix B). The soil vapour headspace readings were collected using an RKI Eagle 2 equipped with a dual PID and CGD sensor, operated in methane elimination mode. The PID readings ranged between 0 and 50 ppm. The CGD readings ranged between 0 and 35 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No visual or olfactory signs of impacts were observed at the time of sampling.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 5 through 9 (Enclosed). A visual summary of the location of the sample locations is provided in Figures 7A through 7F. The laboratory certificates of analysis have been provided under Appendix C.

5.6.1 Metals and ORPs

A total of eight (8) samples were submitted for analysis of metals and ORPs. An additional nine (9) samples, including one (1) QAQC field duplicate, were submitted for analysis of pH only.

The results of the analyses are tabulated in Table 5 (Enclosed) and presented on Figure 7A and 7B. All of the samples analyzed met the MECP Table 2 RPI SCS.

A total of seventeen (17) pH samples were collected and submitted for analysis on the Phase Two Property. Ten (10) pH samples were collected from depths of between 0 to 1.5m representing surficial soils. Seven (7) pH samples were collected from depths greater than 1.5 m, representing subsurface soils. The pH values of the soils measured between 6.73 and 7.88 units, which is within the acceptable limits for surface and subsurface soils of non-sensitive sites.

5.6.2 Petroleum Hydrocarbons

A total of four (4) samples were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 6 and presented on Figure 7C. All of the samples analyzed met the MECP Table 2 RPI SCS.

5.6.1 Volatile Organic Compounds

A total of six (6) samples, including two (2) field duplicate for QA/QC purposes were submitted for analysis of VOCs. The result of the analysis is tabulated in Table 7 (Enclosed) and presented on Figure

7D. The result of the analysis indicated that all of the samples analyzed met the applicable Table 2 SCS.

5.6.2 Polycyclic Aromatic Hydrocarbons

A total of seven (7) samples, including two (2) field duplicates for QA/QC purposes were submitted for analysis of PAHs. The results of the analyses are tabulated in Table 8 (Enclosed) and presented on Figure 7E. The results of the analyses indicated that all samples met the applicable Table 2 SCS.

5.6.3 Organochlorine Pesticides

A total of three (3) samples were submitted for analysis of OCPs. The result of the analysis is tabulated in Table 9 and presented on Figure 7F. The result of the analysis indicated that the samples met the applicable Table 2 SCS.

5.6.4 Commentary on Soil Quality

No evidence of NAPL was observed in the samples recovered during the field investigation. The results of the soil chemical analysis indicated that all samples analyzed met the applicable MECP Table 2 SCS.

5.7 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 10 through 13 (Enclosed). A visual summary of the location of the sample locations is provided in Figures 8A through 8E. The laboratory certificates of analysis have been provided under Appendix C.

5.7.1 Metals and ORPs

Groundwater samples were obtained from monitoring well MW22-2 and submitted for analysis of metals and ORPs. The results of the analyses are tabulated in Table 10 and presented on Figure 8A.

The groundwater samples transferred into the metals, mercury, and hexavalent chromium bottles were field filtered using a 0.45-micron in-line filter. The results of the analyses indicated that all samples submitted met the MECP Table 2 SCS.

5.7.2 Petroleum Hydrocarbons

May 30, 2022 Sampling Event

A total of two (2) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 11 (Enclosed) and presented on Figure 8B. During the analytical characterization of PHCs, samples were diluted by the laboratory due to sample heterogeneity. The results of the analyses indicated that all samples analyzed meet the MECP Table 2 SCS, with the exception of the below:

Table 5-5: Summary of PHCs Exceedances in Groundwater

Sample ID	Well Screen (mbgs)	Parameter	Units	Table 2 SCS	Reported Value
MW22-2	1.22 – 4.27	PHC F2	µg∕L	150	<300
		PHC F3		500	<600
		PHC F4		500	<600

Notes:

Yellow – The laboratory detection limit exceeds the applicable Site Condition Standards.

As shown in Tables 11 and 15, a duplicate sample was submitted for this well sample and the results indicated that PHCs met the applicable standards.

June 28, 2022 Sampling Event

A total of two (2) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PHCs on June 28, 2022. The results of the analyses are tabulated in Table 11 (Enclosed) and presented on Figure 8B. The results of the analyses indicated that all samples analyzed meet the MECP Table 2 SCS.

5.7.3 Polycyclic Aromatic Hydrocarbons

A total of one (1) sample was submitted for analysis of PAHs from monitoring well MW22-2. The results of the analyses are tabulated in Table 12 and presented on Figure 8C. The results of the analyses indicated that all samples submitted met the MECP Table 2 SCS.

5.7.4 Volatile Organic Compounds

A total of one (1) sample was submitted for analysis of VOCs from monitoring well MW22-2. The results of the analyses are tabulated in Table 13 and presented on Figure 8D. The results of the analyses indicated that all samples submitted met the MECP Table 2 SCS.

5.7.5 Commentary on Groundwater Quality

No evidence of NAPL was observed in the samples recovered during the field investigation. The results of the groundwater chemical analysed indicated that all samples analysed met the MECP Table 2 SCS.

It is noted that the laboratory detection limit for PHCs F2 to F4 exceeded the applicable Site Condition Standards for the groundwater sample collected on May 30, 2022 due to sample heterogeneity. As such this data could not be used to determine compliance with the MECP Table 2 SCS for PHCs F2 to F4. Subsequent groundwater sampling and analysis on June 28, 2022, utilizing low flow methodology, indicated PHC F2 to F4 concentration at MW22-2 was within the MECP Table 2 SCS.

5.8 Sediment Quality

No sediment was present on the Phase Two Property at the time of the investigation.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in general accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples, and the use of a trip blank for each groundwater sampling event (when suitable). In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result
DUP 1	BH22- 1B/SS2	Soil	PAHs	All results were within the analytical protocol criteria for RPD.
DUP 2	BH22- 5/SS2	Soil	VOCs	All results were within the analytical protocol criteria for RPD.
DUP 3	MW22- 2/SS1	Soil	PAHs	All results were within the analytical protocol criteria for RPD.
DUP 4	MW22- 2/SS4	Soil	VOCs	All results were within the analytical protocol criteria for RPD.
DUP	MW22-2	Groundwater	PHCs	All results were within the analytical protocol criteria for RPD, with the exception of the PHC F2 to F4 concentration. The laboratory detection limit of PHC F2 to F4 was raised to be greater than 300 µg/L, 600 µg/L and 600 µg/L. As such it was not possible to calculate the RPD.
DUP1	MW22-2	Groundwater	PHCs	All results were within the analytical protocol criteria for RPD.

Table 5-6: Summary of QA/QC Results

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

Bureau Veritas routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the Bureau Veritas QA/QC analyses for the submitted soil and

groundwater samples are summarized in the laboratory Certificates of Analyses provided in Appendix C.

The following comments were provided by BV on the laboratory Certificates of Analysis. Commentary on the comments has been provided below:

Laboratory Certificate C2E5133 – Samples MW22-2/SS3 contained more than 5g of soil in the field preserved vials. Additional methanol was added to the vial to ensure extraction efficiency. As no parameters exceeded the MECP Table 2 SCS, DS does not consider this to be an issue of significant concern and it has no impact on the overall interpretation of the analytical data.

With respect to subsection 47(3) of O.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix C.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

5.10 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model is included as Appendix D.

6.0 Conclusions

This Phase Two ESA involved the advancement of two (2) boreholes and six (6) hand augured boreholes, the installation of two (2) monitoring wells, and the collection of soil and groundwater samples for analysis of the potential contaminants of concern, including: PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, Iow or high pH, SAR, OCPs and PAHs.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

A surficial topsoil layer approximately 100 to 250 mm thick was encountered BH22-3, BH22-8, MW22-10 and BH22-11. Fill material was encountered in boreholes MW22-1A, MW22-1B, MW22-2 and BH22-5 and it consisted of clayey silt, sandy silt and sand without any indication of deleterious materials. The fill material was generally heterogeneous and ranged in thickness from 1.0 to 1.5 mbgs. Re-worked native soils were encountered in boreholes MW22-10, BH22-11, MW22-12, BH22-13, MW22-14. The reworked native soils and

native overburden material encountered below the fill material generally consisted of clayey silt till/sandy silt till/ silty clay till and extended to depths ranging from 4.6 to 13.7 mbgs. Shale Bedrock was encountered in MW22-1B, MW22-2 and MW22-14 at a depth of between 12.2 to 15.2 mbgs;

- The depth to groundwater was found to range between 0.80 and 8.43 mbgs, with an elevation of between 174.12 to 180.86 masl on June 8, 2022. Based on the groundwater elevations recorded, the groundwater flow direction appears to be south to southeast towards the Osenego Creek. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring;
- The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met;
- Based on the findings of this Phase Two ESA, a Record of Site Condition may be filed for the Phase Two Property (if required);
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required;

It is the opinion of the QP_{ESA} that the applicable SCS for the soil and groundwater at the Phase Two Property have been met as of the Certification Date of June 28, 2022. No further sub-surface investigation is required regarding the environmental quality of the soil and groundwater at the Phase Two Property.

6.1 Qualifications of the Assessors

Ms. Alice Gong, B.Sc

Ms. Gong is an Environmental Specialist with DS Consultants Ltd and holds a Bachelor's degree in Environmental Science from McMaster University and a Post Graduate Certificate in Environmental Management and Assessment from Niagara College. Alice has been involved with Phase One and Phase Two Environmental Site Assessments, data interpretation and reporting.

Ms. Kirstin Olsen, MSc.

Ms. Olsen is a Project Manager in the Environmental Services Department at DS Consultants Ltd. Ms. Olsen has a bachelor's degree in Animal, Plant and Environmental Science, as well as a Master of Science Degree in Environmental Science, Ecology and Conservation from the University of the Witwatersrand (Johannesburg, South Africa). Ms. Olsen has personally completed over three hundred detailed environmental assessments across a wide array of scientific disciplines including: Phase One & Two Environmental Site Assessments, Remedial Excavation & Injection Oversight, Hydrogeological Investigations, EASR Registration/PTTW Application, Aquatic Ecological Delineation, Assessment & Planning, Toxicological, Soil & Water Impact and Risk Assessment, as well as Environmental Construction Monitoring & Performance Auditing.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPESA

Mr. Fioravanti is the Manager of Environmental Services with DS Consultants Limited. Patrick holds an Honours Bachelor of Science with distinction in Toxicology from the University of Guelph and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Patrick has over ten years of environmental consulting experience and has conducted and/or managed hundreds of projects in his professional experience. Patrick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, supported many risk assessments, and successfully filed Records of Site Condition with the Ministry of Environment and Climate Change. He has conducted work across southern and eastern Ontario, and Quebec in his professional experience. Patrick is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

6.2 Signatures

This Phase Two ESA was conducted under the supervision of Rick Fioravanti, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Curs. Jo. L

Alice Gong, B. Sc. Environmental Specialist

Reviewed by:

Kirstin Olsen, M.Sc Project Manager - Environmental

Rhouante

Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA} Manger – Environmental Services
6.3 Limitations

This report was prepared for the sole use of ARGO Neyagawa Corporation and is intended to provide an assessment of the environmental condition on the property located at Part of Lot 20, Concession 2, Oakville, Ontario. The information presented in this report is based on information collected during the completion of the Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

The conclusions drawn from the Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site during the Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the site that was not apparent from the available information.

7.0 References

- Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- DS Consultants, 11 January 2022. Phase One Environmental Site Assessment Block 7, Woodsy Park Lane, 1001 Sheppard Avenue East, Toronto, Ontario prepared for Concord Adex Inc.
- Freeze, R. Allen and Cherry, John A., 1979. *Ground water*. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario.
- *"Phase One ESA, Part of Lot 20, Concession 2, Oakville, ON"*, prepared for ARGO Neyagawa Corp, prepared by DS Consultants Limited, dated February 22, 2022.

Tables

Table 1: Summary of Monitoring Well Installation and Groundwater Data

	Well ID		MW22-1A	MW22-1B	MW22-2	MW22-9	MW22-10	MW22-12	MW22-14
	Installed By:		DS	DS	DS	DS	DS	DS	DS
Installation Date:		17-May-22	17-May-22	25-May-22	24-May-22	19-May-22	18-May-22	25-May-22	
	Well Status:		Active	Active	Active	Active	Active	Active	Active
	EastUTM17		599997.075	599998.011	600057.216	600143.52	599684.377	599818.652	599947.3
	NorthUTM17		4814748.14	4814748.99	4814853	4814917.5	4815025.74	4814901.67	4814946.1
Inner Diameter		mm	50	50	50	50	50	50	50
Surface Elevation	n	masl	180.81	180.85	181.66	181.54	187.93	184.72	183.34
Bottom of Concr	ete Seal/Top	mbgs	0.30	0.30	0.30	0.30	0.30	0.30	0.30
of Bentonite Sea	1	masl	180.51	180.55	181.36	181.24	187.63	184.42	183.04
Bottom of Bentonite Seal/Top of Sand Pack		mbgs	5.50	11.60	0.92	1.30	5.50	3.97	5.50
		masl	175.31	169.25	180.74	180.24	182.43	180.75	177.84
		mbgs	6.10	12.20	1.22	1.80	6.10	4.57	6.10
Top of well scre	en	masl	174.71	168.65	180.44	179.74	181.83	180.15	177.24
Well Screen Len	gth	m	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Pottom of Wall 6	Samoon	mbgs	9.10	15.20	4.27	4.80	9.10	7.62	9.10
Bottom of wen 5	creen	masl	171.71	165.65	177.39	176.74	178.83	177.10	174.24
				GW Monit	oring				
	Depth to GW	mbgs	NM	NM	0.64	NM	NM	NM	NM
30-May-22	GW Elevation	masl	NM	NM	181.02	NM	NM	NM	NM
	Depth to GW	mbgs	0.95	6.73	0.80	7.39	7.41	8.43	6.13
08-Jun-22	GW Elevation	masl	179.86	174.12	180.86	174.15	180.52	176.29	177.21
20 Jun 22	Depth to GW	mbgs	NM	NM	1.32	NM	NM	NM	NM
20-Juli-22	GW Elevation	masl	NM	NM	180.04	NM	NM	NM	NM

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated	
SS1		0-0.6	Clayey silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR		
MW22-1B	SS2	08-14	Clavey silt	PAHs		
111122 10	DUP 1	0.0 1.1	ciayey site	PAHs		
	SS3	1.5-2.1	Clayey Silt Till	PHCs & BTEX, VOCs		
BH22-5	SS1	0-0.6	Sandy Silt	PAHs	APEC 1A APEC 2	
5	SS2	0.8-1.4	Sandy Silt	PHCs & BTEX, VOCs		
BH22-4	SS1	0-0.6	Sand, some silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, PAHs	APEC-1B	
BH22-6 SS1 SS2		0-0.6	Sandy Silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, PAHs	APEC-1C	
		0.8-1.4	Sandy silt	PHCs & BTEX, VOCs	MILC IC	
BH22-3	SS1	0-0.6	Sandy silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, OCPs	APEC 3	
BH22-7	SS1	0-0.6	Sandy silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, OCPs	APEC 3	
BH22-8	SS1	0-0.6	Sandy silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR	APEC 3	
	SS1	0-0.6	Clayer Silt	PAHs		
	DUP 3	0 0.0	ciayey site	PAHs		
MW22-2 SS2		0.8-1.4	Clayey Silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR		
	SS3	1.5-2.1 Clayey Silt Till		PHCs & BTEX, VOCs	A1 10 4	
	SS4	2.3-2.9	Clayey Silt Till	PHCs & BTEX, VOCs]	
	DUP 4	2.3-2.9	Clayey Silt Till	VOCs		

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

Well ID	Well Screen Interval (masl)		reen (masl)	Sample Date	Parameter Analyzed	APEC Investigated
MW22-2	177.39	-	180.44	30-May-22	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, Na, Cl-, PHCs,	APEC 4
MW22-2	177.39	-	180.44	28-Jun-22	PHCs	APEC 4

Table 4: Summary of APECs Investigated

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
	Historic aerial imagery and CVD's (2016) report				SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC,SAR
	indicates that the southwestern portion of the Site - which was reportedly leased to a			MW22-1B	SS2	PAHs
	landscaping company - was occupied by more	PHCs, VOCs, BTEX, Motole As Sh So P		111122 10	DUP 1	PAHs
APEC-1A	than ten soil stockpiles of varying sizes over	HWS, CN-, Cr (VI), Hg,	Soil		SS3	PHCs & BTEX, VOCs
	time. CVD (2016) describes the material as imported concrete, asphalt debris and	low or high pH, SAR,			SS1	PAHs
miscellaneous granular material. The landscaping company was not available t o identify the source of the soil.		PAHs		BH22-5	SS2	PHCs & BTEX, VOCs
APEC-1B	During the site reconnaissance CVD (2016) observed black granular material stored on the south adjacent property to be encroaching onto the southeastern portion of the Phase One Property.	Metals, PAHs	Soil	BH22-4	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR, PAHs
APEC 1C	In the 1934 aerial imagery, the residential dwelling and orchard are no longer visible on the Dhase One Decouver the area	Metals, As, Sb, Se, B- HWS, CN-,electrical	Soil	BH33.4	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR, PAHs
APEC-1C the Phase One Property. However, the area where the historic residential dwelling and orchard were appeared to be graded.	Hg, low or high pH, SAR, PAHs	301	5022-0	SS2	PHCs & BTEX, VOCs	
				MW22.1D	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR
	Historic aerial imagery indicates that the	PHCs, VOCs, BTEX,			SS2	PAHs
APEC 2	southwestern portion of the Site - which was	Metals, As, Sb, Se, B-,	Soil	MW 22-1D	DUP 1	PAHs
111 10 2	was occupied by various vehicles as well as	low or high pH, SAR,	501		SS3	PHCs & BTEX, VOCs
	miscellaneous materials and refuse.	PAHs		BH22-5	SS1	PAHs
					SS2	PHCs & BTEX, VOCs
	According to the Halton Country Atlas from			BH22-3	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR, OCPs
APEC 3	1880, the Phase One Property appears to have a residential dwelling with an orchard located	Metals, As, Sb, Se, CN- . OCPs	Soil	BH22-7	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR, OCPs
	along the western boundary of the Site.	,		BH22-8	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR
					SS1	PAHs
					DUP 3	PAHs
	The south adjacent property was occupied by a residential dwelling and a Ouonset Hut at the	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-	Coil	MW22.2	SS2	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR
APEC 4	time of the site reconnaissance, and was used for	HWS, CN-, Cr (VI), Hg,	2011	191 88 22-2	SS3	PHCs & BTEX, VOCs
	residential and commercial purposes. There	low or high pH, SAR,			SS4	PHCs & BTEX, VOCs
	were two (2) nors on the property.	171115			DUP 4	VOCs
			Groundwater	MW22-2	MW22-2	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, EC, SAR, PHCs, BTEX, PAHs

Table 5: Summary of Metals and ORPs in S	Cable 5: Summary of Metals and ORPs in Soil											
Parameter		BH22-1B/SS1	BH22-3/SS1	BH22-7/SS1	BH22-8/SS1	BH22-5/SS1	BH22-6/SS1	BH22-4/SS1	MW22-2/SS2	BH22-12/SS4	BH22-10/SS2	BH22-10/SS4
Date of Collection	1	18-May-22	18-May-22	18-May-22	18-May-22	18-May-22	18-May-22	19-May-22	31-Jul-20	18-May-22	19-May-22	19-May-22
Date Reported	MECP Table	02-Jun-22	11-Aug-20	02-Jun-22	02-Jun-22	02-Jun-22						
Sampling Depth (mbgs)	2 505	0.0-0.6	0.0-0.6	0.8-1.4	0-0.6	0-0.6	0-0.6	0-0.6	0.8-1.5	2.3-2.9	0.8-1.4	2.3-2.9
Analytical Report Reference No.]	C2D7426/SRH396	C2D7426/SRH400	C2D7426/SRH401	C2D7426/SRH402	C2D7426/SRH404	C2D7426/SRH406	C2D7426/SRH410	C2E5133/SSY450	C2E5133/SRH403	C2E5133/SRH412	C2E5133/SRH413
Acid Extractable Antimony (Sb)	7.5	0.23	<0.20	0.26	<0.20	<0.20	<0.20	0.24	<0.20			
Acid Extractable Arsenic (As)	18	5.6	4.8	6.5	4.1	4.9	4.2	4.7	4.5			
Acid Extractable Barium (Ba)	390	83	71	210	56	69	80	54	82		-	
Acid Extractable Beryllium (Be)	4	1.1	0.79	1.3	0.66	0.65	0.66	0.64	0.71		-	
Acid Extractable Boron (B)	120	6.6	8.7	5.1	6.8	8.9	9.3	7.6	11			
Acid Extractable Cadmium (Cd)	1.2	0.17	0.13	0.21	0.15	0.11	0.11	0.12	<0.10			
Acid Extractable Chromium (Cr)	160	24	22	30	19	20	18	18	20		-	
Acid Extractable Cobalt (Co)	22	15	12	20	12	12	12	13	14		-	
Acid Extractable Copper (Cu)	140	30	29	43	26	27	29	29	27			
Acid Extractable Lead (Pb)	120	18	12	18	12	12	12	13	12			
Acid Extractable Molybdenum (Mo)	6.9	0.59	<0.50	0.89	< 0.50	0.55	0.53	< 0.50	0.56			
Acid Extractable Nickel (Ni)	100	30	29	47	28	27	26	28	28		-	
Acid Extractable Selenium (Se)	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		-	
Acid Extractable Silver (Ag)	20	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20			
Acid Extractable Thallium (Tl)	1	0.16	0.13	0.17	0.15	0.16	0.14	0.14	0.17			
Acid Extractable Uranium (U)	23	0.56	0.53	0.61	0.55	0.61	0.71	0.56	0.55			
Acid Extractable Vanadium (V)	86	33	31	45	26	27	25	25	28			
Acid Extractable Zinc (Zn)	340	73	65	75	66	64	64	63	65		-	
WAD Cyanide (Free)	0.051	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01		-	
Electrical Conductivity	0.7	0.32	0.2	0.34	0.14	0.18	0.15	0.17	0.17			
Hexavalent Chromium (CrVI)	8	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18			
Acid Extractable Mercury (Hg)	0.27	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050			
Available (CaCl2) pH		7.46	7.67	6.85	7.74	7.64	7.69	7.77	7.73	7.87	7.88	7.83
Codium Advantion Datio	5	11	0.63	0.45	0.26	0.25	0.25	12	1.4			

Table 6: Summary of PHCs in Soil

Parameter		BH22-1B/SS3	BH22-5/SS2	BH22-6/SS2	MW22-2/SS3
Date of Collection	MFCP Table	18-May-22	18-May-22	18-May-22	26-May-22
Date Reported	2 SCS	02-Jun-22	02-Jun-22	02-Jun-22	02-Jun-22
Sampling Depth (mbgs)		1.5-2.1	0.8-1.4	0.8-1.4	1.5-2.1
Analytical Report Reference No.		C2D7426/SRH3	C2D7426/SRH4	C2D7426/SRH4	C2E5133/SSY4
Analytical Report Reference No.		98	05	07	51
F1 (C6-C10) -BTEX	55	<10	<10	<10	<10
F2 (C10-C16)	98	<10	<10	<10	<10
F3 (C16-C34)	300	<50	<50	<50	<50
F4 (C34-C50)	2800	<50	<50	<50	<50

		D1100 4D (000	D1100 E (005	DUP 2	D110.0 ((005			DUP 4
Parameter		BH22-1B/SS3	BH22-5/SS2	(BH22-5/SS2)	BH22-6/SS2	MW22-2/SS3	MW22-2/SS4	(MW22-2/SS4)
Date of Collection	MECP	18-May-22	18-May-22	18-May-22	18-May-22	26-May-22	26-May-22	26-May-22
Date Reported	Table 2	02-Jun-22						
Sampling Depth (mbgs)	SCS	1.5-2.1	0.8-1.4	0.8-1.4	0.8-1.4	1.5-2.1	2.3-2.9	2.3-2.9
Analytical Report Reference No.		C2D7426/SRH398	C2D7426/SRH405	C2D7426/SRH409	C2D7426/SRH407	C2E5133/SSY451	C2E5133/SSY452	C2E5133/SSY454
Benzene	0.21	<0.0060	<0.0060	<0.0060	<0.0060	< 0.020	<0.0060	<0.0060
Toluene	2.3	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	<0.020
Ethylbenzene	1.1	< 0.010	< 0.010	< 0.010	< 0.010	<0.020	< 0.010	<0.010
Xylene	3.1	<0.020	< 0.020	<0.020	<0.020	<0.040	<0.020	<0.020
Acetone	16	<0.49	<0.49	<0.49	<0.49		< 0.49	<0.49
Bromodichloromethane	1.5	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
Bromoform	0.27	<0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
Bromomethane	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
Carbon Tetrachloride	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
Chlorobenzene	2.4	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
Chloroform	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
Dibromochloromethane	2.3	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
1,2-Dichlorobenzene	1.2	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
1,3-Dichlorobenzene	4.8	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
1,4-Dichlorobenzene	0.083	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
Dichlorodifluoromethane	16	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
1,1-Dichloroethane	0.47	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
1,2-Dichloroethane	0.05	< 0.049	< 0.049	< 0.049	< 0.049		< 0.049	<0.049
1,1-Dichloroethylene	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
cis-1,2-Dichloroethylene	1.9	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
trans-1,2-Dichloroethylene	0.084	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
1,2-Dichloropropane	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
cis-1,3-Dichloropropene	0.05	< 0.030	< 0.030	< 0.030	<0.030		< 0.030	<0.030
trans-1,3-Dichloropropene	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
1,3-Dichloropropene (cis+trans)	0.05	< 0.050	< 0.050	<0.050	< 0.050		< 0.050	< 0.050
Ethylene Dibromide	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
Hexane (n-Hexane)	2.8	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
Methyl Ethyl Ketone (MEK)	16	<0.40	<0.40	<0.40	<0.40		<0.40	<0.40
Methyl Isobutyl Ketone (MIBK)	1.7	< 0.40	<0.40	<0.40	<0.40		<0.40	<0.40
Methyl tert-butyl ether (MTBE)	0.75	<0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
Methylene Chloride (Dichlorometh	0.1	<0.049	< 0.049	< 0.049	< 0.049		< 0.049	<0.049
Styrene	0.7	< 0.040	< 0.040	< 0.040	<0.040		<0.040	<0.040
1,1,1,2-Tetrachloroethane	0.058	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
1,1,2,2-Tetrachloroethane	0.05	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040
Tetrachloroethylene	0.28	< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	<0.040
1,1,1-Trichloroethane	0.38	<0.040	<0.040	<0.040	<0.040		<0.040	<0.040
1,1,2-Trichloroethane	0.05	<0.040	<0.040	<0.040	<0.040		<0.040	<0.040
Trichloroethylene	0.061	<0.010	<0.010	<0.010	<0.010		<0.010	<0.010
Trichlorofluoromethane	4	<0.040	<0.040	<0.040	<0.040		<0.040	<0.040
Vinyl Chloride	0.02	<0.019	<0.019	< 0.019	<0.019		<0.019	<0.019

Table 8: Summary of PAHs in Soil

Parameter		BH22-1B/SS2	DUP 1 (BH22-1B/SS2)	BH22-5/SS1	BH22-6/SS1	BH22-4/SS1	MW22-2/SS1	DUP 3 (MW22-2/SS1)
Date of Collection	MECP Table	18-May-22	18-May-22	18-May-22	18-May-22	18-May-22	26-May-22	26-May-22
Date Reported	2 SCS	02-Jun-22	02-Jun-22	02-Jun-22	02-Jun-22	02-Jun-22	02-Jun-22	02-Jun-22
Sampling Depth (mbgs)		0.8-1.4	0.8-1.4	0.0-0.6	0-0.6	0-0.6	0-0.6	0-0.6
Analytical Report Reference No.		C2D7426/SRH397	C2D7426/SRH408	CSD7426/SRH404	C2D7426/SRH406	C2D7426/SRH410	C2E5133/SSY449	C2E5133/SSY453
Acenaphthene	7.9	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Acenaphthylene	0.15	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Anthracene	0.67	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(a)anthracene	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050
Benzo(a)pyrene	0.3	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(b/j)fluoranthene	0.78	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(g,h,i)perylene	6.6	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(k)fluoranthene	0.78	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chrysene	7	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Dibenzo(a,h)anthracene	0.1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	0.69	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
Fluorene	62	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	0.38	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050
1-Methylnaphthalene	0.99	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
2-Methylnaphthalene	0.99	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
1+2-Methylnaphthalene	0.59	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071	< 0.0071	<0.0071
Naphthalene	0.6	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050
Phenanthrene	6.2	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Pyrene	78	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
For Table Notes see Notes for Soil and Grou	ndwater Sum	mary Tables, included	at the end of this Sectio	n.				

Table 9: Summary of OCPs in Soil

Parameter		BH22-3/SS1	BH22-7/SS1	BH22-8/SS1	
Date of Collection		18-May-22	18-May-22	18-May-22	
Date Reported	МЕСР	02-Jun-22	02-Jun-22	02-Jun-22	
Screen Interval (mbgs)	Table 2 SCS	0-0.6	0-0.6	0-0.6	
Analytical Report Reference No.		C2D7426/SRH400	C2D7426/SRH401	C2D7426/SRH402	
Aldrin	0.05	<0.0020	<0.0020	<0.0020	
alpha-Chlordane	0.05	<0.0020	<0.0020	<0.0020	
gamma-Chlordane	0.05	<0.0020	<0.0020	<0.0020	
Total Chlordane	0.05	<0.0020	<0.0020	<0.0020	
o,p-DDD	3.3	<0.0020	<0.0020	<0.0020	
p,p-DDD	3.3	<0.0020	<0.0020	<0.0020	
Total DDD	3.3	<0.0020	<0.0020	<0.0020	
o,p-DDE	0.26	<0.0020	<0.0020	<0.0020	
p,p-DDE	0.26	<0.0020	<0.0020	<0.0020	
Total DDE	0.26	<0.0020	<0.0020	<0.0020	
o,p-DDT	1.4	<0.0020	<0.0020	<0.0020	
p,p-DDT	1.4	<0.0020	<0.0020	<0.0020	
Total DDT	1.4	<0.0020	<0.0020	<0.0020	
Dieldrin	0.05	<0.0020	<0.0020	<0.0020	
Endosulfan I	0.04	<0.0020	<0.0020	<0.0020	
Endosulfan II (beta)	0.04	<0.0020	<0.0020	<0.0020	
Total Endosulfan	0.05	<0.0020	<0.0020	<0.0020	
Endrin	0.04	<0.0020	<0.0020	<0.0020	
Heptachlor	0.15	<0.0020	<0.0020	<0.0020	
Heptachlor epoxide	0.05	<0.0020	<0.0020	<0.0020	
Hexachlorobenzene	0.52	<0.0020	<0.0020	<0.0020	
Hexachlorobutadiene	0.012	<0.0020	<0.0020	<0.0020	
gamma-Hexachlorocyclohexane (Lindane)	0.056	<0.0020	<0.0020	<0.0020	
Hexachloroethane	0.089	<0.0020	<0.0020	<0.0020	
Methoxychlor	0.13	< 0.0050	< 0.0050	< 0.0050	

Table 10: Summary of Metals and ORPs in Groundwater

Parameter		MW22-2		
Date of Collection	MECP	30-May-22		
Date Reported	Table 2	03-Jun-22		
Screen Interval (mbgs)	565	1.22-4.3		
Analytical Report Reference No.		C2E5909/STE131		
Antimony	1.5	<0.50		
Arsenic	13	<1.0		
Barium	610	120		
Beryllium	0.5	<0.40		
Boron	1700	50		
Cadmium	0.5	<0.090		
Chromium	11	<5.0		
Chromium VI	25	<0.50		
Cobalt	3.8	0.55		
Copper	5	<0.90		
Lead	1.9	<0.50		
Mercury	0.1	<0.10		
Molybdenum	23	9.5		
Nickel	14	1.1		
Sodium	490000	140000		
Selenium	5	<2.0		
Silver	0.3	<0.090		
Thallium	0.5	<0.050		
Vanadium	3.9	<0.50		
Zinc	160	<5.0		
Cyanide, Free	5	<1		
Chloride	790000	95		
Uranium	8.9	7.7		

Table 11: Summary of PHCs & BTEX in Groundwater

Parameter		MW22-2	MW22-2 DUP		DUP 1
Date of Collection	MECD	30-May-22	30-May-22	28-Jun-22	28-Jun-22
Date Reported	Table 2 SCS	03-Jun-22	03-Jun-22	06-Jul-22	06-Jul-22
Screen Interval (mbgs)		1.22-4.3	1.22-4.3	1.22-4.3	1.22-4.3
Analytical Report Reference No.		C2E5909/STE131	C2E5909/STE132	C2H9417/TAK065	C2H9417/TAK066
F1 (C6 to C10) minus BTEX	420	< 25	< 25	< 25	< 25
F2 (C10 to C16)	150	<300	< 100	<100	< 100
F3 (C16 to C34)	500	<600	< 200	<200	< 200
F4 (C34 to C50) minus PAHs	500	<600	< 200	<200	< 200

Table 12:Summary of VOCs in Groundwater

Parameter		MW22-2	Trip Blank	
Date of Collection	МЕСР	30-May-22	30-May-22	
Date Reported	Table 2	03-Jun-22	03-Jun-22	
Screen Interval (mbgs)	scs	1.22-4.3	-	
Analytical Report Reference No.]	C2E5909/S TE131	C2E5909/S TE132	
Acetone	2700		<10	
Benzene	5	< 0.20	<0.20	
Bromodichloromethane	16		< 0.50	
Bromoform	25		<1.0	
Bromomethane	0.89		<0.50	
Carbon Tetrachloride	0.79		<0.19	
Chlorobenzene	30		<0.20	
Chloroform	2.4		<0.20	
Dibromochloromethane	25		<0.50	
1,2-Dichlorobenzene	3		<0.40	
1,3-Dichlorobenzene	59		< 0.40	
1,4-Dichlorobenzene	1		< 0.40	
1,1-Dichloroethane	5		<0.20	
1,2-Dichloroethane	1.6		<0.49	
1,1-Dichloroethylene	1.6		<0.20	
Cis-1,2-Dichloroethylene	1.6		<0.50	
Trans-1,2-Dichloroethylene	1.6		<0.50	
1,2-Dichloropropane	5		<0.20	
Ethylbenzene	2.4	<0.20	<0.20	
Ethylene Dibromide	0.2		<0.19	
Methyl Ethyl Ketone	1800		<10	
Methylene Chloride	50		<2.0	
Methyl Isobutyl Ketone	640		<5.0	
Methyl-t-Butyl Ether	15		<0.50	
Styrene	5.4		<0.40	
1,1,1,2-Tetrachloroethane	1.1		<0.50	
1,1,2,2-Tetrachloroethane	1		<0.40	
Toluene	24	<0.20	<0.20	
Tetrachloroethylene	1.6		<0.20	
1,1,1-Trichloroethane	200		<0.20	
1,1,2-Trichloroethane	4.7		< 0.40	
Trichloroethylene	1.6		<0.20	
Vinyl Chloride	0.5		<0.20	
Total Xylenes	300	<0.20	<0.20	
Dichlorodifluoromethane	590		<1.0	
Hexane(n)	51		<1.0	
Trichlorofluoromethane	150		<0.50	
1,3-Dichloropropene (cis + trans)	0.5		< 0.50	

For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section.

DS Consultants Ltd. June 2022

Table 13: Summary of PAHs in Groundwater

Parameter		MW22-2
Date of Collection	MECD	30-May-22
Date Reported	Table 2 SCS	03-Jun-22
Screen Interval (mbgs)		1.2-4.3
Analytical Report Reference No.		C2E5909/S TE131
Acenaphthene	4.1	<0.050
Acenaphthylene	1	<0.050
Anthracene	2.4	<0.050
Benzo(a)anthracene	1	<0.050
Benzo(a)pyrene	0.01	<0.0090
Benzo(b/j)fluoranthene	0.1	< 0.050
Benzo(ghi)perylene	0.2	< 0.050
Benzo(k)fluoranthene	0.1	< 0.050
Chrysene	0.1	<0.050
Dibenzo(a,h)anthracene	0.2	<0.050
Fluoranthene	0.41	< 0.050
Fluorene	120	<0.050
Indeno(1,2,3-cd)pyrene	0.2	< 0.050
1-Methylnaphthalene	3.2	< 0.050
2-Methylnaphthalene	3.2	< 0.050
Naphthalene	11	0.053
Phenanthrene	1	0.042
Pyrene	4.1	<0.050

Table 14: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Acid Extractable Antimony (Sb)	7.5	0.26	BH22-7/SS1
	Acid Extractable Arsenic (As)	18	6.5	BH22-7/SS1
	Acid Extractable Barium (Ba)	390	210	BH22-7/SS1
	Acid Extractable Beryllium (Be)	4	1.3	BH22-7/SS1
	Acid Extractable Boron (B)	120	11	MW22-2/SS2
	Acid Extractable Cadmium (Cd)	1.2	0.21	BH22-7/SS1
	Acid Extractable Chromium (Cr)	160	30	BH22-7/SS1
	Acid Extractable Cobalt (Co)	22	20	BH22-7/SS1
	Acid Extractable Copper (Cu)	140	43	BH22-7/SS1
s	Acid Extractable Lead (Pb)	120	18	BH22-1B/SS1
)RP	Acid Extractable Molybdenum (Mo)	6.9	0.89	BH22-7/SS1
Jd C	Acid Extractable Nickel (Ni)	100	47	BH22-7/SS1
s ar	Acid Extractable Selenium (Se)	2.4	<0.50	All Samples
etal	Acid Extractable Silver (Ag)	20	<0.20	All Samples
ž	Acid Extractable Thallium (Tl)	1	0.17	BH22-7/SS1
	Acid Extractable Uranium (U)	23	0.71	BH22-6/SS1
	Acid Extractable Vanadium (V)	86	45	BH22-7/SS1
	Acid Extractable Zinc (Zn)	340	75	BH22-7/SS1
	WAD Cyanide (Free)	0.051	<0.01	All Samples
	Electrical Conductivity	0.7	0.34	BH22-7/SS1
	Hexavalent Chromium (CrVI)	8	<0.18	All Samples
	Acid Extractable Mercury (Hg)	0.27	<0.050	All Samples
	Available (CaCl2) pH		7.88	BH22-10/SS2
	Sodium Adsorption Ratio	5	1.4	MW22-2/SS2
	F1 (C6-C10) -BTEX	55	<10	All Samples
cs	F2 (C10-C16)	98	<10	All Samples
Ηd	F3 (C16-C34)	300	<50	All Samples
	F4 (C34-C50)	2800	<50	All Samples
	Acetone	16	<0.49	All Samples
	Bromodichloromethane	1.5	<0.040	All Samples
	Bromoform	0.27	<0.040	All Samples
	Bromomethane	0.05	<0.040	All Samples
	Carbon Tetrachloride	0.05	<0.040	All Samples
	Chlorobenzene	2.4	<0.040	All Samples
	Chloroform	0.05	<0.040	All Samples
	Dibromochloromethane	2.3	<0.040	All Samples
'0Cs	1,2-Dichlorobenzene	1.2	<0.040	All Samples
	1,3-Dichlorobenzene	4.8	<0.040	All Samples
	1,4-Dichlorobenzene	0.083	<0.040	All Samples
	Dichlorodifluoromethane	16	<0.040	All Samples
	1,1-Dichloroethane	0.47	<0.040	All Samples
	1,2-Dichloroethane	0.05	<0.049	All Samples
	1,1-Dichloroethylene	0.05	<0.040	All Samples
	cis-1,2-Dichloroethylene	1.9	<0.040	All Samples
	trans-1,2-Dichloroethylene	0.084	<0.040	All Samples

DS Consultants Ltd. June 2022

Table 14: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	1,2-Dichloropropane	0.05	<0.040	All Samples
	cis-1,3-Dichloropropene	0.05	<0.030	All Samples
	trans-1,3-Dichloropropene	0.05	<0.040	All Samples
	1,3-Dichloropropene (cis+trans)	0.05	<0.050	All Samples
	Ethylene Dibromide	0.05	<0.040	All Samples
	Hexane (n-Hexane)	2.8	<0.040	All Samples
Cs	Methyl Ethyl Ketone (MEK)	16	<0.40	All Samples
VO	Methyl Isobutyl Ketone (MIBK)	1.7	<0.40	All Samples
	Methyl tert-butyl ether (MTBE)	0.75	<0.040	All Samples
	Methylene Chloride (Dichloromethane)	0.1	<0.049	All Samples
	Styrene	0.7	<0.040	All Samples
	1,1,1,2-Tetrachloroethane	0.058	<0.040	All Samples
	1,1,2,2-Tetrachloroethane	0.05	<0.040	All Samples
	Vinyl Chloride	0.28	<0.019	All Samples
	Acenaphthene	7.9	<0.0050	All Samples
	Acenaphthylene	0.15	<0.0050	All Samples
	Anthracene	0.67	<0.0050	All Samples
	Benzo(a)anthracene	0.5	<0.0050	All Samples
	Benzo(a)pyrene	0.3	<0.0050	All Samples
	Benzo(b/j)fluoranthene	0.78	<0.0050	All Samples
	Benzo(g,h,i)perylene	6.6	<0.0050	All Samples
	Benzo(k)fluoranthene	0.78	<0.0050	All Samples
s	Chrysene	7	<0.0050	All Samples
AH	Dibenzo(a,h)anthracene	0.1	<0.0050	All Samples
Ц	Fluoranthene	0.69	<0.0050	All Samples
	Fluorene	62	<0.0050	All Samples
	Indeno(1,2,3-cd)pyrene	0.38	<0.0050	All Samples
	1-Methylnaphthalene	0.99	<0.0050	All Samples
	2-Methylnaphthalene	0.99	<0.0050	All Samples
	1+2-Methylnaphthalene	0.59	<0.0071	All Samples
	Naphthalene	0.6	<0.0050	All Samples
	Phenanthrene	6.2	<0.0050	All Samples
	Pyrene	78	<0.0050	All Samples
	Aldrin	0.05	<0.0020	All Samples
	alpha-Chlordane	0.05	<0.0020	All Samples
	gamma-Chlordane	0.05	<0.0020	All Samples
	Total Chlordane	0.05	<0.0020	All Samples
	o,p-DDD	3.3	<0.0020	All Samples
	p,p-DDD	3.3	<0.0020	All Samples
s	Total DDD	3.3	<0.0020	All Samples
CP	o,p-DDE	0.26	<0.0020	All Samples
	p,p-DDE	0.26	<0.0020	All Samples
	Dieldrin	0.05	<0.0020	All Samples
	Endosulfan I	0.04	<0.0020	All Samples
	Endosulfan II (beta)	0.04	<0.0020	All Samples

DS Consultants Ltd. June 2022

Table 14: Summary of Maximum Concentrations in Soil

Parameter	Standard	Maximum Concentration	Location
Total Endosulfan	0.05	<0.0020	All Samples
Endrin	0.04	<0.0020	All Samples
Methoxychlor	0.15	<0.0050	All Samples

Table 15: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Antimony	1.5	<0.50	All Samples
	Arsenic	13	<1.0	All Samples
	Barium	610	120	MW22-2
	Beryllium	0.5	<0.40	All Samples
	Boron	1700	50	MW22-2
	Cadmium	0.5	<0.090	All Samples
	Chromium	11	<5.0	All Samples
	Chromium VI	25	<0.50	All Samples
	Cobalt	3.8	0.55	MW22-2
SC	Copper	5	<0.90	All Samples
ORI	Lead	1.9	<0.50	All Samples
and	Mercury	0.1	<0.10	All Samples
etals	Molybdenum	23	9.5	MW22-2
Me	Nickel	14	1.1	MW22-2
	Sodium	490000	140000	MW22-2
	Selenium	5	<2.0	All Samples
	Silver	0.3	<0.090	All Samples
	Thallium	0.5	<0.050	All Samples
	Vanadium	3.9	<0.50	All Samples
	Zinc	160	<5.0	All Samples
	Cvanide, Free	5	<1	All Samples
	Chloride	790000	95	MW22-2
	Uranium	8.9	7.7	MW22-2
	F1 (C6 to C10) minus BTEX	420	< 25	All Samples
S	F2 (C10 to C16)	150	<300	MW22-2
DH(F3 (C16 to C34)	500	<600	MW22-2
	F4 (C34 to C50) minus PAHs	500	<600	MW22-2
	Acetone	2700	<10	All Samples
	Benzene	5	<0.20	All Samples
	Bromodichloromethane	16	<0.50	All Samples
	Bromoform	25	<1.0	All Samples
	Bromomethane	0.89	<0.50	All Samples
	Carbon Tetrachloride	0.79	<0.19	All Samples
	Chlorobenzene	30	<0.20	All Samples
	Chloroform	2.4	<0.20	All Samples
S	Dibromochloromethane	25	<0.50	All Samples
V0(1,2-Dichlorobenzene	3	<0.40	All Samples
	1,3-Dichlorobenzene	59	<0.40	All Samples
	1,4-Dichlorobenzene	1	<0.40	All Samples
	1.1-Dichloroethane	5	<0.20	All Samples
	1.2-Dichloroethane	1.6	<0.49	All Samples
	1.1-Dichloroethylene	1.6	<0.20	All Samples
	Cis-1.2-Dichloroethylene	1.6	<0.50	All Samples
	Trans-1.2-Dichloroethylene	1.6	<0.50	All Samples
	1,2-Dichloropropane	5	<0.20	All Samples

Table 15: Summary of Maximum Concentrations in Groundwater

Parameter		Standard Maximum Concentration		Location		
	Ethylbenzene	2.4	<0.20	All Samples		
	Ethylene Dibromide	0.2	<0.19	All Samples		
	Methyl Ethyl Ketone	1800	<10	All Samples		
	Methylene Chloride	50	<2.0	All Samples		
	Methyl Isobutyl Ketone	640	<5.0	All Samples		
	Methyl-t-Butyl Ether	15	<0.50	All Samples		
	Styrene	5.4	<0.40	All Samples		
	1,1,1,2-Tetrachloroethane	1.1	<0.50	All Samples		
	1,1,2,2-Tetrachloroethane	1	<0.40	All Samples		
Cs	Toluene	24	<0.20	All Samples		
VO	Tetrachloroethylene	1.6	<0.20	All Samples		
	1,1,1-Trichloroethane	200	<0.20	All Samples		
	1,1,2-Trichloroethane	4.7	<0.40	All Samples		
	Trichloroethylene	1.6	<0.20	All Samples		
	Vinyl Chloride	0.5	<0.20	All Samples		
	Total Xylenes	300	<0.20	All Samples		
	Dichlorodifluoromethane	590	<1.0	All Samples		
	Hexane(n)	51	<1.0	All Samples		
	Trichlorofluoromethane	150	<0.50	All Samples		
	1,3-Dichloropropene (cis + trans	0.5	<0.50	All Samples		
	Acenaphthene	4.1	<0.050	All Samples		
	Acenaphthylene	1	<0.050	All Samples		
	Anthracene	2.4	<0.050	All Samples		
	Benzo(a)anthracene	1	<0.050	All Samples		
	Benzo(a)pyrene	0.01	<0.0090	All Samples		
	Benzo(b/j)fluoranthene	0.1	<0.050	All Samples		
	Benzo(ghi)perylene	0.2	<0.050	All Samples		
	Benzo(k)fluoranthene	0.1	<0.050	All Samples		
Hs	Chrysene	0.1	<0.050	All Samples		
ΡA	Dibenzo(a,h)anthracene	0.2	<0.050	All Samples		
	Fluoranthene	0.41	<0.050	All Samples		
	Fluorene	120	<0.050	All Samples		
	Indeno(1,2,3-cd)pyrene	0.2	<0.050	All Samples		
	1-Methylnaphthalene	3.2	<0.050	All Samples		
	2-Methylnaphthalene	3.2	<0.050	All Samples		
	Naphthalene	11	0.053	All Samples		
	Phenanthrene	1	0.042	All Samples		
	Pyrene	4.1	<0.050	All Samples		

Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
masl	Meters above sea level
MECP	Full Depth Generic Site Condition Standards in a Potable Ground Water Condition as contained in Table 2 of
Table 2	the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection
SCS	Act", published by the MECP on April 15, 2011.
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
OCPs	Organochlorine Pesticides
PAH	Polyaromatic Hydrocarbon
PHC	Petroleum Hydrocarbon
VOCs	Volatile Organic Compounds
Units	Units for all soil analyses are in μ g/g (ppm) unless otherwise indicated
Units	Units for all groundwater analyses are in μ g/L (ppb) unless otherwise indicated

Figures

Legend

AST

Location of historic soil stockpiling

Approx Property Boundary

B CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

ARGO NEYAGAWA CORPORATION

Client:

-	Part of Lot 20, Concession 2, Oakville, ON									
Title:	PHASE TWO STUDY AREA									
Size:	Approved By:	K.O	Drawn By:	S.Y / P.P.	Date:	June 2022				
Rev:	Scale:	As Shown	Project No.:	21-455-100	Figure No.:	2				
0	Image/Map Source	e: Google Satellite Ima	nge		•					

J:\-GIS\00-2021 Projects\21-455-100 2142 Dorham, Neyagawa Blvd and Burnhamthorpe Rd\1-QGIS\Phase Two\Figure 4 - PCA within Phase Two Study Area.qgs Jun-08 09:00

egend	DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393	SULTANTS LTD. PROJECT: PHASE ONE ENVIRONMENTAL SITE ASSESSMENT Part of L of 20 Concession 2 Oakville, ON					ENT	N
Approx Property Boundary		Vaughan, Ohtario L4H 0K8 Telephone: (905) 264–9393 www.dconoutigate.ca		GROUNDW	ATER ELEV	ATION CON	TOURS AND	FLOW
Borenole Locations	www.usconsultants.ca		DIRECTION	l				
Monitoring Well Locations	Client:	Size:	Approved By:	K.O	Drawn By:	S.Y / P.P.	Date:	June 2022
Groundwater Flow Direction	CORPORATION	Rev:	Scale:	As Shown	Project No.:	21-455-100	Figure No.:	6
		0	Image/Map Source	: Google Satellite Ima	Ige		1	

	Drawn By:		Date:	
M.J		S.Y		June 2022
	Project No:		Figure No.	
As Shown		21-455-100		6C

BH22-6	
Sample ID:	SS1
Date Sampled:	18-May-22
Sample Depth (mbgs):	0.0-0.6
Metals, As, Sb, Se	Met T2 SCS

22
CS
2

MW22-2				
Sample ID:	SS2			
Date Sampled:	26-May-22			
Sample Depth (mbgs):	0.8-1.4			
Metals, As, Sb, Se	Met T2 SCS			
and the second s	1			

As Shown		21-455-100	0
OURCE: Google Satellite In	nage		

	8 Journant Hote	N OU
BH22-6		67
Sample ID:	SS1	No.
Date Sampled:	18-May-22	1
Sample Depth (mbgs):	0.0-0.6	
nH	7.60	1000
pn	7.09	Sector Sector

BH22-7	
Sample ID:	SS1
Date Sampled:	18-May-22
Sample Depth (mbgs):	0-0.6
pН	6.85
EC, SAR, B-HWS, CN-, Cr(VI), Hg	Met T2 SCS

1	
BH22-4	
Sample ID:	SS1
Date Sampled:	18-May-22
Sample Depth (mbgs):	0.0-0.6
pН	7.77
EC, SAR, B-HWS, CN-, Cr(VI), Hg	Met T2 SCS

MW22-2	
Sample ID:	SS2
Date Sampled:	26-May-22
Sample Depth (mbgs):	0.8-1.4
рН	7.73
EC, SAR, B-HWS, CN-, Cr(VI), Hg	Met T2 SCS

100 m

50

 PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

 Part of Lot 20, Concession 2, Oakville, ON.

 SOIL CHARACTERIZATION - ORPs

 Approved By:
 K.O.

 Drawn By:
 P.P

 Date:
 June 2022

Approved By:	K.O.	Drawn By:	P.P	Date:	June 2022
Scale:	As Shown	Project No.:	21-455-100	Figure No.:	7B
Image/Map Sou	rce: Google Satellite In	nage			

BH22-6			
Sample ID:	SS2		
Date Sampled:	18-May-22		
Sample Depth (mbgs):	0.8-1.4		
PHCs&BTEX	Met T2 SCS		

MW22-2			
Sample ID:	SS3		
Date Sampled:	26-May-22		
Sample Depth (mbgs):	1.5-2.1		
PHCs&BTEX	Met T2 SCS		

BH22-6			
SS2			
18-May-22			
0.8-1.4			
Met T2 SCS			

Sold and a sold and a

MW22-2				
Sample ID: SS3 SS4 DUP 4				
Date Sampled:	26-May-22	26-May-22	26-May-22	
Sample Depth (mbgs):	1.5-2.1	2.3-2.9	2.3-2.9	
VOCs	Met T2 SCS	Met T2 SCS	Met T2 SCS	

50

100 m

Ņ

 \bigotimes

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT Part of Lot 20, Concession 2, Oakville, ON.

SOIL CHARACTERIZATION - VOCs

Approved By:	K.O.	Drawn By:	P.P	Date:	June 2022
Scale:	As Shown	Project No.:	21-455-100	Figure No.:	7D
Image/Map Source: Google Satellite Image					

,			
BH22-6			
Sample ID:	SS1		
Date Sampled:	18-May-22		
Sample Depth (mbgs):	0.0-0.6		
PAHs	Met T2 SCS		

BH22-4			
Sample ID:	SS1		
Date Sampled:	18-May-22		
Sample Depth (mbgs):	0.0-0.6		
PAHs	Met T2 SCS		

MW22-2				
Sample ID:	SS1	DUP 3		
Date Sampled:	26-May-22	26-May-22		
Sample Depth (mbgs):	0-0.6	0-0.6		
PAHs	Met T2 SCS	Met T2 SCS		

100 m

Ņ

 \bigotimes

50

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT Part of Lot 20, Concession 2, Oakville, ON.

SOIL CHARACTERIZATION - PAHs

К.О.	Drawn By:	P.P	Date:	June 2022
As Shown	Project No.:	21-455-100	Figure No.:	7E
UICO: Coogle Satellite In				

ce:	Google	Satellite	Image	

irce:	Google Satellite Image	

			8000 Martin Co	200	
	MW	nn_0	See		
9 Sample ID:	MW: MW22-2	22-2 DUP	MW22-2	DUP 1	
Sample ID: Date Sampled:	MW2 MW22-2 30-May-22	22-2 DUP 30-May-22	MW22-2 28-Jun-22	DUP 1 28-Jun-22	
Sample ID: Date Sampled: reen Interval (mbgs):	MW2 30-May-22 1.2-4.3	22-2 DUP 30-May-22 1.2-4.3	MW22-2 28-Jun-22 1.2-4.3	DUP 1 28-Jun-22 1.2-4.3	
Sample ID: Date Sampled: reen Interval (mbgs): PHCs F1 (C6-C10)	MW2 30-May-22 1.2-4.3 <25	22-2 DUP 30-May-22 1.2-4.3 <25	MW22-2 28-Jun-22 1.2-4.3 <25	DUP 1 28-Jun-22 1.2-4.3 <25	
9 Sample ID: Date Sampled: reen Interval (mbgs): PHCs F1 (C6-C10) PHCs F2 (C10-C16)	MW22-2 30-May-22 1.2-4.3 <25 <300*	22-2 DUP 30-May-22 1.2-4.3 <25 <100	MW22-2 28-Jun-22 1.2-4.3 <25 <100	DUP 1 28-Jun-22 1.2-4.3 <25 <100	
Sample ID: Date Sampled: creen Interval (mbgs): PHCs F1 (C6-C10) PHCs F2 (C10-C16) PHCs F3 (C16-C34) PHCs F3 (C16-C34)	MW2 30-May-22 1.2-4.3 <25 <300* <600*	22-2 DUP 30-May-22 1.2-4.3 <25 <100 <200	MW22-2 28-Jun-22 1.2-4.3 <25 <100 <200	DUP 1 28-Jun-22 1.2-4.3 <25 <100 <200	
Sample ID: Date Sampled: Creen Interval (mbgs): PHCs F1 (C6-C10) PHCs F2 (C10-C16) PHCs F3 (C16-C34) PHCs F4 (C34-C50) BTEX	MW22-2 30-May-22 1.2-4.3 <25 <300* <600* <600* Met T2 SCS	22-2 DUP 30-May-22 1.2-4.3 <25 <100 <200 <200 <200 Met T2 SCS	MW22-2 28-Jun-22 1.2-4.3 <25 <100 <200 <200 Met T2 SCS	DUP 1 28-Jun-22 1.2-4.3 <25 <100 <200 <200 Met T2 SCS	
9 Sample ID: Date Sampled: creen Interval (mbgs): PHCs F1 (C6-C10) PHCs F2 (C10-C16) PHCs F3 (C16-C34) PHCs F4 (C34-C50) BTEX	MW22-2 30-May-22 1.2-4.3 <225 <300* <600* <600* Met T2 SCS	22-2 DUP 30-May-22 1.2-4.3 <25 <100 <200 <200 Met T2 SCS	MW22-2 28-Jun-22 1.2-4.3 <25	DUP 1 28-Jun-22 1.2-4.3 <25 <100 <200 <200 Met T2 SCS	100 m

K.O.	Drawn By:	P.P	Date:	July 2022
As Shown	Project No.:	21-455-100	Figure No.:	8B
LICO: Googla Satellita In				

2-9		J. J	Manthone	on of	
		MAZ		_	20
(m)	-	Date Sam	pled: 30	-Mav-22	12
		Screen Interval (m	bgs):	1.2-4.3	100
Change State	100	PAHs	Me	et T2 SCS	1.1
	LEBRES C	NAY O	50	100	m
O ENVIRONME 20, Concession 2	ENTAL SIT 2, Oakville,	E ASSESSMENT ON.			
WATER CHAR	ACTERIZ	ATION - PAHs			
K.O.	Drawn By:	P.P	Date:		June 2022

Image/Map Source: Google Satellite Image

Project No.:

As Shown

Figure No.:

21-455-100

8C

Path:c:\0sharon\20-307-100 forestside phase 7\7-misc\cad\figure 11 - contaminant transport diagram.dwg

Appendix A

21-455-100

June 16, 2022

ARGO Neyagawa Corporation 4900 Palladium Way, Unit 105 Burlington, Ontario L7M 0M7

Re: Sampling and Analysis Plan – Phase Two Environmental Site Assessment Part of Lot 20, Concession 2, Oakville, Ontario

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Phase Two Environmental Site Assessment of Part of Lot 20, Concession 2, Oakville, Ontario (the Site). The purpose of the proposed Phase Two ESA program is to assess the current subsurface environmental conditions in support of the proposed redevelopment of the Site.

The Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. Background

Based on the Phase One Environmental Site Assessment completed by DS in May 2022, it is DS's understanding that the Site is a 11.29 hectare (27.90 acres) parcel of land which is currently used for agricultural purposes. The first developed use of the Site is interpreted to be Residential based on the findings of the Phase One ESA. A total of ten (10) potentially contaminating activities were identified on the Phase One Property or on neighbouring properties within the Phase One Study Area which are considered to be contributing to Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs identified, the potential contaminants of concern, and the media potentially impacted is presented in Table 1 below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1A	Southwestern portion of the Property	#30 – Importation of Fill Material of Unknown Quality	On Site PCA-1	PHCs, BTEX, Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-1B	Southwestern portion of the Property	#30 – Importation of Fill Material of Unknown Quality	On Site PCA-4	Metals, PAHs	Soil
APEC-1C	Southern portion of the Property	#30- Importation of Fill Material of Unknown Quality	On Site PCA-9	Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-2	Southwestern portion of the Property	N/S – Storage of miscellaneous construction material and debris	On site PCA-2	PHCs, VOCs, BTEX, Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-3	Western portion of the Property	#40 – Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	On site PCA-7	Metals, As, Sb, Se, CN-, OCPs	Soil
APEC-4	Southern Portion of the Property	#28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-Site PCA-10	PHCs, VOCs, BTEX, Metals, As, Sb, Se, BHWS, CN-, EC, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil and Groundwater

Notes:

- 1. N/S not specified in Table 2, Schedule D, of O.Reg. 153/04
- 2. PHC (F1-F4) = Petroleum Hydrocarbons in the F1-F4 fraction ranges
- 3. BTEX = Benzene, Toluene, Ethylbenzene, Xylene
- 4. VOCs = Volatile Organic Compounds
- 5. PAHs = Polycyclic Aromatic Hydrocarbons
- 6. OCPs = Organochlorine Pesticides

3. Site Investigation Program

The proposed field investigation will involve the advancement of boreholes, the installation of monitoring wells, and periodic monitoring of the installed wells. A total of 15 borehole locations have been identified. Details regarding the proposed boreholes/monitoring wells are provided in the following table:

ID	Proposed Depth	Well Installation (Y/N)	Well Install Depth	Purpose
MW22-1A	6.1 mbgs	Y	6.1 mbgs	Investigate shallow groundwater quality adjacent to MW22-1B
MW22-1B	15.3 mbgs	Y	12.3 mbgs	Investigate APEC-1A & 2
MW22-2	12.3 mbgs	Y	4.3 mbgs	Investigate APEC-4
BH22-3	0.8 mbgs	Ν		Investigate APEC-3
BH22-4	1.5 mbgs	Ν		Investigate APEC-1B
BH22-5	1.3 mbgs	Ν		Investigate APEC-1A & 2
BH22-6	1.5 mbgs	Ν		Investigate APEC-1C
BH22-7	0.8 mbgs	Ν		Investigate APEC-3
BH22-8	0.8 mbgs	Ν		Investigate APEC-3
MW22-9	12.3 mbgs	Y	6.1 mbgs	For Hydrogeological Investigation
MW22-10	17.0 mbgs	Y	4.57 mbgs	For Hydrogeological Investigation
BH22-11	15.4 mbgs	Ν		For Geotechnical Investigation
MW22-12	16.9 mbgs	Y	6.1 mbgs	For Hydrogeological Investigation
MW22-13	15.3 mbgs	Ν		For Geotechnical Investigation
MW22-14	13.8 mbgs	Y	6.1 mbgs	For Hydrogeological Investigation

Table 3-1: Summary of Proposed Investigation Program

Prior to mobilizing a drilling rig, we will lay out the proposed borehole and clear the buried utilities and services by using Ontario One Call System in addition to private utility locates.

The borings will be advanced to the indicated depths using a combination of a track mounted continuous flight auger machine and AMS Hand Auger (for BH22-3, BH22-4, BH22-5, BH22-6, BH22-7 and BH22-8). Samples will be retrieved by means of a 50 mm O.D. split-spoon barrel sampler at 0.75 metre intervals in the upper 3 metres and at 1.5 metres intervals below this level. The monitoring wells will be constructed using 50 mm I.D. PVC pipe, equipped with 3.1 m slotted screens and finished at the ground surface with flush mount well casings. A geodetic benchmark will be used to establish the elevation of each borehole. Drilling and sampling will conform to standard practice.

The Phase Two ESA involves the following principal tasks:

Retain the services of public and private utility locaters to identify the locations of buried and overhead utility services prior to any excavation or demolition activities;

- Certain underground utilities (such as those constructed or encased in plastic, fibreglass, clay, concrete pipe, untraceable cast iron, steel, and/or repaired services) cannot be traced by standard locating practices. DS will review all available Site Plans and/or "As Built" figures in an attempt to identify the locations of potential untraceable services. DS will not be held responsible for any damages to utility services that are not on the figures provided or cannot be located by standard utility locating practices;
- Advancement of boreholes as specified in Table 3-1. The proposed boreholes will be used to facilitate the collection of representative soil and groundwater samples, and to provide information regarding the Site-specific geological and hydrogeological conditions;
- All soil samples recovered during the proposed drilling activities will be field screened for visual and olfactory evidence of deleterious impacts and for the presence of petroleum hydrocarbon (PHC) and volatile organic compound (VOC) derived vapours using either a combustible gas detector (CGD) calibrated to hexane or a photo-ionization detector (PID) calibrated to isobutylene or equivalent;
- Measure the depth to groundwater levels in the monitoring wells installed, and monitor the wells for the presence/absence of non-aqueous phase liquid using an interface probe;
- Survey each of the monitoring wells to a geodetic datum;
- Develop and purge all of the monitoring wells installed;
- Submit soil samples from the newly advanced boreholes as follows:

Borehole ID	Sample No.	Sample Depth (mbgs)	Parameter Analyzed	Purpose
	SS1	0-0.6	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR	
	SS2	0014	PAHs	Assess APEC 1A,
IVIVVZZ-IB	DUP 1	0.8-1.4	PAHs	APEC 2
	SS3	1.5-2.1	PHCs & BTEX, VOCs	
	SS1	0-0.6	PAHs	Assess APEC 1A,
DH22-0	SS2 0.8-1.4 PHCs & BTEX, VOCs		PHCs & BTEX, VOCs	APEC 2
BH22-4	SS1	0-0.6	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, PAHs	Assess APEC-1B
BH22-6	SS1	0-0.6	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, PAHs	Assess APEC-1C
	SS2	0.8-1.4	PHCs & BTEX, VOCs	
BH22-3	SS1	0-0.6	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR, OCPs	Assess APEC 3
BH22-7	SS1	0-0.6	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR,	Assess APEC 3

Table 3-2: Summary of proposed soil chemical analyses

			OCPs				
BH22-8	SS1	0-0.6	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR	Assess APEC 3			
	SS1	0.0.4	PAHs				
	DUP 3	0-0.6	PAHs				
N/N/22 2	SS2	0.8-1.4	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, EC, SAR				
	SS3	1.5-2.1	PHCs & BTEX, VOCs	ASSESS APEC 4			
	SS4	2.3-2.9	PHCs & BTEX, VOCs				
	DUP 4	2.3-2.9	VOCs				

• Submit groundwater samples from the monitoring wells as follows:

Table 3-3: Summary of proposed groundwater analyses

Well ID	Well Depth	Lab Analysis	Purpose
MW22-2	4.3 mbgs	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, Na, CI-, PHCs, BTEX, PAHs	Assess shallow groundwater quality with respect to APEC-4

A summary of the proposed soil and groundwater analytical program is presented in the following table:

Table 3-4: Summary of Soil and Groundwater Analytical Program

Soil	Groundwater
 8 Samples for analysis of metals and ORPs 4 Samples for analysis of PHCs 7 Samples for analysis of VOCs 4 Samples for analysis of PAHs 3 Samples for analysis of OCPs 	 1 Samples for analysis of metals and ORPs 1 Samples for analysis of PHCs & BTEX 1 Samples for analysis of PAHs 1 VOC Trip Blank

- A Quality Assurance and Quality Control (QAQC) program will be implemented, involving the collection and analysis of duplicate soil and groundwater samples and trip blanks at the frequency specified under O.Reg. 153/04 (as amended);
- A Phase Two ESA Report will be prepared upon receipt of all analytical results and groundwater monitoring data. The Phase Two ESA Report will be completed in general accordance with O.Reg. 153/04 (as amended).

It should be noted that drilling activities may result in some disturbance to the ground surface at the site. Precautions will be taken by the drilling contractor to minimize any damage. The Client will be notified should there be cause to extend the borehole termination depth based on field observations.

It is assumed that the site can be accessed at our convenience, during regular business hours. Prior notice will be sent to the client and site representative

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Site. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of O.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

4. Closure

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Curs. Jo. J

Alice Gong, B.Sc Environmental Specialist

Appendix B

PROJ	ECT: Phase Two Environmental Site As	sess	men	t				D	RILLING DATA											
CLIEN	IT: ARGO Neyagawa Corporation							М	lethod: Solid St	em /	Auger									
PROJ	ECT LOCATION: Part of Lot 20, Conces	ssion	2, 0	akville	e, ON			D	iameter: 150mr	n					REF	F. NO).: 2 [,]	1-455	-100	
DATU	M: Geodetic							D	ate: May/17/20	22					ENC	CL NO	D.: 1			
BHLC	CATION: See Figure 5 N 4814748.141	E 5	9999	7.075		-							-							
	SOIL PROFILE		S	SAMPL	.ES	۲			Soil Head	I Sp	pace Vapors		-PLAS			LIQUID		۲.	REMA	RKS
(m)		ot			S	VATE	2 _		PID (maa)		CGD (ppm)		LIMIT Wo	CON	NTENT W	LIMIT w.	T PEN. Pa)	UNIT (°	ANI GRAIN	D SIZE
	DESCRIPTION	APL	н		.3 m												EX) (N)	(kN/n	DISTRIB	UTION
DEPTH		IRAT	JMBE	Ц		INOS C	EVA					ð	WA	TER C	ONTEN	T (%)	<u> </u>	NAT	(%))
180.8	Straight Augorod to 9.25 mbro	S	ž	⊢	2 -	50	5 🖬	+	10 20 30 40)	10 20 30	40	_	10	20 3	30			GR SA	SI CL
E 0.0	immediately adjacent to MW22-1B							ŧ												
- <u>1</u>							180	o₽		_		-	-							
								Ē												
							179	9Ē												
É								Ē												
							-Bent	E onit	e											
<u>-3</u>								E												
Ê							4-7-	Ē												
4							1/7	É									1			
E								Ē												
-5							176	6		_		-								
							· .	Ē												
6							17	5												
Ē								Ē												
7						E	174	4		_		-								
Ē								⊧ Pa	ick											
Ē							-Slotte		Pipe											
-								Ē												
Ē							17	Ē												
- ⁹ 171 6 9 2								-		_		-								
0.2																				
Ś																				
2																				
í l																				
3																				
i																				
404																				
8																				
GROUN	DWATER ELEVATIONS	_	_	_			H + 3	³ , ×	3. Numbers refer	ŗ	O ⁸ =3% Strain	at Fa	ailure	_	_	_	_	_		_

Ē 2 č 50

Measurement $\underbrace{\stackrel{1st}{\underline{\nabla}}} \stackrel{2nd}{\underline{\Psi}} \stackrel{3rd}{\underline{\Psi}} \stackrel{4th}{\underline{\Psi}}$

LOG OF BOREHOLE MW22-1A

PROJECT: Phase Two Environmental Site Assessment CLIENT: ARGO Neyagawa Corporation PROJECT LOCATION: Part of Lot 20, Concession 2, Oakville, ON								DRILLING DATA Method: Solid Stem Auger Diameter: 150mm REF. NO.: 21-455-10								-100						
DATUM: Geodetic BH LOCATION: See Figure 5 N 4814748 99 F 599998 01								Date: May/17/2022 EN					ENG	CL NO.: 1								
DITE	SOIL PROFILE	L 00.	s	AMPL	ES	~			S	ioil H	lead	Spa	ce Va	apors	3		TIC NA	TURAL			Г	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	"N" <u>BLOWS</u> 0.3 m	GROUND WATEF CONDITIONS	ELEVATION	1	(PID ppm) — I 0 40		((• 10 2	CGD ppm) 20 30	4 0		ATER C	STURE NTENT W -O ONTEN 20 3	LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT W (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
0.0	FILL: clayey silt, trace rootlets, brown, moist, firm to very stiff	\boxtimes	1	SS	5		I					•										Metals &
- 179.7		\bigotimes	2	SS	23		180					•					-					ORPs
1.2	CLAYEY SILT TILL: some sand to sandy, trace gravel, occasional cobbles, brown, moist, very stiff		3	SS	23		179					•				-						PHCs & VOCs
			4	SS	26		178	F				•										
4			5	SS	18		177					•										
	brown to grey below 4.6m		6	SS	17		176					•										
<u><u></u>≌174.8 6.1</u>	SILTY CLAY TILL: trace sand, trace gravel, occasional cobble,		7	SS	12		-Bento	nite_				•										
-7	grey, moist, sun to very sun		8	99	11		174															
			0				172															
10 10			9	SS	13		171					•										
11 11			10	SS	20		170					•				-						
12 168 7							169	-									-					
12.2	SANDY SILT TILL: trace to some clay, trace gravel, reddish brown, moist, very dense		11	SS	50/ 1 <u>00mn</u>		168					•				_						
0 - 167.2 54 13.7	CLAYEY SILT TILL/SHALE		12	SS	50/		Filter	Pack d Pip	¢ pe													
	COMPLEX: some sand, trace gravel, trace shale, reddish brown, maint hard				₹5mm																	
0 15 165.7			19		=		166															
105.2 15.3	SHALE BEDROCK: weathered, reddish brown END OF BOREHOLE: Notes: 1) Two 50mm dia. monitoring wells installed at depths of 6.1mbgl and 12.2mbgl upon completion. 2) Water Level Readings: Date: Water Level (mbgl) June 08, 2022 6.73		(13)	(33)	7 <u>50</u> 7			-														
3		1			<u> </u>	GRAPH	L	<u> </u>	. Nu	mbers	refer		8= 3	3% Str	pin at E	ailure						

LOG OF BOREHOLE MW22-1B

1 OF 1

 $\begin{array}{c} 1 \text{ st} \\ \text{Measurement} \\ \end{array} \begin{array}{c} 1 \text{ st} \\ \underline{\nabla} \\ \underline{\nabla}$

PROJECT LOCATION Ford (120) Concession 2, Oulville, 0N Diameter: 150mm REE. NO: 21-485-102 DATUM Conduction Soll France 1, Martings E 20007-22 ENCL NO. 2 Soll PROFILE Soll Hand Space Vapors Ford Hand Space Vapors Ford Hand Space Vapors 0.01 FOLL Charter Space Vapors Ford Hand Space Vapors Ford Hand Space Vapors Ford Hand Space Vapors 0.01 FOLL Charter Space Vapors Ford Hand Space Vapors Ford Hand Space Vapors Ford Hand Space Vapors Ford Hand Space Vapors 0.01 FOLL Charter Space Vapors Ford Hand Space Vapors 18.7 DESCRIPTION Ford Hand Space Vapors Ford Hand Fapors Ford Hand Fapor Hand	CLIEN	IT: ARGO Neyagawa Corporation							Metho	d: So	lid S	tem A	Auger	•									
DATUM Resolution Date: Market Space EAL NO.2 SUBJOATION Resolution Soil Head Space Vapoor Soil Head Space Vapoor Image: Space Vapoor	PROJ	ECT LOCATION: Part of Lot 20, Conce	ssion	12, C	akville	e, ON			Diame	eter: 1	50m	m							REF	=. NO).: 2′	1-455	5-100
INITICATION: See Figure 5 N. 4314855 E (500-724) Soil: PROFILE Profile Profile Profile Soil: PROFILE Profile <th< td=""><td>DATU</td><td>M: Geodetic</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Date:</td><td>May/</td><td>25/2</td><td>022</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ENG</td><td>CL NO</td><td>D.: 2</td><td></td><td></td></th<>	DATU	M: Geodetic							Date:	May/	25/2	022							ENG	CL NO	D.: 2		
SOL PROFILE SAMPLES Sol Plan	BH LC	DCATION: See Figure 5 N 4814853 E 6	60005	57.22					•														
Image: Second TICN Image:		SOIL PROFILE		5	SAMPL	ES				Soil	Hea	d Sp	ace	Vapo	ors				URAL			⊢	REMARKS
DESCRIPTION OF	(m)		F				TER			PIE)			CG	D		LIMIT	IC MOIS	STURE	LIQUID	Ľ.	N L N	AND
Birthin DESCRIPTION Egg b / b / c / c / c / c / c / c / c / c /	ELEV		PLO			SN E	o W⊿	N		(ppr	n)			(pp	m)		W _P	1	w 0	WL	(KPa	AL UI	GRAIN SIZE
1817 1 2 2 2 3 3 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	DEPTH	DESCRIPTION	ATA	BER		BLC 0.3	DND	/ATI		\geq			4		•					т (%)	20 20	ATUR (×	(%)
Child Source PiLL day yult, mean motes, miss, firm to safe Image: Second code,	101 7		STR/	NUM	ΓΛΡΕ	ż	GRO CON	ELE)	10	20	30 <u>4</u>	0	10	20	30 4	0	1	10 2	20 3	30		z	GR SA SI CI
	= 0.0	FILL: clayey silt, trace rootlets,	Ŵ		-	-				+				+				-		-			
Image: Provide the second cobble reaction of the second cobble reaction	-	reddish brown, moist, firm to stiff	\bigotimes		55			181				Ű	,										Metals &
100.2 2 3 10 2 3 10 </td <td><u>-1</u></td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td>11</td> <td></td> <td>ORPS, PAHS</td>	<u>-1</u>		\bigotimes			11																	ORPS, PAHS
1.5 CLAYEY SILT TILL same sand, too gravel, grey, most, very stift to hard 1 1 1 10 10 10 170 10 </td <td>180.2</td> <td></td> <td>\mathbb{X}</td> <td><u></u></td> <td>- 33</td> <td>11</td> <td></td> <td>· ·</td> <td>Ē</td> <td></td> <td></td> <td></td> <td>·</td> <td></td>	180.2		\mathbb{X}	<u></u>	- 33	11		· ·	Ē				·										
Brown, model, very stiff to hard Image: series of the series	1.5	CLAYEY SILT TILL: sandy, trace		3	SS	30	1:目:	180		-		•	,										
gray below 4.8m 4 9 9 9 178 17	Ē	brown, moist, very stiff to hard																					PHCS & VOCS
grey below 4.6m i <td>E</td> <td></td> <td></td> <td>4</td> <td>SS</td> <td>19</td> <td>日日</td> <td>179</td> <td></td> <td>_</td> <td></td> <td></td> <td>,</td> <td></td>	E			4	SS	19	日日	179		_			,										
gry below 4.6m 475.6 5.1 SILTY CLAY TILL: some sand, 5.6.1 SiltY CLAY TILL: some sand, 7.5.8 10 6.1 SiltY CLAY TILL: some sand, 7.5.8 10 6.1 SiltY CLAY TILL: some sand, 7.5.8 10 10.55 30m 10.55 30m	-3		HH																				PHUS & VUUS
grey below 4.8m Image: application of the second				5	SS	38	日日					•	,										
grey below 4.8m	4			┢			「目	178	E														
grey below 4.6m H756 177 177 177 177 177 177 177 17	E I			1					Ē														
a b S 22 4775.6 SILTY CLAY TILL: some sand, trace gravel, grey, moist, very stift 7 SS 18 9.1 CLAYEY SILT TILL/SHALE 9 SS 29 174 174 9.1 CLAYEY SILT TILL/SHALE 9 SS 29 177 174 177 9.1 CLAYEY SILT TILL/SHALE 9 SS 29 177 177 177 9.1 CLAYEY SILT TILL/SHALE 9 SS 29 177 177 177 10 SS 50/ 177 177 177 177 177 12.3 Weids brown S0/mit dia monitoring well upon control my ell upon control	Ē	grey below 4.6m	H	├_				177	[_				_	_								
175.6 17.6 17.6 17.6 6.1 trace gravel, grey, most, very stift 7 85 18 18.1 trace gravel, grey, most, very stift 8 85 15 17.2 0 10 85 29 17.3 10 85 50/ 12.3 Pediah brown, moist, hard 10 55 12.3 Pediah brown, moist, hard 10 55 12.3 Pediah brown, moist, hard 11 55 12.3 Pediah brown, moist, hard 11 55 12.3 Pediah brown, moist, hard 11 55 12.4 Pediah brown, moist, hard 11 55 12.3 Pediah brown, moist, hard 11 55 12.4 Pediah brown, moist, hard 11 55 12.3 Pediah brown, Pediation controling well upon completion. 11 55 12.4 Pediah brown, Pediation controling well upon completion. 11 55 12.3 Pediah brown, Pediation controling well upon completion. 10 10 12.4 Pediah brown, Pediation controling well upon completion. 10 10 12.5 Pediah brown, Pediation controling well upon completion. 10 10 <	-5	<u> </u>	HH	6	SS	22			E			1	'										
ENTS6 TTY CLAY TILL: some sand, frace gravel, grey, moist, very stiff 7 SS 18 9.1 CLAYEY SILT TILL/SHALE COMPLEX: sandy, trace gravel, reddish brown, moist, hard 9 SS 29 10 SS 50// 17.0 10 SS 10// 17.0 10 10.85 30/m 10 SS 50// 17.0 10 10 11.23 SHALE SEDROCK: weathered, reddish brown, moist, hard 10 SS 50// 17.0 10 10 10.85 30/m 10 SS 30/m 10 10 10 10.85 30/m 10 SS 30/m 10	-							176															
6.1 SLTY CLAY TILL: some sand, trace gravel, grey, moist, very stift 7 SS 18 9100-5 0 1 8 SS 15 174 0	 			1				170															
uide grave, grave, grave, redish brown, moist, hard 9 SS 29 10 SS 507 172 0 0 10 SS 507 170 0 0 10 SS 507 170 0 0 112.3 Paddish brown 10 SS 507 12.3 Paddish brown 10 S 2000 12.3 Paddish brown 10 S 2000 10.3 Paddish brown 10 S 2000 10.4 10 10 10 10 10 10.0 10 10 10 10	6.1	SILTY CLAY TILL: some sand,		7	SS	18		I				•	,										
Image: State Level Image: State	-	trace graver, grey, moist, very stin	1.			-		175	-	-													
Image: Second	É																						
172.6 9 SS 15 9.1 CLAYEY SILT TILL/SHALE 9 SS 29 10 SS 50/ 172 172 110 SS 50/ 171 172 171 12.3 HALE BEDROCK, weathered, headings: 11 SS 50/ 171 171 12.3 HOD FORENCE: Note: Note: 30mp 170 171 171 171 12.3 HOD FORENCE: Note: Water Level (mbgl): 10 SS 30mp 170 171	Ē		H.	1			-	174	Ē														
9 SS 29 173 9 SS 29 173 10 SS 500 12.3 Model: 100 13.0 Model: 100 14.0 Statution 100 15.0 Model: 100 10 Statution 100 10 Statution 100 11 Statution 100 12.3 Model: 100 13.0 Model: 100 14.0 1	-		ilit	8	SS	15		1				•	•										
Entrace 9 SS 29 173 9.1 CLAYEY SILT TILL/SHALE 9 SS 29 10 SS 500 172 171 10 SS 500 172 171 10 SS 500 172 171 10 SS 500 170 170 10 SS 500 170 170 12.3 Peddish brown 10 SS 500 12.3 Peddish brown 10 SS 100 12.4 Peddish brown 10 10 10 10 12.4 Peddish brown 10 10 10<	E								Ē														
10 0 10 55 29 172 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 171 10 10 55 50/ 172 11 10 55 50/ 170 12.3 Nedelsh brown 10 10 10 12.3 Nedelsh brown 10 10 10 13.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	9172 6			1				173	Ē	+													
COMPLEX: sandy, trace gravel, reddish brown, moist, hard	= 9.1	CLAYEY SILT TILL/SHALE	1/1		00	20		Ι,															
Produkt Drum, most, nav	Ē	COMPLEX: sandy, trace gravel,		9	- 33	29		172		_		ľ	·	_									
10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 10 \$5 507 12.3 Padish brown 11 13.4 Padish brown 11 13.5 Padish brown 11 13.6 Padish brown 11 13.7 Padish brown 11 13.8 Padish brown 11 13.9 Padish brown 11 13.9 Padish brown 11 13.9 Padish brown 11 13.9 Padish brown 11 14.9 <td><u>10</u> E</td> <td></td> <td></td> <td>1</td> <td></td>	<u>10</u> E			1																			
10 SS 50/ 10 11/ 10 <	-			1				474															
30mg 170 12.3 SHALE BEDROCK: weathered, reddish brown 11 33 300g 12.3 Notos: Notes: Notes: 0.80 mm dia: monitoring well upon completion. 2) Water Level Readings: Date: Water Level(mbgl): June 8, 2022 0.80 11 33 00g Date: Water Level(mbgl): June 8, 2022 0.80 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11			10	SS	50/		171					,										
12.3 SHALE SEDROCK. weathered. 11 35 90' 12.3 reddish brown END OF BOREHOLE: 30mm 30mm Notes: 0) 50mm dia. monitoring well upon completion. 0) Water Level Readings: 0 10 Date: Water Level (mbgl): 0 0 0 0 0 June 8, 2022 0.80 0.80 0 0 0 0 0 GROUNDWATER ELEVATIONS GRAPH +3. X ³ . Number refer 0 0 0 0 5 stain at Failure	E					1 <u>30m</u> r	Ĭ																
29:169.5 11 SS 50/ 12.3 reddish brown END OF BOREHOLE: 30mm Notes: 1) 50mm dia. monitoring well upon completion. 2) Water Level Readings: 30mm Date: Water Level(mbgl): June 8, 2022 0.80 GROUNDWATER ELEVATIONS GRAPH +3. X ³ . Numbers refer 0 = 3% Strain at Failure	Ē.							170	₽+-	+-			_	_									
12.3 redish brown 11.052, 307 - 12.3 redish brown 11.052, 307 - END OF BOREHOLE: Notes: 1) Somm dia. monitoring well upon completion. 2) Water Level Readings: Date: Water Level (mbgl): - - June 8, 2022 0.80 - - GROUNDWATER ELEVATIONS GRAPH + 3. × 3: humbers refer 0 #-3% Strain at Falure	- 169.5			1																			
END OF BOREHOLE: Notes: 1) Somm dia. monitoring well upon completion. 2) Water Level Readings: Date: Water Level(mbgl): June 8, 2022 0.80 GROUNDWATER ELEVATIONS GRAPH +3. ×3. Numbers refer 0 #1/TES +3. ×3. Numbers refer 0 #1/TES +3. ×3. Numbers refer 0 =5% Strain at Failure	102.2	reddish brown		\square	33	130mr	A																
Notes: 1) 50mm dia: monitoring well upon completion. 2) Water Level Readings: Date: Water Level(mbgl): June 8, 2022 0.80 Image: Completion in the second	1	END OF BOREHOLE:					Τ																
GROUNDWATER ELEVATIONS GRAPH +3, X3: Numbers refer O #-3% Strain at Failure	6	Notes: 1) 50mm dia monitoring well upon																					
2) Water Level Readings:		completion.																					
Date: Water Level(mbgl): June 8, 2022 0.80 Image: Strain at Failure	ġ 🔤	2) Water Level Readings:																					
June 8, 2022 0.80 GROUNDWATER ELEVATIONS GRAPH +3, ×3. Numbers refer O #=3% Strain at Failure		Date: Water Level(mbgl):																					
GROUNDWATER ELEVATIONS GRAPH NOTE +3, ×3. Numbers refer NOTE 0 \$=3% Strain at Failure		June 8, 2022 0.80																					
GROUNDWATER ELEVATIONS GRAPH NOTES +3, ×3. Numbers refer NOTES O ^{6-3%} Strain at Failure	ŝ																						
GROUNDWATER ELEVATIONS GRAPH +3, ×3. Numbers refer 0 <td></td>																							
GROUNDWATER ELEVATIONS GRAPH +3, ×3. Numbers refer O ^{©=3%} Strain at Failure	8																						
GROUNDWATER ELEVATIONS GRAPH + 3, × 3. Numbers refer O [©] =3% Strain at Failure				1																			
GROUNDWATER ELEVATIONS GRAPH NOTES + 3, × 3. Numbers refer NOTES O [©] =3% Strain at Failure				1																			
GROUNDWATER ELEVATIONS GRAPH NOTES +3, ×3. Numbers refer NOTES O ^{6=3%} Strain at Failure				1																			
GROUNDWATER ELEVATIONS GRAPH NOTES + 3, × 3: Numbers refer NOTES O ^{6=3%} Strain at Failure	 			1																			
GROUNDWATER ELEVATIONS GRAPH NOTES + 3, × 3: Numbers refer to Sensitivity O ^{8=3%} Strain at Failure				1																			
GROUNDWATER ELEVATIONS GRAPH NOTES + 3, × 3: Numbers refer to Sensitivity O ^{8=3%} Strain at Failure				1																			
GROUNDWATER ELEVATIONS GRAPH NOTES + 3, × 3. Numbers refer to Sensitivity O ^{6=3%} Strain at Failure				1																			
GROUNDWATER ELEVATIONS GRAPH NOTES + 3, × 3: Numbers refer to Sensitivity O ^{8=3%} Strain at Failure				1																			
<u>GROUNDWATER ELEVATIONS</u> <u>GRAPH</u> $+^3, \times^3$. Numbers refer NOTES $+^3, \times^3$. Strain at Failure																							
NULLES TO SODOITBUD/	GROUN	DWATER ELEVATIONS					GRAPH	+ 3,	× 3: N	lumbe	rs refe	er	0	=3%	Strain a	at Fai	lure						

DRILLING DATA

PROJECT: Phase Two Environmental Site Assessment

1 OF 1

 $\begin{array}{c|c} \hline \\ \mbox{Measurement} & \underline{ \overset{1st}{\underline{ V}}} & \underline{ \overset{2nd}{\underline{ V}}} & \underline{ \overset{3rd}{\underline{ V}}} & \underline{ \overset{4th}{\underline{ V}}} \end{array}$

PR	OJECT: Phase Two Environmental Site As	ssess	smen	t				DR	ILLIN	NG E	DATA	1												
CL	ENT: ARGO Neyagawa Corporation							Me	thod:	Har	nd Ai	ugei	r											
PR	OJECT LOCATION: Part of Lot 20, Conce	ssior	n 2, C	akville	, ON			Dia	mete	er:										RE	F. NC).: 2 [,]	1-455	-100
DA	TUM: Geodetic		Dat	e: N	lay/1	17/20)22								EN	CL N	O.: 3							
BH		1															,,							
	SOIL PROFILE SAMPLES											d S	pace	e Va	apo	rs		PLAST			LIQUIE		ŕ	REMARKS
(m)	(m) 01 (m) (m)													(1	CGE) 1)			CO	NTENT	LIMIT W.	r PEN. Pa)	UNIT)	AND GRAIN SIZE
ELE	DESCRIPTION	NOIT				''			() @~	<u></u>	')		•••p I		-o	vvL	CU) (K	(kN/m	DISTRIBUTION					
		RAT	JMBE	ĥE	= =	IUNS	EVA.				X			•	_	e	•	WA	TER C	ONTEN	NT (%)	۳. ۲	NAT	(%)
183		5	ž	F	ŗ	ΰŭ	Ш	- 1	10 2	03	0 40	0	1	0 2	0 3	80 4	0		10	20 :	30			GR SA SI CL
E 188	SANDY SILT: brown, moist		1	AS			183					4	•											Metals &
- 182	8 END OF BOREHOLE:							-																ORPs_OCPs_
77																								
0/8/																								
601																								
ŝ																								
19.0																								
500																								
100																								
604																								
7																								
707-																								
≥ L																								
ne~n																								
D¥																								
EN																								
۲ <u> </u>			<u> </u>					<u> </u>													1			
						RAPH	. 3	3	Nu	mber	s refe	r	~	8=3	% -									

LUEHT, ARGO Negages Control Puri of U.S. Concession 2. Durities of the Mark Hand Mark Mark Method: Hand Mark Mark PRDICET (LOCKTOP Puri of U.S. Concession 2. Durities of the Mark Hand Mark H	PROJ	IECT: Phase Two Environmental Site As	sess	men	t				DRI		IG D	ATA	۱.												
PROLECT LOATION Part of 2010, Diversion 2, Outviel, ON DATUME conducts: Dameter: REF. NO: 24-455-000 DATUME conducts: Soll Head Space Vaccor ENCL NO. A Image: Conduct Space Vaccor Soll Head Space Vaccor Soll Head Space Vaccor CLVV DESCRIPTION Image: Conduct Space Vaccor Image: Conduct Space Vaccor CLVV DESCRIPTION Image: Conduct Space Vaccor Image: Conduct Space Vaccor 000 DAMD: score p31, france growth, Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor 120.5 Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor 120.5 Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor 120.5 Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor 120.5 Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor 120.5 Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor 120.5 Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor Image: Conduct Space Vaccor<	CLIEN	NT: ARGO Neyagawa Corporation							Met	hod:	Han	nd Au	uger	r											
DATUR Description Solid PROFILE EACL NO. 4 INCLUCTION	PROJ	IECT LOCATION: Part of Lot 20, Conces	ssion	2, C	akville	, ON			Dia	mete	er:										RE	F. NC).: 2 [.]	1-455	-100
BILICATION See Figure 5 N441482 d4 E 0000380 Solit Head Space Vapors Attraction of the second secon	DATU		Dat	e: N	lay/1	9/20)22								EN	CL N	0.: 4								
SOL PROFILE SAMPLES Sol Head Space Various Constraints Balance Sol Head Space Various Constraints Balance Constraints Constraints Balance Constraints Constraints Balance Constraints Constraints Balance Constraints	BH LOCATION: See Figure 5 N 4814882.64 E 600033.86																								
OW LBUTH LBUTH LBUTH LBUTH DESCRIPTION (1) U (1) (1) U (1) (1) U (1) U (1)<	SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC MATURAL LIQUID													ħ	REMARKS										
Back mark DESCRIPTION End of a construction End of a construc	(m)	(m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													C (r	CGE)))			CO	NTENT		F PEN.	UNIT (AND GRAIN SIZE
No.00 No.00 <th< td=""><td></td><td colspan="12"></td><td></td><td>۲۲ ا</td><td>></td><td>.,</td><td></td><td>нр Н—</td><td></td><td> •—</td><td></td><td>Сс К С С С С С С</td><td>(kN/r</td><td>DISTRIBUTION</td></th<>															۲۲ ا	>	.,		нр Н—		 •—		Сс К С С С С С С	(kN/r	DISTRIBUTION
11225 10 2 6 2 0 <td></td> <td></td> <td>TRAT</td> <td>UMBI</td> <td>μ Έ</td> <td></td> <td>ROU</td> <td>-EVA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-•</td> <td></td> <td>WA</td> <td>TER C</td> <td>ONTEN</td> <td>IT (%)</td> <td>ē.</td> <td>NAT</td> <td>(%)</td>			TRAT	UMBI	μ Έ		ROU	-EVA									-•		WA	TER C	ONTEN	IT (%)	ē.	NAT	(%)
Introduction Introduction<	182.5	SAND: some silt_trace gravel	0 	z	ŕ	£	υõ	Ξ	- 1	0 2	0 30	3 40)	10	0 20	0 3	04	0		10	20	30			GR SA SI CL
	E 0.0	brown, moist		1	AS			182					-												Metals &
				2	AS			0						•											ORPS, PAHS
	- 181.2	END OF BOREHOLE:	····						-																
	3177																								
	5																								
	0																								
	ŝ																								
	707-1																								
	3		1																				L		

CLIEN	IT: ARGO Neyagawa Corporation			Met	thod	Har	nd A	ugei	r														
PROJ	ECT LOCATION: Part of Lot 20, Conce		Dia	mete	er:									REI	F. NC).: 21	1-455	-100					
DATU	M: Geodetic		Dat	e: N	/lay/1	6/20)22							EN	CL NO	D.: 5							
BHLC	DCATION: See Figure 5 N 4814820.5 E		-									-											
	SOIL PROFILE			S		lea	d Sj	pace	e Va	apore	S	PLAS			LIQUIE		ħ	REMARKS					
(m)		-		(DI9 DD	1)			() ()	GD Com)	LIMIT Wo	CON	NTENT W	LIMIT	T PEN (Pa)	UNIT)	AND GRAIN SIZE					
	DESCRIPTION	NOL				.,			•	> •	/			-0		DCKE Cu) (H	URAL (kN/r	DISTRIBUTION					
	EVA.							•	-	•	WA	TER C	ONTEN	IT (%)	đ.	NAT	(%)						
182.0	FILL: sand some silt trace gravel	Ξ	1	10 2	0 3	0 4	0	10	0 2	0 30	0 40		10 :	20 3	30			GR SA SI CL					
- 0.0	brown, moist	\bigotimes	1	AS			D					4	•										Metals & ORPs, PAHs
		\bigotimes	2	AS			181	-					,										PHCs & VOCs
- 180.7 - 1.3	END OF BOREHOLE:	××						Ē															
2 2																							
8																							
· •			•				· · · · ·	•								- 1	-		· · · · ·		•		

DRILLING DATA

PROJECT: Phase Two Environmental Site Assessment

PROJ	ECT: Phase Two Environmental Site As	sess	smen	t				DR		G DA		ar										
PROI		ssion	12 0	akville	N ON			Dia	meter		nuyt							RE) · 21	1-455	-100
DATU	JM: Geodetic	20.011	, 0		., 311			Dat	e: Ma	ay/18/2	2022	2						ENG		2 0.: 6	-55	
BHLC	DCATION: See Figure 5 N 4814905.51				,																	
	SOIL PROFILE			So	il He	ad S	Spac	e Va	apors		PLAST		URAL	LIQUIE		μ	REMARKS					
(m)		-		F (p	Dli pm)			() ()	CGD ppm)		LIMIT W⊳	CON	ITENT W	LIMIT	T PEN. (Pa)	UNIT)	AND GRAIN SIZE					
ELEV DEPTH	DESCRIPTION	TA PL	Щ		0.3 m		OITA			∖ ⁄ >⊠				>•		ļ-		o——		OCKE (Cu) (I	(kN/	
100 5		TRA	IUMB	ΥPE	۵ z		ILEV/		0 20	30	1 0	1	0 2	0 30	e 40	WA	TER CO	ONTEN 20 3	T (%) 30	<u>۵</u>	¥	
182.5 E 0.0	SANDY SILT: trace clay, trace		_∠ 1		F	00					+0				+0							Metals &
	gravel, brown, moist		Ė	///			182	-				Ť										ORPs, PAHs
181.0			2	AS		-	101															PHCs & VOCs
1.5	END OF BOREHOLE:						181															
27																						
Ď																						
5																						
<u>}</u>																						
							2	2	Nie	h	<i>(</i>		e _2	0/								

LOG OF BOREHOLE BH22-6

CLIEI	NT: ARGO Neyagawa Corporation		Met	hod:	Han	id Au	uger	-															
PRO	JECT LOCATION: Part of Lot 20, Conce		Diar	mete	er:									RE	F. NC	D.: 2 [.]	1-455	i-100					
DATU	JM: Geodetic		Date	e: N	lay/1	7/20	22							EN	ICL N	0.: 7							
BH L																							
	SOIL PROFILE			S	oil H	lead	d Sp	bace	e Va	pors	3		N				L	REMARKS					
()					PID				C	GD		PLA LIM	STIC MO	ISTURE		, z	Γ	AND					
(m)		Z		(r	opm)			(p	opm))	WP		w	W	(KPa	AL UN	GRAIN SIZE					
DEPTH	DESCRIPTION	ATIO							-	-				-0		DO DO	NUT (KI	(%)					
1 400 0		TRA	INU	ΥPE	ż	SONI SONI	LEV	1	0 2	0 30	1 40		10	n 20	1 30	40	V	10	20NTE	NT (%) 30		ž	
182.9	SANDY SILT: trace rootlets, brown.	111	~	-	-	00	ш	Ē				_			1		-	+	1	+			United a SI UL
E 100 1	moist		1	AS								f	•										ORPs, OCPs
- 182.1	END OF BOREHOLE:							-			_	_		_	_					-			,
0.54M-2021 21-459-100 ENV LOGS.GFJ US.GDT 8/9/22	END OF BOREHOLE:																						
US ENVIRO U-																							
						GRAPH	. 3	3	Nur	nhers	refe	r	~	8 =39	% -		_						

<u>GR</u> $\begin{array}{c} 1 \\ \text{Measurement} \end{array} \begin{array}{c} 1 \\ \underline{\nabla} \end{array} \begin{array}{c} 2 \\ \underline{\nabla} \end{array} \begin{array}{c} 3 \\ \underline{\nabla} \end{array} \begin{array}{c} 3 \\ \underline{\nabla} \end{array} \begin{array}{c} 4 \\ \underline{\nabla} \end{array} \begin{array}{c} 4 \\ \underline{\nabla} \end{array} \end{array}$

LOG OF BOREHOLE BH22-7

PROJECT: Phase Two Environmental Site Assessment

DRILLING DATA

CLIEN	NT: ARGO Neyagawa Corporation			Met	thod:	Hand	d Aug	ger														
PROJ	IECT LOCATION: Part of Lot 20, Cond		Dia	mete	er:								REF	F. NO	.: 21	1-455	-100					
DATU	JM: Geodetic		Dat	e: N	1ay/17	7/202	2						ENG	CL NO	D.: 8							
BH LC	DCATION: See Figure 5 N 4814845.4		-																			
	SOIL PROFILE		s	SAMPL	ES	~			S	oil H	ead	Spa	ce Va	apors	6			URAL			5	REMARKS
(m)					PID			(CGD		LIMIT	CON	STURE	LIMIT	PEN. a)) NIT W	AND					
ELEV	DESCRIPTION	NOI		()	opm)			(ppm		W _P		w 0	WL	CKET u) (kP	RAL U	DISTRIBUTION					
DEPTH	DESCRIPTION	ATP	MBE	щ	O.O.	NUN	EVAT						*	2		WA	TER CO	ONTEN	T (%)	00 00	NATU	(%)
183.1		STF	NN	Ţ	"Z	GR CO	ELE	1	0 2	0 30	40		10 2	20 30	40		10 2	20 3	30 I			GR SA SI CL
18 8 :0	TOPSOIL: 100mm		1	AS			1	¥				•										Motale 8
182.3	SANDY SILT: brown, moist							Ē														ORPs. OCPs
0.8	END OF BOREHOLE:																					
								1														
								1														
								1														
								1														
0/8/7																						
								1														
r,																						
ŝ																						
								1														
								1														
¥																						
70																						
7-MJ								1														
100																						
5																						
ц З																						
•						GRAPH	. 3		Nu	mbers	refer		. 8 =3	3% -					-			

DRILLING DATA

PROJECT: Phase Two Environmental Site Assessment

PRO	IECT I OCATION: Part of I at 20. Conce	eeior	. 2 C)akville				Dia	mete	or: 14	50mi	m	Aug	CI						DE		י י ר	1 455	: 100
DATU	IM: Geodetic	33101	12, C		, 01			Dat	e M	1av/2	24/20)22								FN) ∠ ∩ · a	1-400	-100
BHIC	DCATION: See Figure 5 N 4814917 46	E 60	0143	.52				24	J. 1V		(5 5		
DITE	SOIL PROFILE	2 00			ES				S	oil F	lea	d Sr	oac	e V	ano	rs								
						Ë				PID				()		PLAS ⁻ LIMIT	TIC NA	TURAL STURE	LIQUI	D T Z	T WT	REMARKS AND
(m)		LOT			Şε	WAT	z		(opm	ı)			(ppn	n)		W _P	CO	W	WL	(KPa)	V/m ³)	GRAIN SIZE
DEPTH	DESCRIPTION	ATA F	BER		BLO 0.3	UND	ATIC							*	_				TED O	-0	IT (0()	DO DO	ATUR/ (kt	(%)
101 5		STR/	MUN	IYPE	ż	0 SONI	ELEV	1	0 2	03	0 4	0	1	0 2	20 3	30 4	0	WA	10	ONTER 20	30 NI (%)		Ž	GR SA SI CI
= 0.0	REWORKED NATIVE CLAYEY	1		-	0			F						F					1		1			
	SILT:trace organics, brown, moist, stiff to very stiff	\mathbb{V}	1	- 33	0		181	Ē					,						-					
			2	SS	15		1	X				4	•											
- <u>180.1</u> E 1.4	CLAYEY SILT TILL: some sand to	F	╞				180	-																
2	sandy, trace gravel, occasional cobble, brown, moist, very stiff to		3	SS	22		1					4	•											
	hard	jø,		99	30		179	<u> </u>																
- <u>3</u>		7H	1	- 33	50			Ē																
Ē			5	SS	43		170	×					•											
4							170	Ē																
176.0																								
= 170.9 =4.6	SILTY CLAY TILL: trace sand,	12	1	99	22		177																	
Ē	trace gravel, grey, moist, very stiff to hard		Ľ					Ē				Ī												
Ē			1				176	-																
-6			\vdash					Ē																
Ē				SS	21		175					-1)						-					
-7																								
							174	-											-					
-			8	SS	20			ŧ.				4	•											
Ē							173	-																
 			1					Ē.																
9.1	SANDY SILT TILL: some clay, trace gravel reddish brown moist		9	SS	75		172	¥				-	•											
10	very dense						172	Ē																
E		• • •					171	Ē																
<u>- 170.8</u> - 11 10.7	CLAYEY SILT TILL/SHALE	1/2/	10	ss ,	50/							¢	•											
	COMPLEX: trace sand, trace gravel, reddish brown, moist, hard				1 <u>00m</u>	ŕ		Ē																
	3.4.0., .044.0 2.0,,						170	Ē																
169.2			1	- 33	50/			<u> </u>				4												
12.3	END OF BOREHOLE: Notes:		\square		50mm	(
19122	1) Auger refusal at 12.3m due to																							
	2) 50mm dia. monitoring well																							
o o	3) Water Level Readings:																							
	Date: Water																							
	Level(mbgl):																							
	Sure 0, 2022 7.35																							
EN																								
10-10																								
4 1																								
<u>л-ги</u>																								
20																								
			1																					
۲ <u> </u>			I		1		I	Ļ						L		L		L				I	1	
GROUN	IDWATER ELEVATIONS					GRAPH NOTES	+ 3,	׳	. Nur to S	mbers	s refe tivitv	r	0	8 =3	^{5%} S	train a	at Fai	ilure						

PROJECT: Phase Two Environmental Site Assessment

CLIENT: ARGO Nevagawa Corporation

DRILLING DATA

Method: Solid Stem Auger

PROJ	ECI: Phase I wo Environmental Site As	ssess	ment	I				DR		NG D	DATA	1													
CLIEN	IT: ARGO Neyagawa Corporation							Met	thod:	Soli	id St	em .	Auge	er											
PROJ	ECT LOCATION: Part of Lot 20, Conce	ssion	2, O	akville	e, ON			Dia	mete	er: 15	50mi	m								RE	F. NC).: 2 [,]	1-455	-100	
DATU	M: Geodetic							Dat	e: N	1ay/1	9/20)22								EN	CL N	0.: 1	0		
BH LC	DCATION: See Figure 5 N 4815025.74	E 59	9684	.38																					
	SOIL PROFILE		s	AMPL	ES	~			S	oil H	lea	d Sp	pace	e Va	apo	rs			NA	TURAL			F	REMA	RKS
(m)		F				TER.	1			PID				(CGE))		LIMIT	MO CO	ISTURE NTENT	LIQUIL	EN.	N LIN (AN	D
ELEV	DECODIDITION	PLO	~		SMS E	AW C	N		()	opm)			()	ppm	1)		W _P		w 	WL	(kP	RAL U	GRAIN	SIZE
DEPTH	DESCRIPTION	ATA	1BEF	ш	BLO 0.3		ITAV			\geq					>			WA	TER C		NT (%)	0 Q Q Q	ATUF ((%)
187.0		STR	NUN	IγΓ	ż	GRC	ELE	1	0 2	0 3	0 4	0	1(0 2	20 3	30 4	0		10	20	30		z	GR SA	SI CL
180.0	TOPSOIL: 250mm	<u>x 17</u>	1	22	3			-				4													
= 0.3 = 187.1	REWORKED NATIVE SAND:trace	! .	Ľ	33	5			Ĕ/	Ĩ																
1 0.8	REWORKED NATIVE CLAYEY	111	2	88	14		187	\swarrow				4	•						-						
E I	SILT:some organics, trace rootlets,			00	14			Ē																	
2185.8	brown, moist, still to very still		3	SS	23		186	1				4	•												
= 2.1	CLAYEY SILT TILL: some sand to						100	Ē																	
Ē	sandy, trace gravel, brown, moist,	KK	4	SS	34		C	2					•												
<u>-3</u>							185	Ē																	
E		βĤ	5	SS	21							¢													
4							184	-								-			-	-		1			
E		Kit						-																	
E ₅		np	6	88	12		102																		
				00	12	日	103						Í												
Ē		HH	1					Ē																	
<u>¶81.8</u>							182	-			\searrow								-						
6.1	SILTY CLAY TILL: trace sand, trace gravel, occasional		7	SS	11	日日		F				\geq													
7	cobble/boulder, grey, moist, stiff to	K					181																		
Ē	Very stiff							Ē																	
Ē					10			Ē																	
- <u>8</u> -		121	8	55	13	_	180	Ē	7				r												
Ē		1.						ŧ,																	
9							179	₽																	
Ē I		12	9	SS	16		C	4																	
E.		101					170	Ā																	
							170	A																	
Ē								Ē\																	
- 11 -		Ŵ	10	SS	11		177	╞╈				•							-						
E I						-		ŧ/																	
12							176	Į																	
Ē								Ł							\setminus										
		194		55	16										1										
7/6/		W/					175	Ē						/	/										
<u>=</u> E								Ē						/											
			12	SS	13		174	-											-						
		[işr				-		Ē																	
							173	Ē																	
5 172.7	CLAYEY SILT TILL: sandy trace						173	Ē			$\left \right $]			$\lfloor -$			_						
	gravel, trace shale pieces, reddish	HH	13	SS	62			Ē																	
ц <u>66</u> ЭЕ	brown, moist, hard	t.H1					172	F							\checkmark				-	-		1			
		Hit						É,						/											
1176.9	CLAYEY SILT TILL/SHALE		14,	SS	50/		171	Ľ				-													
17.0	COMPLEX: sandy, trace gravel,				7 <u>5mm</u>	(
07-14	END OF BOREHOLE:																								
	Notes:																								
1 6~0	installed upon completion.						1																		
2	2) Water Level Readings:																								
	June 08, 2022 7.41																								
		-						-				-										-			

Г

 $\frac{\text{GRAPH}}{\text{NOTES}} + {}^3, \times {}^3: \begin{array}{c} \text{Numbers refer} \\ \text{to Sensitivity} \end{array}$

O ^{8=3%} Strain at Failure

٦

LOG OF BOREHOLE MW22-10

PROJECT: Phase Two Environmental Site Assessment

CLIENT: ARGO Neyagawa Corporation

PROJECT LOCATION: Part of Lot 20, Concession 2, Oakville, ON DATUM: Geodetic

(m)

ELEV DEPTH

186.9

18**0.0**

186.1

182.3

<u>୍</u>ମ177.8 9.1

176.0

174.7

173.2

i₄ 13.7

¹71.7 174 9

15.4

8/9/22 13 12.2

10.9

- 5

4.6

-1 0.8

BH LOCATION: See Figure 5 N 4815060.23 E 599997.55 SOIL PROFILE

DRILLING DATA

Method: Solid Stem Auger

Soil Head Space Vapors

CGD

Diameter: 150mm Date: May/20/2022

PID

POCKET PEN. (Cu) (kPa)

w

30

IN

NATURAL U (KN/m³

PLASTIC NATURAL LIQUIE IMIT CONTENT LIMIT

IMIT

GROUND WATER CONDITIONS STRATA PLOT (ppm) (ppm) BLOWS 0.3 m Wp w ELEVATION ____ DESCRIPTION NUMBER > WATER CONTENT (%) TYPE ż 10 20 30 40 10 20 30 40 10 20 JOPSOIL: 200mm 1 SS 6 REWORKED NATIVE CLAYEY SILT: trace topsoil, trace rootlets, 186 brown, moist, firm 2 SS 21 CLAYEY SILT TILL: some sand to sandy, trace gravel, occasional 3 SS 36 cobble, brown, moist, very stiff to 185 hard 4 SS 27 184 grey below 3.1m 5 SS 19 183 SILTY CLAY TILL: trace sand, 6 SS 17 182 trace gravel, grey, moist, very stiff to hard 181 7 SS 16 180 8 SS 18 179 178 SANDY SILT TILL: some clay, 9 SS 28 trace gravel, grey, moist, compact to very dense 177 176 CLAYEY SILT TILL: some sand, 10 SS 86 trace gravel, greyish brown, moist, hard 175 SILT TILL: some sand, trace clay, 50/ 11 SS trace gravel, grey, wet, very dense 75mm 174 12 SS / 50/ SANDY SILT TILL: some clay, Ίφ 173 trace gravel, grey, wet, very dense 25mm 172

50mm

SAMPLES

GDT DS DS ENVIRO 0~50 PPM-2021 21-455-100 ENV LOGS.GPJ

CLAYEY SILT TILL/SHALE

COMPLEX: trace sand, trace

gravel, reddish brown, moist, hard shale bedrock starts at 15.3m END OF BOREHOLE:

REMARKS

AND

GRAIN SIZE

DISTRIBUTION

(%)

GR SA SI CL

CLI	ENT: ARGO Neyagawa Corporation							Meth	nod:	Soli	d St	em	Aug	er											
PR	DJECT LOCATION: Part of Lot 20, Conces	ssior	12, O	akville	e, ON			Dian	nete	r: 15	60mr	m							R	EF. I	NO.:	21	-455	-100	
DA	TUM: Geodetic							Date	e: M	ay/1	8/20)22							E	NCL	NO.	.: 12	2		
BH	LOCATION: See Figure 5 N 4814901.67	E 59	9818	.65		-																_			
	SOIL PROFILE		l s	SAMPL	.ES	с			S	oil H	lead	d Sp	oace	e Va	apor	S	PLA	STIC,			QUID		Ę	REMARK	S
(m)		oT	1		ω Ι	/ATE		1	F (r	PID pm)			(())	LIMI W-	ТС	ONTEN	T L		Pa) L	UNIT) ()	AND GRAIN SI7	Έ
ELE		A PL	۲.		.3 m		NOIT		4)	> 7	,			•	> •	'	Ē		_0_			Gu) (k	(kN/n	DISTRIBUTI	ON
DEFI		RAT	IMBE	Å			EVA		\sim		X			•		•	W	ATER	CONT	ENT (S	%)	Ĺ	MAT	(%)	
184	7 TOPSOU : 200mm	5	ž	≧	2.	50		10) 20) 30) 40	0	1	0 2	0 3	0 40		10	20	30		_		GR SA SI	CL
184	2 REWORKED NATIVE CLAYEY		1	SS	5							4	•												
<u>-1</u>	SILT: trace topsoil, trace rootlets,		\square	00			184	Ē																	
E183	stiff			SS	9								,												
2 1.	6 CLAYEY SILT TILL: trace sand,		3	SS	25		183					-	,				+	+		-	-				
Ē	very stiff	11	⊨																						
E,		jø,	4	SS	15		182					4	•					_			_				
		ľΪ	<u> </u>																						
		19.		55	20		181						7					_			_				
-4		71	1																						
-180	1 SILTY CLAY TILL: some sand	r ki	_				180																		
- <u>5</u>	trace gravel, grey, moist, stiff to very		6	SS	10		100					4	•												
-	stiff	1				: :	. 170																		
6							. 1/8																		
Ē			7	SS	11		: :					4	•												
7						目	178	Ē																	
-			1			日	:	Ē																	
-8		Æ	8	SS	16	日	177					-	•				+	+		-					
Ē			\vdash																						
Ē			1			E	176	ŧ				_					_	_	_	_	_				
-						∴ - ·	·	E																	
Ē			1 <u>9</u>	55	20		175						,												
<u>10</u> -			1																						
Ē							174																		
<u>11</u>			10	SS	18							•	•												
Ē							170																		
12			1				173																		
Ē			11	SS	13								•												
72		iş,				-	172	Ē																	
0 8 1 1 7 1																									
	7 CLAYEY SILT TILL: trace sand,		112	00	27		171										-	-							
	trace gravel, grey, moist, hard	ΗĽ	12	- 55	57								7												
GP							170	₽÷									+	_	_	_	_				
g 169			1		50/			<u>F</u>																	
2 15.	3 SILIY SAND TILL: some clay, trace gravel, brown, wet, very dense	 	13	SS	1 <u>30mr</u>		169		$ \downarrow$	-		-	^					_		_					
100 E			1					E																	
167	9	⁰	1				169																		
100	6 CLAYEY SILT TILL/SHALE	7.7%	14/	<u>s</u> ,	50/	Å	100										+				+	┥			
2021	reddish brown, moist, hard		1			Ĩ																			
HMd	END OF BOREHOLE: Notes:																								
~201	1) Auger refusal at 16.8m		1																						
002	installed upon completion.		1																						
	3) Water Level Readings: Date: Water Level(mbgl):		1																						
DSE	June 8, 2022 8.43																								

PROJECT: Phase Two Environmental Site Assessment

DRILLING DATA

O ^{8=3%} Strain at Failure

PROJECT: Phase Two Environmental Site Assessment

CLIENT: ARGO Neyagawa Corporation

PROJECT LOCATION: Part of Lot 20, Concession 2, Oakville, ON

DATUM: Geodetic

- 5

BH LOCATION: See Figure 5 N 4815159.61 E 599894.85

DRILLING DATA

Method: Solid Stem Auger

Diameter: 150mm Date: May/24/2022

SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC NATURAL LIQUIE IMIT CONTENT LIMIT REMARKS GROUND WATER CONDITIONS PID CGD POCKET PEN. (Cu) (kPa) AND NATURAL UNIT (kN/m³) (m) STRATA PLOT GRAIN SIZE (ppm) (ppm) BLOWS 0.3 m Wp w w ELEVATION ELEV DEPTH DISTRIBUTION DESCRIPTION NUMBER >• (%) WATER CONTENT (%) TYPE ż 10 20 30 40 10 20 30 40 10 20 30 189.4 GR SA SI CL **REWORKED NATIVE CLAYEY** 0.0 1 SS 5 189 SILT:trace organics, brown, moist, firm to stiff 2 SS 17 188.0 188 CLAYEY SILT TILL: trace sand, 1.4 trace gravel, brown, moist, stiff to 3 SS 23 very stiff 187 SS 25 4 5 SS 23 186 185 184.8 SILTY CLAY TILL: some sand, 4.6 6 SS 15 trace gravel, grey, moist, stiff to very stiff 184 183 17 7 SS 182 8 SS 8 181 SS 17 9 180 179 50/ 10 SS 30mr 178 -177.2 SANDY SILT TILL: some clay, 11 SS 50/ 12.2 177 trace gravel, grey, wet, very dense 30mr 176 175.7 **CLAYEY SILT TILL/SHALE** 12 SS / 50/ i₄ 13.7 COMPLEX: trace sand, trace 00mr gravel, grey, moist, hard 175 174.1 END OF BOREHOLE: 50 15.3 75mm Notes: 1) Auger refusal at 15.3m due to possible bedrock.

DS ENVIRO 0~50 PPM-2021 21-455-100 ENV LOGS.GPJ DS.GDT

8/9/22 13

O ^{8=3%} Strain at Failure

											0.0	17102	,										
PROJ	ECT LOCATION: Part of Lot 20, Conces	ssion	12, C	akville	e, ON			Diame	eter:	150	mm							F	REF.	NO.	.: 21	-455	-100
			oo	•				Date:	Ма	y/25/	2022							E	INCI	L NC).: 14	1	
BHLC	DCATION: See Figure 5 N 4814946.09 I SOIL PROFILE	E 59	9947 S	.3 Sampl	ES				So	il He	ad S	Spac	e Va	apors	;			NATUR	AL			⊢	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	ATA PLOT	1BER	ш	BLOWS 0.3 m	JUND WATER	VATION		P (pr	ID om) ≽⊠			(r (r	CGD opm) > 0	-*						POCKET PEN. (Cu) (kPa)	ATURAL UNIT W (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
183.3		STR	NUN	ΤYP	ŗ	GRO CON	ELE	10	20	30	40		10 20	0 30	40		10	20	30)		2	GR SA SI CL
- 0.0	CLAY:trace rootlets, trace organics, brown, moist, firm to very		1	SS	4		183					ľ				╈	-		+				
= 1.0	- stiff CLAYEY SILT TILL: trace sand, trace gravel brown moist stiff to		2	SS	16		182					•				_			_				
-2	very stiff		3	SS	20	-	D					•											
			4	SS	35		181 1	1				•											
-			5	SS	31		180		-			•				+	+		+				
4							179																
- 5	grey below 4.6m		6	SS	17		D					•											
-							178									+			+				
E 6 1	SILTY CLAY TILL: trace sand		-				477																
7	trace gravel, grey, moist, stiff to very stiff		7	SS	12			_															
-8			8	SS	14		1/6					•											
							175									-			-				
-9			9	SS	10	i::⊒i:	174 <mark>.</mark>					•				+	_		+				
10 10							173	_															
<u>172.6</u> 11 10.7	SANDY SILT TILL: some clay,		10	SS	84	-																	
	trace gravel, grey, wet, very dense						172									-			+				
12 171.1 12.2	CLAYEY SILT TILL: trace sand,		11	SS	50/		171 ⁰					•											
(9/22	trace gravel, reddish brown, moist, hard				<u>(5mm</u>		470	-															
5 - 169.8	SHALE BEDROCK: reddish brown,						170																
0. SO 13.8	Weathered END OF BOREHOLE: Notes:		12/	<u>33</u>	1 <u>30mr</u>	h																	
55-100 ENV LOGS.G	 Auger refusal at 13.8m due to possible shale bedrock. 50mm dia. monitoring well installed upon completion. Water Level Readings: 																						
0 0~50 PPM-2021 214	Level(mbgl): June 8, 2022 6.13																						
DS ENVIR																							
· • • • • •			-				-	· · ·				•								-			

PROJECT: Phase Two Environmental Site Assessment

CLIENT: ARGO Nevagawa Corporation

DRILLING DATA

Method: Solid Stem Auger

1 OF 1

⁶ Strain at Failure 0

Appendix C

Your Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Your C.O.C. #: n/a

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/06/03 Report #: R7151257 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E5133 Received: 2022/05/27, 16:09

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	2	N/A	2022/06/02	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	1	2022/06/01	2022/06/02	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	2	N/A	2022/06/02		EPA 8260C m
Free (WAD) Cyanide	1	2022/06/01	2022/06/02	CAM SOP-00457	OMOE E3015 m
Conductivity	1	2022/06/02	2022/06/02	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	1	2022/06/01	2022/06/02	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2022/06/02	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2022/06/01	2022/06/02	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	1	2022/06/01	2022/06/03	CAM SOP-00447	EPA 6020B m
Moisture	6	N/A	2022/05/30	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM)	2	2022/06/01	2022/06/02	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	6	2022/06/02	2022/06/02	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	1	N/A	2022/06/03	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds in Soil	2	N/A	2022/06/01	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Page 1 of 19

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Your C.O.C. #: n/a

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/06/03 Report #: R7151257 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2E5133

Received: 2022/05/27, 16:09

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 19

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas I	D				SSY450					
Sampling Date					2022/05/26					
COC Number					n/a					
			Criteria	Criteria-2	MW22-2 SS2	RDL	QC Batch			
Calculated Para	meters			<u> </u>						
Sodium Adsorpt	ion Ratio	N/A	5.0	2.4	1.4		8021761			
Inorganics										
Conductivity		mS/cm	0.7	0.57	0.17	0.002	8028848			
Moisture		%	-	-	12	1.0	8021965			
Available (CaCl2)) рН	рН	-	-	7.73		8029102			
WAD Cyanide (F	ree)	ug/g	0.051	0.051	<0.01	0.01	8027958			
Chromium (VI)		ug/g	8	0.66	<0.18	0.18	8027596			
Metals										
Hot Water Ext. E	Boron (B)	ug/g	1.5	-	0.10	0.050	8026308			
Acid Extractable	Antimony (Sb)	ug/g	7.5	1.3	<0.20	0.20	8026491			
Acid Extractable	Arsenic (As)	ug/g	18	18	4.5	1.0	8026491			
Acid Extractable	Acid Extractable Barium (Ba)		390	220	82	0.50	8026491			
Acid Extractable Beryllium (Be)		ug/g	4	2.5	0.71	0.20	8026491			
Acid Extractable Boron (B)		ug/g	120	36	11	5.0	8026491			
Acid Extractable Cadmium (Cd)		ug/g	1.2	1.2	<0.10	0.10	8026491			
Acid Extractable Chromium (Cr)		ug/g	160	70	20	1.0	8026491			
Acid Extractable	Cobalt (Co)	ug/g	22	21	14	0.10	8026491			
Acid Extractable	Copper (Cu)	ug/g	140	92	27	0.50	8026491			
Acid Extractable	Lead (Pb)	ug/g	120	120	12	1.0	8026491			
Acid Extractable	Molybdenum (Mo)	ug/g	6.9	2	0.56	0.50	8026491			
Acid Extractable	Nickel (Ni)	ug/g	100	82	28	0.50	8026491			
Acid Extractable	Selenium (Se)	ug/g	2.4	1.5	<0.50	0.50	8026491			
Acid Extractable	Silver (Ag)	ug/g	20	0.5	<0.20	0.20	8026491			
Acid Extractable	Thallium (Tl)	ug/g	1	1	0.17	0.050	8026491			
Acid Extractable	Uranium (U)	ug/g	23	2.5	0.55	0.050	8026491			
No Fill	No Exceedance									
Grey	Exceeds 1 criteria policy/level									
Black	Exceeds both criteria/levels									
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil										
Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)										

Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Page 3 of 19 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas I	ID				SSY450				
Sampling Date					2022/05/26				
COC Number					n/a				
		UNITS	Criteria	Criteria-2	MW22-2 SS2	RDL	QC Batch		
Acid Extractable	Vanadium (V)	ug/g	86	86	28	5.0	8026491		
Acid Extractable	Zinc (Zn)	ug/g	340	290	65	5.0	8026491		
Acid Extractable	ug/g	0.27	0.27	<0.050	0.050	8026491			
No Fill	No Exceedance								
Grey	Exceeds 1 criteria p	olicy/lev	/el						
Black	Exceeds both criter	ia/levels	;						
RDL = Reportabl	e Detection Limit								
QC Batch = Qual	lity Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition									
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									
Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)									
Table 1: Full Depth Background Site Condition Standards									
Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use									

Page 4 of 19 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 PAHS (SOIL)

Bureau Veritas ID					SSY449	SSY453				
Sampling Date					2022/05/26	2022/05/26				
COC Number					n/a	n/a				
		UNITS	Criteria	Criteria-2	MW22-2 SS1	DUP 3	RDL	QC Batch		
Inorganics										
Moisture		%	-	-	15	17	1.0	8021965		
Calculated Param	eters	1								
Methylnaphthale	ne, 2-(1-)	ug/g	-	0.59	<0.0071	<0.0071	0.0071	8021762		
Polyaromatic Hydrocarbons										
Acenaphthene		ug/g	7.9	0.072	<0.0050	<0.0050	0.0050	8027489		
Acenaphthylene		ug/g	0.15	0.093	<0.0050	<0.0050	0.0050	8027489		
Anthracene		ug/g	0.67	0.16	<0.0050	<0.0050	0.0050	8027489		
Benzo(a)anthrace	ne	ug/g	0.5	0.36	<0.0050	<0.0050	0.0050	8027489		
Benzo(a)pyrene		ug/g	0.3	0.3	<0.0050	<0.0050	0.0050	8027489		
Benzo(b/j)fluoran	thene	ug/g	0.78	0.47	<0.0050	<0.0050	0.0050	8027489		
Benzo(g,h,i)peryle	ene	ug/g	6.6	0.68	<0.0050	<0.0050	0.0050	8027489		
Benzo(k)fluoranthene		ug/g	0.78	0.48	<0.0050	<0.0050	0.0050	8027489		
Chrysene		ug/g	7	2.8	<0.0050	<0.0050	0.0050	8027489		
Dibenzo(a,h)anthracene		ug/g	0.1	0.1	<0.0050	<0.0050	0.0050	8027489		
Fluoranthene		ug/g	0.69	0.56	<0.0050	<0.0050	0.0050	8027489		
Fluorene		ug/g	62	0.12	<0.0050	<0.0050	0.0050	8027489		
Indeno(1,2,3-cd)pyrene		ug/g	0.38	0.23	<0.0050	<0.0050	0.0050	8027489		
1-Methylnaphthalene		ug/g	0.99	0.59	<0.0050	<0.0050	0.0050	8027489		
2-Methylnaphtha	lene	ug/g	0.99	0.59	<0.0050	<0.0050	0.0050	8027489		
Naphthalene		ug/g	0.6	0.09	<0.0050	<0.0050	0.0050	8027489		
Phenanthrene		ug/g	6.2	0.69	<0.0050	<0.0050	0.0050	8027489		
Pyrene		ug/g	78	1	<0.0050	<0.0050	0.0050	8027489		
Surrogate Recove	ery (%)	-								
D10-Anthracene		%	-	-	102	98		8027489		
D14-Terphenyl (F	S)	%	-	-	97	92		8027489		
No Fill	No Exceed	dance								
Grey	Exceeds 1	criteria	policy/le	vel						
Black	Exceeds b	oth crite	eria/level	s						
RDL = Reportable	RDL = Reportable Detection Limit									
QC Batch = Qualit	y Control Ba	atch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)										
Table 1: Full Depth Background Site Condition Standards Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use										

Page 5 of 19 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 PAHS (SOIL)

Bureau Veritas I)				SSY449	SSY453					
Sampling Date					2022/05/26	2022/05/26					
COC Number				n/a	n/a						
		UNITS	Criteria	Criteria-2	MW22-2 SS1	DUP 3	RDL	QC Batch			
D8-Acenaphthyle	ne	%	-	-	84	79		8027489			
No Fill	No Exceed	dance									
Grey	Exceeds 1	Exceeds 1 criteria policy/level									
Black	Exceeds b	Exceeds both criteria/levels									
RDL = Reportable	Detection L	imit									
QC Batch = Qualit	ty Control Ba	atch									
Criteria: Ontario I	Reg. 153/04	(Amend	ed April :	15, 2011)							
Table 2: Full Dept	h Generic Si	te Condi	ition Stan	dards in a l	Potable Ground	Water Conditi	ion				
Soil - Residential/	Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil										
Criteria-2: Ontari	o Reg. 153/0	4 (Amei	nded Apr	il 15, 2011)							
Table 1: Full Depth Background Site Condition Standards											
Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use											

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

Bureau Veritas ID					SSY451			SSY451		
Sampling Date					2022/05/26			2022/05/26		
COC Number					n/a			n/a		
		UNITS	Criteria	Criteria-2	MW22-2 SS3	RDL	QC Batch	MW22-2 SS3 Lab-Dup	RDL	QC Batch
Inorganics										
Moisture		%	-	-	12	1.0	8021965			
BTEX & F1 Hydrocar	bons		<u>.</u>			I			11	<u> </u>
Benzene		ug/g	0.21	0.02	<0.020	0.020	8031177	<0.020	0.020	8031177
Toluene		ug/g	2.3	0.2	<0.020	0.020	8031177	<0.020	0.020	8031177
Ethylbenzene		ug/g	1.1	0.05	<0.020	0.020	8031177	<0.020	0.020	8031177
o-Xylene		ug/g	-	-	<0.020	0.020	8031177	<0.020	0.020	8031177
p+m-Xylene		ug/g	-	-	<0.040	0.040	8031177	<0.040	0.040	8031177
Total Xylenes		ug/g	3.1	0.05	<0.040	0.040	8031177	<0.040	0.040	8031177
F1 (C6-C10)		ug/g	55	25	<10	10	8031177	<10	10	8031177
F1 (C6-C10) - BTEX		ug/g	55	25	<10	10	8031177	<10	10	8031177
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)		ug/g	98	10	<10	10	8028690			
F3 (C16-C34 Hydrocarbons)		ug/g	300	240	<50	50	8028690			
F4 (C34-C50 Hydrocarbons)		ug/g	2800	120	<50	50	8028690			
Reached Baseline at	C50	ug/g	-	-	Yes		8028690			
Surrogate Recovery	(%)	-								
1,4-Difluorobenzene		%	-	-	101		8031177	103		8031177
4-Bromofluorobenze	ene	%	-	-	100		8031177	101		8031177
D10-o-Xylene		%	-	-	86		8031177	93		8031177
D4-1,2-Dichloroetha	ne	%	-	-	98		8031177	99		8031177
o-Terphenyl		%	-	-	99		8028690			
No Fill	No Exce	eedance	2							
Grey	Exceed	s 1 crite	ria policy	/level						
Black	Exceed	s both c	riteria/le	vels						
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplicate										
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)										
Table 1: Full Depth Background Site Condition Standards Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use										

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID				SSY452	SSY454			
Sampling Date				2022/05/26	2022/05/26			
COC Number				n/a	n/a			
	UNITS	Criteria	Criteria-2	MW22-2 SS4	DUP 4	RDL	QC Batch	
Inorganics								
Moisture	%	-	-	10	10	1.0	8021965	
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/g	0.05	0.05	<0.050	<0.050	0.050	8021763	
Volatile Organics								
Acetone (2-Propanone)	ug/g	16	0.5	<0.49	<0.49	0.49	8024959	
Benzene	ug/g	0.21	0.02	<0.0060	<0.0060	0.0060	8024959	
Bromodichloromethane	ug/g	1.5	0.05	<0.040	<0.040	0.040	8024959	
Bromoform	ug/g	0.27	0.05	<0.040	<0.040	0.040	8024959	
Bromomethane	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959	
Chlorobenzene	ug/g	2.4	0.05	<0.040	<0.040	0.040	8024959	
Chloroform	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959	
Dibromochloromethane	ug/g	2.3	0.05	<0.040	<0.040	0.040	8024959	
1,2-Dichlorobenzene	ug/g	1.2	0.05	<0.040	<0.040	0.040	8024959	
1,3-Dichlorobenzene	ug/g	4.8	0.05	<0.040	<0.040	0.040	8024959	
1,4-Dichlorobenzene	ug/g	0.083	0.05	<0.040	<0.040	0.040	8024959	
Dichlorodifluoromethane (FREON 12)	ug/g	16	0.05	<0.040	<0.040	0.040	8024959	
1,1-Dichloroethane	ug/g	0.47	0.05	<0.040	<0.040	0.040	8024959	
1,2-Dichloroethane	ug/g	0.05	0.05	<0.049	<0.049	0.049	8024959	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959	
cis-1,2-Dichloroethylene	ug/g	1.9	0.05	<0.040	<0.040	0.040	8024959	
trans-1,2-Dichloroethylene	ug/g	0.084	0.05	<0.040	<0.040	0.040	8024959	
1,2-Dichloropropane	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959	
cis-1,3-Dichloropropene	ug/g	0.05	0.05	<0.030	<0.030	0.030	8024959	
trans-1,3-Dichloropropene	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959	
Ethylbenzene	ug/g	1.1	0.05	<0.010	<0.010	0.010	8024959	

No Fill No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

Grey

Black

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

 Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Page 8 of 19

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID					SSY452	SSY454		
Sampling Date					2022/05/26	2022/05/26		
COC Number					n/a	n/a		
		UNITS	Criteria	Criteria-2	MW22-2 SS4	DUP 4	RDL	QC Batch
Ethylene Dibromide		ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959
Hexane		ug/g	2.8	0.05	<0.040	<0.040	0.040	8024959
Methylene Chloride	(Dichloromethane)	ug/g	0.1	0.05	<0.049	<0.049	0.049	8024959
Methyl Ethyl Ketone	e (2-Butanone)	ug/g	16	0.5	<0.40	<0.40	0.40	8024959
Methyl Isobutyl Ket	one	ug/g	1.7	0.5	<0.40	<0.40	0.40	8024959
Methyl t-butyl ethe	r (MTBE)	ug/g	0.75	0.05	<0.040	<0.040	0.040	8024959
Styrene		ug/g	0.7	0.05	<0.040	<0.040	0.040	8024959
1,1,1,2-Tetrachloroe	ethane	ug/g	0.058	0.05	<0.040	<0.040	0.040	8024959
1,1,2,2-Tetrachloroe	ethane	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959
Tetrachloroethylene	e	ug/g	0.28	0.05	<0.040	<0.040	0.040	8024959
Toluene		ug/g	2.3	0.2	<0.020	<0.020	0.020	8024959
1,1,1-Trichloroetha	ne	ug/g	0.38	0.05	<0.040	<0.040	0.040	8024959
1,1,2-Trichloroetha	ne	ug/g	0.05	0.05	<0.040	<0.040	0.040	8024959
Trichloroethylene		ug/g	0.061	0.05	<0.010	<0.010	0.010	8024959
Trichlorofluorometh	nane (FREON 11)	ug/g	4	0.25	<0.040	<0.040	0.040	8024959
Vinyl Chloride		ug/g	0.02	0.02	<0.019	<0.019	0.019	8024959
p+m-Xylene		ug/g	-	-	<0.020	<0.020	0.020	8024959
o-Xylene		ug/g	-	-	<0.020	<0.020	0.020	8024959
Total Xylenes		ug/g	3.1	0.05	<0.020	<0.020	0.020	8024959
Surrogate Recovery	ı (%)							
4-Bromofluorobenz	ene	%	-	-	100	100		8024959
D10-o-Xylene		%	-	-	109	108		8024959
D4-1,2-Dichloroetha	ane	%	-	-	100	100		8024959
D8-Toluene		%	-	-	99	100		8024959
No Fill	No Exceedance							
Grey	Exceeds 1 criteria p	olicy/le	vel					
Black	Exceeds both criter	ia/level	S					
RDL = Reportable D	etection Limit							
QC Batch = Quality	Control Batch							
Criteria: Ontario Reg	g. 153/04 (Amended	April 15	, 2011)					
Table 2: Full Depth (Generic Site Condition	n Standa	ards in a F	Potable Gro	und Water Con	dition		
Soil - Residential/Pa	rkland/Institutional P	roperty	Use - Co	arse Textur	ed Soil			
Criteria-2: Untario R	keg. 153/04 (Amende	a April 1	15, 2011)					

Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		SSY445	SSY446	SSY447	SSY448		SSY451	
Sampling Date		2022/05/25	2022/05/25	2022/05/25	2022/05/25		2022/05/26	
COC Number		n/a	n/a	n/a	n/a		n/a	
	UNITS	BH22-13 SS1	BH22-13 SS3	BH22-11 SS1	BH22-11 SS3	QC Batch	MW22-2 SS3	QC Batch
Inorganics								
Available (CaCl2) pH	рН	7.00	7.83	6.73	7.80	8029112	7.75	8029102
QC Batch = Quality Control Ba	atch							

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	SSY445 BH22-13 SS1 Soil					Collected: Shipped: Received:	2022/05/25 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8029112	2022/06/02	2022/06/02	Taslima Ak	tar
Bureau Veritas ID: Sample ID: Matrix:	SSY446 BH22-13 SS3 Soil					Collected: Shipped: Received:	2022/05/25 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8029112	2022/06/02	2022/06/02	Taslima Ak	tar
Bureau Veritas ID: Sample ID: Matrix:	SSY447 BH22-11 SS1 Soil					Collected: Shipped: Received:	2022/05/25 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8029112	2022/06/02	2022/06/02	Taslima Ak	tar
Bureau Veritas ID: Sample ID: Matrix: Test Description	SSY448 BH22-11 SS3 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2022/05/25 2022/05/27
pH CaCl2 EXTRACT		AT	8029112	2022/06/02	2022/06/02	Taslima Ak	tar
Bureau Veritas ID: Sample ID: Matrix:	SSY449 MW22-2 SS1 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8021762	N/A	2022/06/02	Automated	d Statchk
Moisture		BAL	8021965	N/A	2022/05/30	Kruti Jitesh	n Patel
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	8027489	2022/06/01	2022/06/02	Jonghan Yo	oon
Bureau Veritas ID: Sample ID: Matrix:	SSY450 MW22-2 SS2 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	ron	ICP	8026308	2022/06/01	2022/06/02	Jolly John	
Free (WAD) Cyanide		TECH	8027958	2022/06/01	2022/06/02	Nimarta Si	ngh
Conductivity		AT	8028848	2022/06/02	2022/06/02	Roya Fathi	til
Hexavalent Chromium in	Soil by IC	IC/SPEC	8027596	2022/06/01	2022/06/02	Violeta Po	rcila
Acid Extractable Metals b	y ICPMS	ICP/MS	8026491	2022/06/01	2022/06/03	Viviana Ca	nzonieri
Moisture		BAL	8021965	N/A	2022/05/30	Kruti Jitesh	n Patel
pH CaCl2 EXTRACT	(64.0)	AT	8029102	2022/06/02	2022/06/02	Taslima Ak	tar
Sodium Adsorption Ratio	(SAR)	CALC/MET	8021761	N/A	2022/06/03	Automated	d Statchk

Page 11 of 19

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	SSY451 MW22-2 SS3 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	8031177	N/A	2022/06/02	Georgeta I	Rusu
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	8028690	2022/06/01	2022/06/02	Austin (Gu	ochen) Zhang
Moisture		BAL	8021965	N/A	2022/05/30	Kruti Jitesł	n Patel
pH CaCl2 EXTRACT		AT	8029102	2022/06/02	2022/06/02	Taslima Ak	ktar
Bureau Veritas ID: Sample ID: Matrix:	SSY451 Dup MW22-2 SS3 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Soil	HSGC/MSFD	8031177	N/A	2022/06/03	Georgeta I	Rusu
Bureau Veritas ID: Sample ID: Matrix:	SSY452 MW22-2 SS4 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	า	CALC	8021763	N/A	2022/06/02	Automate	d Statchk
Moisture		BAL	8021965	N/A	2022/05/30	Kruti Jitesł	n Patel
Volatile Organic Compou	nds in Soil	GC/MS	8024959	N/A	2022/06/01	Dina Wang	5
Bureau Veritas ID: Sample ID: Matrix:	SSY453 DUP 3 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8021762	N/A	2022/06/02	Automate	d Statchk
Moisture		BAL	8021965	N/A	2022/05/30	Kruti Jitesł	n Patel
PAH Compounds in Soil b	y GC/MS (SIM)	GC/MS	8027489	2022/06/01	2022/06/02	Jonghan Y	oon
Bureau Veritas ID: Sample ID: Matrix:	SSY454 DUP 4 Soil					Collected: Shipped: Received:	2022/05/26 2022/05/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	8021763	N/A	2022/06/02	Automate	d Statchk
Moisture		BAL	8021965	N/A	2022/05/30	Kruti Jitesł	n Patel
Volatile Organic Compou	nds in Soil	GC/MS	8024959	N/A	2022/06/01	Dina Wang	5

GENERAL COMMENTS

Each temper	ature is the ave	erage of up to th	ree cooler temperatures taken at receipt
Pac	kage 1	4.0°C]
Sample SSY4 Additional m	51 [MW22-2 S ethanol was ad	S3] :F1/BTEX Ar ded to the vial to	alysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. o ensure extraction efficiency.
Results relat	e only to the it	ems tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8024959	4-Bromofluorobenzene	2022/06/01	100	60 - 140	100	60 - 140	101	%		
8024959	D10-o-Xylene	2022/06/01	100	60 - 130	94	60 - 130	99	%		
8024959	D4-1,2-Dichloroethane	2022/06/01	100	60 - 140	101	60 - 140	98	%		
8024959	D8-Toluene	2022/06/01	99	60 - 140	99	60 - 140	98	%		
8027489	D10-Anthracene	2022/06/01	105	50 - 130	97	50 - 130	87	%		
8027489	D14-Terphenyl (FS)	2022/06/01	109	50 - 130	102	50 - 130	94	%		
8027489	D8-Acenaphthylene	2022/06/01	93	50 - 130	97	50 - 130	85	%		
8028690	o-Terphenyl	2022/06/02	103	60 - 130	97	60 - 130	100	%		
8031177	1,4-Difluorobenzene	2022/06/02	101	60 - 140	97	60 - 140	102	%		
8031177	4-Bromofluorobenzene	2022/06/02	101	60 - 140	102	60 - 140	100	%		
8031177	D10-o-Xylene	2022/06/02	88	60 - 140	94	60 - 140	91	%		
8031177	D4-1,2-Dichloroethane	2022/06/02	98	60 - 140	99	60 - 140	101	%		
8024959	1,1,1,2-Tetrachloroethane	2022/06/01	96	60 - 140	97	60 - 130	<0.040	ug/g		
8024959	1,1,1-Trichloroethane	2022/06/01	102	60 - 140	99	60 - 130	<0.040	ug/g		
8024959	1,1,2,2-Tetrachloroethane	2022/06/01	91	60 - 140	97	60 - 130	<0.040	ug/g		
8024959	1,1,2-Trichloroethane	2022/06/01	97	60 - 140	101	60 - 130	<0.040	ug/g		
8024959	1,1-Dichloroethane	2022/06/01	97	60 - 140	94	60 - 130	<0.040	ug/g		
8024959	1,1-Dichloroethylene	2022/06/01	102	60 - 140	98	60 - 130	<0.040	ug/g		
8024959	1,2-Dichlorobenzene	2022/06/01	95	60 - 140	97	60 - 130	<0.040	ug/g		
8024959	1,2-Dichloroethane	2022/06/01	95	60 - 140	95	60 - 130	<0.049	ug/g		
8024959	1,2-Dichloropropane	2022/06/01	97	60 - 140	96	60 - 130	<0.040	ug/g		
8024959	1,3-Dichlorobenzene	2022/06/01	96	60 - 140	96	60 - 130	<0.040	ug/g		
8024959	1,4-Dichlorobenzene	2022/06/01	111	60 - 140	111	60 - 130	<0.040	ug/g		
8024959	Acetone (2-Propanone)	2022/06/01	96	60 - 140	101	60 - 140	<0.49	ug/g		
8024959	Benzene	2022/06/01	95	60 - 140	93	60 - 130	<0.0060	ug/g		
8024959	Bromodichloromethane	2022/06/01	102	60 - 140	101	60 - 130	<0.040	ug/g		
8024959	Bromoform	2022/06/01	92	60 - 140	98	60 - 130	<0.040	ug/g		
8024959	Bromomethane	2022/06/01	98	60 - 140	97	60 - 140	<0.040	ug/g		
8024959	Carbon Tetrachloride	2022/06/01	99	60 - 140	96	60 - 130	<0.040	ug/g		
8024959	Chlorobenzene	2022/06/01	95	60 - 140	96	60 - 130	<0.040	ug/g		
8024959	Chloroform	2022/06/01	98	60 - 140	97	60 - 130	<0.040	ug/g		

Page 14 of 19

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8024959	cis-1,2-Dichloroethylene	2022/06/01	99	60 - 140	97	60 - 130	<0.040	ug/g		
8024959	cis-1,3-Dichloropropene	2022/06/01	100	60 - 140	96	60 - 130	<0.030	ug/g		
8024959	Dibromochloromethane	2022/06/01	92	60 - 140	95	60 - 130	<0.040	ug/g		
8024959	Dichlorodifluoromethane (FREON 12)	2022/06/01	90	60 - 140	89	60 - 140	<0.040	ug/g		
8024959	Ethylbenzene	2022/06/01	93	60 - 140	92	60 - 130	<0.010	ug/g		
8024959	Ethylene Dibromide	2022/06/01	91	60 - 140	95	60 - 130	<0.040	ug/g		
8024959	Hexane	2022/06/01	102	60 - 140	97	60 - 130	<0.040	ug/g		
8024959	Methyl Ethyl Ketone (2-Butanone)	2022/06/01	104	60 - 140	111	60 - 140	<0.40	ug/g		
8024959	Methyl Isobutyl Ketone	2022/06/01	102	60 - 140	107	60 - 130	<0.40	ug/g		
8024959	Methyl t-butyl ether (MTBE)	2022/06/01	96	60 - 140	95	60 - 130	<0.040	ug/g		
8024959	Methylene Chloride(Dichloromethane)	2022/06/01	96	60 - 140	95	60 - 130	<0.049	ug/g		
8024959	o-Xylene	2022/06/01	92	60 - 140	91	60 - 130	<0.020	ug/g		
8024959	p+m-Xylene	2022/06/01	97	60 - 140	96	60 - 130	<0.020	ug/g		
8024959	Styrene	2022/06/01	101	60 - 140	102	60 - 130	<0.040	ug/g		
8024959	Tetrachloroethylene	2022/06/01	91	60 - 140	89	60 - 130	<0.040	ug/g		
8024959	Toluene	2022/06/01	91	60 - 140	90	60 - 130	<0.020	ug/g		
8024959	Total Xylenes	2022/06/01					<0.020	ug/g		
8024959	trans-1,2-Dichloroethylene	2022/06/01	102	60 - 140	98	60 - 130	<0.040	ug/g		
8024959	trans-1,3-Dichloropropene	2022/06/01	100	60 - 140	99	60 - 130	<0.040	ug/g		
8024959	Trichloroethylene	2022/06/01	103	60 - 140	99	60 - 130	<0.010	ug/g		
8024959	Trichlorofluoromethane (FREON 11)	2022/06/01	101	60 - 140	97	60 - 130	<0.040	ug/g		
8024959	Vinyl Chloride	2022/06/01	100	60 - 140	96	60 - 130	<0.019	ug/g		
8026308	Hot Water Ext. Boron (B)	2022/06/02	123	75 - 125	96	75 - 125	<0.050	ug/g	6.0	40
8026491	Acid Extractable Antimony (Sb)	2022/06/03	92	75 - 125	101	80 - 120	<0.20	ug/g	23	30
8026491	Acid Extractable Arsenic (As)	2022/06/03	98	75 - 125	100	80 - 120	<1.0	ug/g	1.1	30
8026491	Acid Extractable Barium (Ba)	2022/06/03	NC	75 - 125	97	80 - 120	<0.50	ug/g	0.75	30
8026491	Acid Extractable Beryllium (Be)	2022/06/03	101	75 - 125	98	80 - 120	<0.20	ug/g	0.94	30
8026491	Acid Extractable Boron (B)	2022/06/03	97	75 - 125	95	80 - 120	<5.0	ug/g	2.0	30
8026491	Acid Extractable Cadmium (Cd)	2022/06/03	101	75 - 125	97	80 - 120	<0.10	ug/g	0.30	30
8026491	Acid Extractable Chromium (Cr)	2022/06/03	NC	75 - 125	101	80 - 120	<1.0	ug/g	4.8	30
8026491	Acid Extractable Cobalt (Co)	2022/06/03	98	75 - 125	101	80 - 120	<0.10	ug/g	4.6	30

Page 15 of 19

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8026491	Acid Extractable Copper (Cu)	2022/06/03	NC	75 - 125	97	80 - 120	<0.50	ug/g	0.056	30
8026491	Acid Extractable Lead (Pb)	2022/06/03	NC	75 - 125	99	80 - 120	<1.0	ug/g	1.9	30
8026491	Acid Extractable Mercury (Hg)	2022/06/03	89	75 - 125	95	80 - 120	<0.050	ug/g	1.7	30
8026491	Acid Extractable Molybdenum (Mo)	2022/06/03	101	75 - 125	98	80 - 120	<0.50	ug/g	7.4	30
8026491	Acid Extractable Nickel (Ni)	2022/06/03	101	75 - 125	101	80 - 120	<0.50	ug/g	1.5	30
8026491	Acid Extractable Selenium (Se)	2022/06/03	98	75 - 125	101	80 - 120	<0.50	ug/g	1.1	30
8026491	Acid Extractable Silver (Ag)	2022/06/03	99	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
8026491	Acid Extractable Thallium (TI)	2022/06/03	98	75 - 125	99	80 - 120	<0.050	ug/g	8.6	30
8026491	Acid Extractable Uranium (U)	2022/06/03	98	75 - 125	96	80 - 120	<0.050	ug/g	1.1	30
8026491	Acid Extractable Vanadium (V)	2022/06/03	102	75 - 125	98	80 - 120	<5.0	ug/g	0.66	30
8026491	Acid Extractable Zinc (Zn)	2022/06/03	NC	75 - 125	98	80 - 120	<5.0	ug/g	0.52	30
8027489	1-Methylnaphthalene	2022/06/01	103	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8027489	2-Methylnaphthalene	2022/06/01	97	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40
8027489	Acenaphthene	2022/06/01	104	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
8027489	Acenaphthylene	2022/06/01	105	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
8027489	Anthracene	2022/06/01	119	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40
8027489	Benzo(a)anthracene	2022/06/01	113	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
8027489	Benzo(a)pyrene	2022/06/01	94	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
8027489	Benzo(b/j)fluoranthene	2022/06/01	117	50 - 130	109	50 - 130	<0.0050	ug/g	NC	40
8027489	Benzo(g,h,i)perylene	2022/06/01	97	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
8027489	Benzo(k)fluoranthene	2022/06/01	102	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
8027489	Chrysene	2022/06/01	113	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8027489	Dibenzo(a,h)anthracene	2022/06/01	102	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8027489	Fluoranthene	2022/06/01	119	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
8027489	Fluorene	2022/06/01	110	50 - 130	102	50 - 130	<0.0050	ug/g	NC	40
8027489	Indeno(1,2,3-cd)pyrene	2022/06/01	99	50 - 130	97	50 - 130	<0.0050	ug/g	NC	40
8027489	Naphthalene	2022/06/01	92	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
8027489	Phenanthrene	2022/06/01	108	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
8027489	Pyrene	2022/06/01	125	50 - 130	114	50 - 130	<0.0050	ug/g	NC	40
8027596	Chromium (VI)	2022/06/02	27 (1)	70 - 130	89	80 - 120	<0.18	ug/g	NC	35
8027958	WAD Cyanide (Free)	2022/06/02	82	75 - 125	94	80 - 120	<0.01	ug/g	NC	35

Page 16 of 19

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8028690	F2 (C10-C16 Hydrocarbons)	2022/06/02	104	60 - 130	98	80 - 120	<10	ug/g	NC	30
8028690	F3 (C16-C34 Hydrocarbons)	2022/06/02	110	60 - 130	102	80 - 120	<50	ug/g	16	30
8028690	F4 (C34-C50 Hydrocarbons)	2022/06/02	111	60 - 130	104	80 - 120	<50	ug/g	NC	30
8028848	Conductivity	2022/06/02			100	90 - 110	<0.002	mS/cm	2.5	10
8029102	Available (CaCl2) pH	2022/06/02			100	97 - 103			0.36	N/A
8029112	Available (CaCl2) pH	2022/06/02			100	97 - 103			0.086	N/A
8031177	Benzene	2022/06/03	89	50 - 140	94	50 - 140	<0.020	ug/g	NC	50
8031177	Ethylbenzene	2022/06/03	99	50 - 140	101	50 - 140	<0.020	ug/g	NC	50
8031177	F1 (C6-C10) - BTEX	2022/06/03					<10	ug/g	NC	30
8031177	F1 (C6-C10)	2022/06/03	76	60 - 140	84	80 - 120	<10	ug/g	NC	30
8031177	o-Xylene	2022/06/03	96	50 - 140	97	50 - 140	<0.020	ug/g	NC	50
8031177	p+m-Xylene	2022/06/03	96	50 - 140	97	50 - 140	<0.040	ug/g	NC	50
8031177	Toluene	2022/06/03	87	50 - 140	89	50 - 140	<0.020	ug/g	NC	50
8031177	Total Xylenes	2022/06/03					<0.040	ug/g	NC	50

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was re-analyzed with the same results

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cuistin Camiere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary	table is for information purp	oses only and should	I not be considered a comp	rehensive listing or	statement of	conformance to
applicable regulatory guide	elines.					

Exceedance Summary Table – Reg153/04 T1-Soil/Res

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary ta	able is for information purp	oses only and should not	t be considered a comprehe	ensive listing of	or statement of co	onformance to
applicable regulatory guidel	ines.					

(())	www.BVNA.com	Pho	6740 Ca ne: 905-817	impobelk -5700	o Road, 1 Fax: 905	Mississau 5-817-577	ga, Ontario LSN Ə Toll Free: 8	2L8 00-563-6	266)	CHAIN	I OF CI	USTOD	0Y REC 014v0	ORD						Pag	e	1 of	1
voice Infor	mation Invoice To Requires Re	port	Ti-	R	eport In	formatic	m (if differs fre	om invo	ice)		-	-		_		Proie	ct info	rmati	on											Ť
ompany :	DS Accounting	5	Company:						2.34			Quotatio	n #:	1		, i ojei						-			2	7-1	Aav-22	6.00	î.	
ontact Name:			Contact	-			Kirstin Olsen			-	-	P.O. #/ (+						-		-	20	Ach		0	'iuy-22 1	0.09		
reet Address:			Street				CO. 10.1					.0. 11 1	AFER.	+			_		-			-	шú	1511	ion	G	bson			
City:	Prov	Postal	Address:		a contractor of		6221 Highway	<u>,</u>	Postal	1	P	Project #	#:	+			S.Contester	21-45	5-100			-		1	22	F5	122	1 11		
Phone:		Code:	Dhone:		lugnan		Prov: 0		Code	L4H0	OK8 S	site #:		+			Neyaga	wa & Bi	imhami	horpe		8			ا مشد ا	60	133		\sim	_
Email:			Email:	+		kirst	905-264-9393	dtante ca	_		-3	Site Loca	ition:	-					-	_		-	UR	F.		E	NV-174	0	0	- J
Coples:			Copies:	-			n.orsengeusconsu	itants.ca	-	-	P	Province	But	-	-		-	Dunn 7	hane.	-		-	+							
		Regulatory Crit	teria	-					2	3	4	5 (6 7	8	9	10	11]]	Ryan 2	14 14	15	16	7 18	1 19	20	21	22	Paquia	TurnArea	and Time ITs	TI
I diable I Table I Table SA		Med/Fine Course For RSC ria on Certificate of ROM TIME OF SAME	rmin 3 day wisa Wisa Wisa Wisa Salay Misa Wisa Salay Misa Wisa Salay Misa Salay Misa Salay Misa Salay Misa Salay Misa Salay Salay Salay Salay Misa Salay Sal	(check i	Areg 4 Sanit Stori Municpa Othe f yes):	406, Table tary Sewer m Sewer I ility: er: IREAU VE	: r Bylaw Bylaw RITAS	•		cquired			INORGANICS	ETALS	Aetals, HWS - B)	1.11									SUBMITTED	ALYZE .	S to 7 da Rush Tu Same Da	ys rnAroun urcharge Ƴ	10 day d Time (TA es apply 1 Day	ys T) -
)-	Sample Identification		0	Date Samp	ded	Time (2/	4br)	u TFRED	RESERVED	TRATION RE	HCF1	2-F5	8 METALS 8	B ICPMS ME	8 METALS VI. ICPMS N						1	0			NTAINERS S	DO NOT AN	4 DAY	YY	∐ 3 Day	1 DD
	sample identification	-	YV.	MM	DD	HH 1	/Matrix	SFLD FI	FIELD PI	LAB FIL	BTEX/ P	PHCs F2	REG 153	REG 153	REG 15: [He, Cr \	H	PAHs								# OF COI	I- GIOI	Required;	COMM	ENTS	
-	BH22-13 551		22	5	25		Soil									0] [1					
	BH22-13 553		22	5	25		Soil									0									1					
	BH22-11 551	18	22	5	25		Soil	C								0									1					
	BH22-11 553		22	5	25		Soil	C								0									1					
	MW22-2 551		22	5	26		Soil					a c					20								2					
	MW22-2 552		22	5	26		Soil	C] []												1					
	MW22-2 553		22	5	26		Soil	C			0	DC													4					
	MW22-2 554		22	5	26		Soil					DE													3					
	DUP 3		- 22	5	26		Soil					DIC					JC								2					
	DUP 4		22	5	26		Soil					30											后	T	3				_	
			-1	1								310	10						古				F		-					
												ale											F							-
				1					0														F	F		H				
				1			-		To										F		╡┟╴		H	F						
	100 C		1.0							DT.		카르							H				금	F	-	-	-	-		
LESS OTHER	RWISE AGREED TO IN WRITING, WORK SU	BMITTED ON THIS CH	AIN OF CUSTO	ODY IS SU	MECT TO	BUREAU V	RITAS STANDAR	D TERMS	AND CO	NDITION	VS. SIG	NING O	F THIS C	HAIN O	FCUST	ODYDO	CUME	NT IS AC	KNOW	EDGME	NTAN	ACCEP	TANCE	OF OL	RTER	MS AN	D CONDITIONS W	HICH ARE	AVAILABLE FO	R VIEWIN
present ntact ng medai pr	esent Yes No	5 5	7	Seal Pre Seal Inti Cooling	AT V LAB USE sent act Media Pr	onte	Yes	ND-COND No		он ву с. с	ALLING	THE LA	BORATO	ORY LIST	S S	oVE TO eal pres eal inta cooling I	sent ct Media F	N A COP	9° 3841.¥			Yes	,	No	-0	c	1 2	3	TEM	PS BY:
Reling	uished by: (Signature/ Print)	YY	MM D	D	нн	MM		Relinq	uished	1 by: (S	Signat	ture/ P	Print)		F	Y	Y	D	MM	T	DD	-	TI HH	me M	м	_	SPECIAL	INSTRU	CTIONS	
	Ryan Zhang	2022	05 2	6	1.4	0.0	-					1																		
	17	1202	05 0	4		1	12		1									1 -	-	-	9				_					EFFLICE

.

Your Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Your C.O.C. #: na

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/06/02 Report #: R7148816 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2D7426 Received: 2022/05/20, 08:02

Sample Matrix: Soil # Samples Received: 16

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	5	N/A	2022/05/31	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron	7	2022/05/28	2022/05/30	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	3	N/A	2022/05/25		EPA 8260C m
1,3-Dichloropropene Sum	1	N/A	2022/05/27		EPA 8260C m
Free (WAD) Cyanide	7	2022/05/30	2022/05/31	CAM SOP-00457	OMOE E3015 m
Conductivity	7	2022/05/30	2022/05/30	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	3	2022/05/28	2022/05/30	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	1	2022/05/28	2022/05/31	CAM SOP-00436	EPA 3060/7199 m
Hexavalent Chromium in Soil by IC (1)	3	2022/05/30	2022/05/31	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (2)	3	2022/05/27	2022/05/30	CAM SOP-00316	CCME CWS m
Acid Extractable Metals by ICPMS	7	2022/05/28	2022/05/31	CAM SOP-00447	EPA 6020B m
Moisture	13	N/A	2022/05/21	CAM SOP-00445	Carter 2nd ed 51.2 m
OC Pesticides (Selected) & PCB (3)	3	2022/05/31	2022/06/01	CAM SOP-00307	SW846 8081, 8082
OC Pesticides Summed Parameters	3	N/A	2022/05/24	CAM SOP-00307	EPA 8081/8082 m
PAH Compounds in Soil by GC/MS (SIM)	5	2022/05/28	2022/05/29	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT	7	2022/05/30	2022/05/30	CAM SOP-00413	EPA 9045 D m
pH CaCl2 EXTRACT	3	2022/05/31	2022/05/31	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	7	N/A	2022/05/31	CAM SOP-00102	EPA 6010C
Volatile Organic Compounds and F1 PHCs	3	N/A	2022/05/24	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Soil	1	N/A	2022/05/26	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or

Page 1 of 30

Your Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Your C.O.C. #: na

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/06/02 Report #: R7148816 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2D7426 Received: 2022/05/20. 08:02

Received: 2022/05/20, 08:02

implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhet extraction.

(3) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager

Email: Ashton.Gibson@bureauveritas.com

Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 30

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID			SRH396			SRH400		SRH401		
Sampling Date			2022/05/18			2022/05/18		2022/05/18		
COC Number		1	na			na		na		
	UNITS	Criteria	BH22-1B SS1	RDL	QC Batch	BH22-3 SS1	QC Batch	BH22-7 SS1	RDL	QC Batch
Calculated Parameters		<u> </u>		<u> </u>					·	
Sodium Adsorption Ratio	N/A	2.4	1.1		8007683	0.63	8007683	0.45		8007683
Inorganics										
Conductivity	mS/cm	0.57	0.32	0.002	8022135	0.20	8022135	0.34	0.002	8022135
Moisture	%	-	18	1.0	8009494					
Available (CaCl2) pH	pН	-	7.46		8022159	7.67	8022159	6.85		8022060
WAD Cyanide (Free)	ug/g	0.051	<0.01	0.01	8021529	<0.01	8021529	<0.01	0.01	8021529
Chromium (VI)	ug/g	0.66	<0.18	0.18	8020836	<0.18	8021993	<0.18	0.18	8021993
Metals		<u> </u>								
Hot Water Ext. Boron (B)	ug/g	-	0.10	0.050	8020761	0.065	8020761	0.062	0.050	8020761
Acid Extractable Antimony (Sb)	ug/g	1.3	0.23	0.20	8020614	<0.20	8020614	0.26	0.20	8020614
Acid Extractable Arsenic (As)	ug/g	18	5.6	1.0	8020614	4.8	8020614	6.5	1.0	8020614
Acid Extractable Barium (Ba)	ug/g	220	83	0.50	8020614	71	8020614	210	0.50	8020614
Acid Extractable Beryllium (Be)	ug/g	2.5	1.1	0.20	8020614	0.79	8020614	1.3	0.20	8020614
Acid Extractable Boron (B)	ug/g	36	6.6	5.0	8020614	8.7	8020614	5.1	5.0	8020614
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.17	0.10	8020614	0.13	8020614	0.21	0.10	8020614
Acid Extractable Chromium (Cr)	ug/g	70	24	1.0	8020614	22	8020614	30	1.0	8020614
Acid Extractable Cobalt (Co)	ug/g	21	15	0.10	8020614	12	8020614	20	0.10	8020614
Acid Extractable Copper (Cu)	ug/g	92	30	0.50	8020614	29	8020614	43	0.50	8020614
Acid Extractable Lead (Pb)	ug/g	120	18	1.0	8020614	12	8020614	18	1.0	8020614
Acid Extractable Molybdenum	(Mo) ug/g	2	0.59	0.50	8020614	<0.50	8020614	0.89	0.50	8020614
Acid Extractable Nickel (Ni)	ug/g	82	30	0.50	8020614	29	8020614	47	0.50	8020614
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	0.50	8020614	<0.50	8020614	<0.50	0.50	8020614
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	0.20	8020614	<0.20	8020614	<0.20	0.20	8020614
Acid Extractable Thallium (Tl)	ug/g	1	0.16	0.050	8020614	0.13	8020614	0.17	0.050	8020614
Acid Extractable Uranium (U)	ug/g	2.5	0.56	0.050	8020614	0.53	8020614	0.61	0.050	8020614
Acid Extractable Vanadium (V)	ug/g	86	33	5.0	8020614	31	8020614	45	5.0	8020614
Acid Extractable Zinc (Zn) ug/g		290	73	5.0	8020614	65	8020614	75	5.0	8020614
No Fill No Ex	ceedance							·		
Grey Excee	eds 1 criteria p	olicy/leve								
Black Excee	Exceeds both criteria/levels									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

 Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID				SRH396			SRH400		SRH401		
Sampling Date				2022/05/18			2022/05/18		2022/05/18		
COC Number				na			na		na		
		UNITS	Criteria	BH22-1B SS1	RDL	QC Batch	BH22-3 SS1	QC Batch	BH22-7 SS1	RDL	QC Batch
Acid Extractable Mercu	tid Extractable Mercury (Hg) ug/g 0.27 <0.050 0.050 8020614 <0.050 8020614 <0.050 0.050 8020614							8020614			
No Fill	No Exceeda	No Exceedance									
Grey	Exceeds 1 criteria policy/level										
Black	Exceeds bot	th criteri	a/levels								
RDL = Reportable Detec	tion Limit										
QC Batch = Quality Con	a = Quality Control Batch										
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)											
Table 1: Full Depth Bac	Table 1: Full Depth Background Site Condition Standards										
Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use											

O.REG 153 METALS & INORGANICS PKG (SOIL)

		SRH402		SRH404		SRH406		
		2022/05/18		2022/05/18		2022/05/18		
		na		na		na		
UNITS	Criteria	BH22-8 SS1	QC Batch	BH22-5 SS1	QC Batch	BH22-6 SS1	RDL	QC Batch
N/A	2.4	0.26 (1)	8007683	0.25	8007683	0.25 (1)		8007683
	-							
mS/cm	0.57	0.14	8022135	0.18	8022135	0.15	0.002	8022135
рН	-	7.74	8022159	7.64	8022159	7.69		8022159
ug/g	0.051	<0.01	8021529	<0.01	8021529	<0.01	0.01	8021529
ug/g	0.66	<0.18	8020836	<0.18	8021993	<0.18	0.18	8020836
ug/g	-	<0.050	8020761	0.073	8020761	0.088	0.050	8020761
ug/g	1.3	<0.20	8020614	<0.20	8020614	<0.20	0.20	8020614
ug/g	18	4.1	8020614	4.9	8020614	4.2	1.0	8020614
ug/g	220	56	8020614	69	8020614	80	0.50	8020614
ug/g	2.5	0.66	8020614	0.65	8020614	0.66	0.20	8020614
ug/g	36	6.8	8020614	8.9	8020614	9.3	5.0	8020614
ug/g	1.2	0.15	8020614	0.11	8020614	0.11	0.10	8020614
ug/g	70	19	8020614	20	8020614	18	1.0	8020614
ug/g	21	12	8020614	12	8020614	12	0.10	8020614
ug/g	92	26	8020614	27	8020614	29	0.50	8020614
ug/g	120	12	8020614	12	8020614	12	1.0	8020614
ug/g	2	<0.50	8020614	0.55	8020614	0.53	0.50	8020614
ug/g	82	28	8020614	27	8020614	26	0.50	8020614
ug/g	1.5	<0.50	8020614	<0.50	8020614	<0.50	0.50	8020614
ug/g	0.5	<0.20	8020614	<0.20	8020614	<0.20	0.20	8020614
ug/g	1	0.15	8020614	0.16	8020614	0.14	0.050	8020614
ug/g	2.5	0.55	8020614	0.61	8020614	0.71	0.050	8020614
ug/g	86	26	8020614	27	8020614	25	5.0	8020614
	UNITS UNITS UNITS UNITS UNITS UNITS UNITS UNITS UNJ UNITS UJ	Image Image UNITS Criteria M/A 2.4 mS/cm 0.57 pH - ug/g 0.051 ug/g 0.66 ug/g 1.3 ug/g 1.3 ug/g 1.3 ug/g 2.0 ug/g 2.5 ug/g 1.2 ug/g 70 ug/g 21 ug/g 21 ug/g 1.2 ug/g 1.5 ug/g 0.5 ug/g 1.5 ug/g 1.5 ug/g 2.5	SRH402 Ima UNITS Criteria BH22-8 SS1 Ima UNITS Criteria BH22-8 SS1 Ima Ima UNITS Criteria BH22-8 SS1 Ima Ima	SRH402 Ima 2022/05/18 Ima na UNITS Criteria BH22-8 SS1 QC Batch N/A 2.4 0.26 (1) 8007683 PH - 7.74 8022135 pH - 7.74 8022159 ug/g 0.051 <0.01	SRH402 SRH404 1 2022/05/18 2022/05/18 Ima Ima Ima Ima Ima Ima Ima BH22-8 SS1 QC Batch BH22-5 SS1 Ima Ima Ima Ima Image Ima Ima Ima Image Ima Ima Ima Image Ima Ima Ima Image Ima Ima Ima Image	SRH402 SRH404 2022/05/18 2022/05/18 Ima na na UNITS Criteria BH22-8 SS1 QC Batch BH22-5 SS1 QC Batch N/A 2.4 0.26 (1) 8007683 0.25 8007683 PH - 7.74 8022135 0.18 8022135 pH - 7.74 8022159 7.64 8021529 ug/g 0.66 <0.18	SRH402 SRH404 SRH406 2022/05/18 2022/05/18 2022/05/18 2022/05/18 NA na na na na UNITS Criteria BH22-8 SS1 QC Batch BH22-5 SS1 QC Batch BH22-5 SS1 QC Batch BH22-6 SS1 N/A 2.4 0.26 (1) 8007683 0.25 8007683 0.25 (1) mS/cm 0.57 0.14 8022135 0.18 8022135 0.15 pH - 7.74 8021529 <0.01	SRH402 SRH404 SRH406 2022/05/18 2022/05/18 2022/05/18 2022/05/18 Ima na na na na UNITS Criteria BH22-8 SS1 QC Batch BH22-5 SS1 QC Batch BH22-6 SS1 RDL N/A 2.4 0.26 (1) 8007683 0.25 8007683 0.25 (1) mS/cm 0.57 0.14 8022135 0.18 8022159 7.69 ug/g 0.051 <0.01

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

(1) Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID				SRH402		SRH404		SRH406		
Sampling Date				2022/05/18		2022/05/18		2022/05/18		
COC Number				na		na		na		
		UNITS	Criteria	BH22-8 SS1	QC Batch	BH22-5 SS1	QC Batch	BH22-6 SS1	RDL	QC Batch
Acid Extractable Zinc (Zn)	ug/g 290 66 8020614 64 8020614 64 5.0 8							8020614	
Acid Extractable Merc	ury (Hg)	y (Hg) ug/g 0.27 <0.050 8020614 <0.050 8020614 <0.050 0.050 8020614							8020614	
No Fill	No Exceedan	No Exceedance								
Grey	Exceeds 1 cri	teria pol	icy/level							
Black	Exceeds both	criteria,	/levels							
RDL = Reportable Dete	ection Limit									
QC Batch = Quality Co	ch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use										

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID	eritas ID SRH410 SRH410							
Sampling Date			2022/05/19			2022/05/19		
COC Number			na			na		
	UNITS	Criteria	BH22-4 SS1	RDL	QC Batch	BH22-4 SS1 Lab-Dup	RDL	QC Batch
Calculated Parameters								
Sodium Adsorption Ratio	N/A	2.4	1.2		8007683			
Inorganics								
Conductivity	mS/cm	0.57	0.17	0.002	8022135			
Available (CaCl2) pH	рН	-	7.77		8022060			
WAD Cyanide (Free)	ug/g	0.051	<0.01	0.01	8021529			
Chromium (VI)	ug/g	0.66	<0.18	0.18	8020836			
Metals								
Hot Water Ext. Boron (B)	ug/g	-	0.058	0.050	8020761	0.053	0.050	8020761
Acid Extractable Antimony (Sb)	ug/g	1.3	0.24	0.20	8020614			
Acid Extractable Arsenic (As)	ug/g	18	4.7	1.0	8020614			
Acid Extractable Barium (Ba)	ug/g	220	54	0.50	8020614			
Acid Extractable Beryllium (Be)	ug/g	2.5	0.64	0.20	8020614			
Acid Extractable Boron (B)	ug/g	36	7.6	5.0	8020614			
Acid Extractable Cadmium (Cd)	ug/g	1.2	0.12	0.10	8020614			
Acid Extractable Chromium (Cr)	ug/g	70	18	1.0	8020614			
Acid Extractable Cobalt (Co)	ug/g	21	13	0.10	8020614			
Acid Extractable Copper (Cu)	ug/g	92	29	0.50	8020614			
Acid Extractable Lead (Pb)	ug/g	120	13	1.0	8020614			
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	0.50	8020614			
Acid Extractable Nickel (Ni)	ug/g	82	28	0.50	8020614			
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	0.50	8020614			L
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	0.20	8020614			
Acid Extractable Thallium (Tl)	ug/g	1	0.14	0.050	8020614			
Acid Extractable Uranium (U)	ug/g	2.5	0.56	0.050	8020614			
Acid Extractable Vanadium (V)	ug/g	86	25	5.0	8020614			ļ
Acid Extractable Zinc (Zn)	ug/g	290	63	5.0	8020614			
No Fill No Exceedance								
Grey Exceeds 1 criter	Exceeds 1 criteria policy/level							
Black Exceeds both cr	ck Exceeds both criteria/levels							
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Duplic	ate							
Criteria: Ontario Reg. 153/04 (Amend Table 1: Full Depth Background Site (ed April : Condition	15, 2011) Standar	ds					
Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use								

Page 7 of 30

O.REG 153 METALS & INORGANICS PKG (SOIL)

Bureau Veritas ID				SRH410			SRH410		
Sampling Date				2022/05/19			2022/05/19		
COC Number				na			na		
		UNITS	Criteria	BH22-4 SS1	RDL	QC Batch	BH22-4 SS1 Lab-Dup	RDL	QC Batch
Acid Extractable Me	ercury (Hg)	ug/g	0.27	<0.050	0.050	8020614			
No Fill	No Exceedance								
Grey	Exceeds 1 criter	ia policy,	/level						
Black	Exceeds both cr	iteria/lev	/els						
RDL = Reportable D	etection Limit								
QC Batch = Quality	Control Batch								
Lab-Dup = Laboratory Initiated Duplicate									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use									

O.REG 153 OC PESTICIDES (SOIL)

Sampling Date 2022/05/18 2022/05/18 2022/05/18 2022/05/18 2022/05/18 COC Number na na na na na na Moisture % - 18 2022/05/18 BH22-8 SS1 RDL QC Batch Moisture % - 18 20 17 1.0 8009494 Calculated Parameters - - 18 20 - 0.0020 0.0020 0.0020 8008291 o,p-DDE + p,p-DDD ug/g - <-0.0020 <-0.0020 <-0.0020 0.0020 0.0020 8008291 total Endosulfan ug/g - <-0.0020 <-0.0020 <-0.0020 <-0.0020 <-0.0020 <-0.0020 8008291 Total PCB ug/g 0.3 <-0.015 <-0.015 <-0.015 <-0.015 8008291 Pesticides & Herbicides - - <- <- <- <- 8008291 <- - <- - - - </th <th colspan="7">Bureau Veritas ID SRH400 SRH401 SRH402</th> <th></th>	Bureau Veritas ID SRH400 SRH401 SRH402								
COC Number na RDL QC Batch Inorganics #BH22-3 SS1 BH22-7 SS1 BH22-7 SS1 BH22-8 SS1 RDL QC Batch Moisture % - 18 20 17 1.0 8009494 Calculated Parameters 0.0 0.0020 <0.0020	Sampling Date				2022/05/18	2022/05/18	2022/05/18		
UNITS Criteria BH22-3 SS1 BH22-7 SS1 BH22-8 SS1 RDL QC Batch Inorganics Moisture % - 18 20 17 1.0 8009494 Calculated Parameters Chiordane (Total) ug/g 0.05 <0.0020	COC Number				na	na	na		
Inorganics Image in the image			UNITS	Criteria	BH22-3 SS1	BH22-7 SS1	BH22-8 SS1	RDL	QC Batch
Moisture % - 18 20 17 1.0 8009494 Calculated Parameters Chlordane (Total) ug/g 0.05 <0.0020	Inorganics							<u> </u>	
Calculated Parameters ug/g 0.05 <0.0020 <0.0020 <0.0020 0.0020	Moisture		%	-	18	20	17	1.0	8009494
Chlordane (Total) ug/g 0.05 <0.0020	Calculated Parame	ters							
o,p-DDD + p,p-DDD ug/g - <0.0020	Chlordane (Total)		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8008291
o,p-DDE ug/g - <0.0020	o,p-DDD + p,p-DDD)	ug/g	-	<0.0020	<0.0020	<0.0020	0.0020	8008291
o,p-DDT + p,p-DDT ug/g - <0.0020	o,p-DDE + p,p-DDE		ug/g	-	<0.0020	<0.0020	<0.0020	0.0020	8008291
Total Endosulfan ug/g - <0.0020 <0.0020 <0.0020 8008291 Total PCB ug/g 0.3 <0.015	o,p-DDT + p,p-DDT		ug/g	-	<0.0020	<0.0020	<0.0020	0.0020	8008291
Total PCB ug/g 0.3 <0.015 <0.015 <0.015 0.015 8008291 Pesticides Aldrin ug/g 0.05 <0.0020	Total Endosulfan		ug/g	-	<0.0020	<0.0020	<0.0020	0.0020	8008291
Pesticides Aldrin ug/g 0.05 <0.0020 <0.0020 <0.0020 0.0020 8025555 a-Chlordane ug/g 0.05 <0.0020	Total PCB		ug/g	0.3	<0.015	<0.015	<0.015	0.015	8008291
Aldrin ug/g 0.05 <0.0020	Pesticides & Herbi	cides						<u>.</u>	
a-Chlordane ug/g 0.05 <0.0020	Aldrin ug/g 0.05 <0.0020 <0.0020 0.0020 80255							8025555	
g-Chlordane ug/g 0.05 <0.0020 <0.0020 <0.0020 0.0020 8025555 o,p-DDD ug/g 0.05 <0.0020	a-Chlordane		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
o,p-DDD ug/g 0.05 <0.0020	g-Chlordane		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
p.p-DDD ug/g 0.05 <0.0020 <0.0020 <0.0020 8025555 o,p-DDE ug/g 0.05 <0.0020	o,p-DDD		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
o,p-DDE ug/g 0.05 <0.0020 <0.0020 <0.0020 8025555 p,p-DDE ug/g 0.05 <0.0020	p,p-DDD		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
p.p-DDE ug/g 0.05 <0.0020	o,p-DDE		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
o,p-DDT ug/g 1.4 <0.0020	p,p-DDE		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
p.p-DDT ug/g 1.4 <0.0020 <0.0020 0.0020 8025555 Dieldrin ug/g 0.05 <0.0020	o,p-DDT		ug/g	1.4	<0.0020	<0.0020	<0.0020	0.0020	8025555
Dieldrin ug/g 0.05 <0.0020 <0.0020 <0.0020 0.0020 8025555 Lindane ug/g 0.01 <0.0020	p,p-DDT		ug/g	1.4	<0.0020	<0.0020	<0.0020	0.0020	8025555
Lindane ug/g 0.01 <0.0020 <0.0020 <0.0020 0.0020 8025555 Endosulfan I (alpha) ug/g 0.04 <0.0020	Dieldrin		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
Endosulfan I (alpha) ug/g 0.04 <0.0020	Lindane		ug/g	0.01	<0.0020	<0.0020	<0.0020	0.0020	8025555
Endosulfan II (beta) ug/g 0.04 <0.0020	Endosulfan I (alpha)	ug/g	0.04	<0.0020	<0.0020	<0.0020	0.0020	8025555
Endrin ug/g 0.04 <0.0020 <0.0020 <0.0020 0.0020 8025555 Heptachlor ug/g 0.05 <0.0020	Endosulfan II (beta)	ug/g	0.04	<0.0020	<0.0020	<0.0020	0.0020	8025555
Heptachlor ug/g 0.05 <0.0020 <0.0020 <0.0020 0.0020 8025555 Heptachlor epoxide ug/g 0.05 <0.0020	Endrin		ug/g	0.04	<0.0020	<0.0020	<0.0020	0.0020	8025555
Heptachlor epoxide ug/g 0.05 <0.0020 <0.0020 <0.0020 0.0020 8025555 Hexachlorobenzene ug/g 0.01 <0.0020	Heptachlor		ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
Hexachlorobenzene ug/g 0.01 <0.0020 <0.0020 <0.0020 0.0020 8025555 Hexachlorobutadiene ug/g 0.01 <0.0020	Heptachlor epoxide	9	ug/g	0.05	<0.0020	<0.0020	<0.0020	0.0020	8025555
Hexachlorobutadiene ug/g 0.01 <0.0020 <0.0020 <0.0020 0.0020 8025555 Hexachloroethane ug/g 0.01 <0.0020	Hexachlorobenzen	e	ug/g	0.01	<0.0020	<0.0020	<0.0020	0.0020	8025555
Hexachloroethane ug/g 0.01 <0.0020 <0.0020 <0.0020 0.0020 8025555 Methoxychlor ug/g 0.05 <0.0050	Hexachlorobutadie	ne	ug/g	0.01	<0.0020	<0.0020	<0.0020	0.0020	8025555
Methoxychlor ug/g 0.05 <0.0050 <0.0050 0.0050 8025555 No Fill No Exceedance Exceeds 1 criteria policy/level Image: Comparison of the policy set of the polic	Hexachloroethane		ug/g	0.01	<0.0020	<0.0020	<0.0020	0.0020	8025555
No Fill No Exceedance Grey Exceeds 1 criteria policy/level Plack Exceeds both criteria/levels	Methoxychlor	Methoxychlor ug/g 0.05 <0.0050 <0.0050 0.0050 8025555							
Grey Exceeds 1 criteria policy/level	No Fill	No Exceed	ance						
Plack Exceeds both criteria /levels	Grey	Grey Exceeds 1 criteria policy/level							
Didek Exceeds both cintena/ievels	Black	Exceeds bo	oth crite	ria/levels	;				
RDL = Reportable Detection Limit	RDL = Reportable D	etection Lin	nit						
QC Batch = Quality Control Batch	QC Batch = Quality	Control Bate	ch						
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)	Criteria: Ontario Re	eg. 153/04 (A	mende	d April 15	5, 2011)				
Table 1: Full Depth Background Site Condition Standards	I able 1: Full Depth								

Page 9 of 30

O.REG 153 OC PESTICIDES (SOIL)

Bureau Veritas ID				SRH400	SRH401	SRH402			
Sampling Date				2022/05/18	2022/05/18	2022/05/18			
COC Number				na	na	na			
		UNITS	Criteria	BH22-3 SS1	BH22-7 SS1	BH22-8 SS1	RDL	QC Batch	
Aroclor 1242		ug/g	-	<0.015	<0.015	<0.015	0.015	8025555	
Aroclor 1248		ug/g - <0.015 <0.015 <0.015 0.015 80255							
Aroclor 1254		ug/g - <0.015 <0.015 <0.015 0.015 8025555							
Aroclor 1260		ug/g - <0.015 <0.015 <0.015 0.015 8025555							
Surrogate Recovery (%)									
2,4,5,6-Tetrachlor	o-m-xylene	%	-	73	79	68		8025555	
Decachlorobiphen	yl	%	-	88	91	88		8025555	
No Fill	No Exceed	ance							
Grey	Exceeds 1	criteria	policy/lev	/el					
Black	Exceeds bo	oth crite	ria/levels	5					
RDL = Reportable I	Detection Lin	nit							
QC Batch = Quality Control Batch									
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use									

O.REG 153 PAHS (SOIL)

Bureau Veritas ID			SRH397	SRH404	SRH406	SRH408	SRH410		
Sampling Date		[2022/05/18	2022/05/18	2022/05/18	2022/05/18	2022/05/19		
COC Number		[]	na	na	na	na	na		
	UNITS	Criteria	BH22-1B SS2	BH22-5 SS1	BH22-6 SS1	DUP 1	BH22-4 SS1	RDL	QC Batch
Inorganics									
Moisture	%	- '	12	14	15	12	13	1.0	8009494
Calculated Parameters	I		·I	<u> </u>		<u> </u>			
Methylnaphthalene, 2-((1-) ug/g	0.59	< 0.0071	<0.0071	<0.0071	<0.0071	<0.0071	0.0071	8007675
Polyaromatic Hydrocar	bons							·	
Acenaphthene	ug/g	0.072	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Acenaphthylene	ug/g	0.093	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Anthracene	ug/g	0.16	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Benzo(a)anthracene	ug/g	0.36	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Benzo(a)pyrene	ug/g	0.3	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Benzo(b/j)fluoranthene	ug/g	0.47	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Benzo(g,h,i)perylene	ug/g	0.68	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Benzo(k)fluoranthene	ug/g	0.48	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Chrysene ug/g 2.8 <0.0050 <0.0050 <0.0050 <0.0050 0.0050 0.0050 80					8020489				
Dibenzo(a,h)anthracene ug/g 0.1 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 0.0050 80					8020489				
Fluoranthene	ug/g	0.56	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Fluorene	ug/g	0.12	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Indeno(1,2,3-cd)pyrene	ug/g	0.23	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
1-Methylnaphthalene	ug/g	0.59	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
2-Methylnaphthalene	ug/g	0.59	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Naphthalene	ug/g	0.09	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Phenanthrene	ug/g	0.69	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Pyrene	ug/g	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	8020489
Surrogate Recovery (%))								
D10-Anthracene	%		110	109	109	111	110		8020489
D14-Terphenyl (FS)	%		95	93	94	99	97		8020489
D8-Acenaphthylene	%	-	64	63	67	72	70		8020489
No Fill	No Exceeda	nce							
Grey	Grey Exceeds 1 criteria policy/level								
Black Exceeds both criteria/levels									
RDL = Reportable Detec	tion Limit								
QC Batch = Quality Cont	trol Batch								
Criteria: Ontario Reg. 15	53/04 (Amend	ed April :	15, 2011)						
Table 1: Full Depth Background Site Condition Standards									
Soli - Residential/Parkia	oil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use								

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID			SRH398	SRH405	SRH407		
Sampling Date			2022/05/18	2022/05/18	2022/05/18		
COC Number			na	na	na		
	UNITS	Criteria	BH22-1B SS3	BH22-5 SS2	BH22-6 SS2	RDL	QC Batch
Inorganics							
Moisture	%	-	10	14	14	1.0	8009494
Calculated Parameters			•			•	
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	<0.050	<0.050	0.050	8008334
Volatile Organics							
Acetone (2-Propanone)	ug/g	0.5	<0.49	<0.49	<0.49	0.49	8009871
Benzene	ug/g	0.02	<0.0060	<0.0060	<0.0060	0.0060	8009871
Bromodichloromethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Bromoform	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Bromomethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Carbon Tetrachloride	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Chlorobenzene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Chloroform	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Dibromochloromethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
1,2-Dichlorobenzene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
1,3-Dichlorobenzene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
1,4-Dichlorobenzene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Dichlorodifluoromethane (FREON 12)	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
1,1-Dichloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
1,2-Dichloroethane	ug/g	0.05	<0.049	<0.049	<0.049	0.049	8009871
1,1-Dichloroethylene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
cis-1,2-Dichloroethylene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
trans-1,2-Dichloroethylene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
1,2-Dichloropropane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	<0.030	<0.030	0.030	8009871
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Ethylbenzene	ug/g	0.05	<0.010	<0.010	<0.010	0.010	8009871
Ethylene Dibromide	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Hexane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871
Methylene Chloride(Dichloromethane)	ug/g	0.05	<0.049	<0.049	<0.049	0.049	8009871

NO FIII
Grey
Black

No Exceedance Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

 Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Page 12 of 30

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Bureau Veritas ID	SRH398 SRH405 SRH407								
Sampling Date			2022/05/18	2022/05/18	2022/05/18				
COC Number			na	na	na				
	UNITS	Criteria	BH22-1B SS3	BH22-5 SS2	BH22-6 SS2	RDL	QC Batch		
Methyl Ethyl Ketone (2-Butanone)	ug/g	0.5	<0.40	<0.40	<0.40	0.40	8009871		
Methyl Isobutyl Ketone	ug/g	0.5	<0.40	<0.40	<0.40	0.40	8009871		
Methyl t-butyl ether (MTBE)	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
Styrene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
1,1,1,2-Tetrachloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
1,1,2,2-Tetrachloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
Tetrachloroethylene	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
Toluene	ug/g	0.2	<0.020	<0.020	<0.020	0.020	8009871		
1,1,1-Trichloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
1,1,2-Trichloroethane	ug/g	0.05	<0.040	<0.040	<0.040	0.040	8009871		
Trichloroethylene	ug/g	0.05	<0.010	<0.010	<0.010	0.010	8009871		
Trichlorofluoromethane (FREON 11)	ug/g	0.25	<0.040	<0.040	<0.040	0.040	8009871		
Vinyl Chloride	ug/g	0.02	<0.019	<0.019	<0.019	0.019	8009871		
p+m-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	8009871		
o-Xylene	ug/g	-	<0.020	<0.020	<0.020	0.020	8009871		
Total Xylenes	ug/g	0.05	<0.020	<0.020	<0.020	0.020	8009871		
F1 (C6-C10)	ug/g	25	<10	<10	<10	10	8009871		
F1 (C6-C10) - BTEX	ug/g	25	<10	<10	<10	10	8009871		
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	10	<10	<10 <10		10	8021954		
F3 (C16-C34 Hydrocarbons)	ug/g	240	<50	<50	<50	50	8021954		
F4 (C34-C50 Hydrocarbons)	ug/g	120	<50	<50	<50	50	8021954		
Reached Baseline at C50	ug/g	-	Yes	Yes	Yes		8021954		
Surrogate Recovery (%)									
o-Terphenyl	%	-	93	90	93		8021954		
4-Bromofluorobenzene	%	-	97	95	97		8009871		
D10-o-Xylene	%	-	88	90	90		8009871		
D4-1,2-Dichloroethane	%	-	109	107	108		8009871		
D8-Toluene	%	-	93	93	92		8009871		
No Fill No Exceedance									
Grey Exceeds 1 criteria	policy/le	evel							
Black Exceeds both crite	ria/leve	ls							
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

 Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Page 13 of 30

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas ID			SRH409			
Sampling Date			2022/05/18			
COC Number			na			
	UNITS	Criteria	DUP 2	RDL	QC Batch	
Inorganics	-					
Moisture	%	-	15	1.0	8009266	
Calculated Parameters		•		•		
1,3-Dichloropropene (cis+trans)	ug/g	0.05	<0.050	0.050	8008334	
Volatile Organics						
Acetone (2-Propanone)	ug/g	0.5	<0.49	0.49	8013893	
Benzene	ug/g	0.02	<0.0060	0.0060	8013893	
Bromodichloromethane	ug/g	0.05	<0.040	0.040	8013893	
Bromoform	ug/g	0.05	<0.040	0.040	8013893	
Bromomethane	ug/g	0.05	<0.040	0.040	8013893	
Carbon Tetrachloride	ug/g	0.05	<0.040	0.040	8013893	
Chlorobenzene	ug/g	0.05	<0.040	0.040	8013893	
Chloroform	ug/g	0.05	<0.040	0.040	8013893	
Dibromochloromethane		0.05	<0.040	0.040	8013893	
1,2-Dichlorobenzene		0.05	<0.040	0.040	8013893	
1,3-Dichlorobenzene		0.05	<0.040	0.040	8013893	
1,4-Dichlorobenzene		0.05	<0.040	0.040	8013893	
Dichlorodifluoromethane (FREON 12)		0.05	<0.040	0.040	8013893	
1,1-Dichloroethane	ug/g	0.05	<0.040	0.040	8013893	
1,2-Dichloroethane	ug/g	0.05	<0.049	0.049	8013893	
1,1-Dichloroethylene	ug/g	0.05	<0.040	0.040	8013893	
cis-1,2-Dichloroethylene	ug/g	0.05	<0.040	0.040	8013893	
trans-1,2-Dichloroethylene	ug/g	0.05	<0.040	0.040	8013893	
1,2-Dichloropropane	ug/g	0.05	<0.040	0.040	8013893	
cis-1,3-Dichloropropene	ug/g	0.05	<0.030	0.030	8013893	
trans-1,3-Dichloropropene	ug/g	0.05	<0.040	0.040	8013893	
Ethylbenzene	ug/g	0.05	<0.010	0.010	8013893	
Ethylene Dibromide	ug/g	0.05	<0.040	0.040	8013893	
Hexane	ug/g	0.05	<0.040	0.040	8013893	
No Fill No Exceedance						
Grey Exceeds 1 criteria polic	Grey Exceeds 1 criteria policy/level					
Black Exceeds both criteria/le	evels					
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
Criteria: Ontario Reg. 153/04 (Amended	April 15	, 2011)				
Table 1: Full Depth Background Site Con	dition St	tandards				

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Page 14 of 30

O.REG 153 VOCS BY HS (SOIL)

Bureau Veritas	ID			SRH409			
Sampling Date				2022/05/18			
COC Number				na			
		UNITS	Criteria	DUP 2	RDL	QC Batch	
Methylene Chl	oride(Dichloromethane)	ug/g	0.05	<0.049	0.049	8013893	
Methyl Ethyl Ke	etone (2-Butanone)	ug/g	0.5	<0.40	0.40	8013893	
Methyl Isobuty	l Ketone	ug/g	0.5	<0.40	0.40	8013893	
Methyl t-butyl	ether (MTBE)	ug/g	0.05	<0.040	0.040	8013893	
Styrene		ug/g	0.05	<0.040	0.040	8013893	
1,1,1,2-Tetrach	loroethane	ug/g	0.05	<0.040	0.040	8013893	
1,1,2,2-Tetrach	loroethane	ug/g	0.05	<0.040	0.040	8013893	
Tetrachloroeth	ylene	ug/g	0.05	<0.040	0.040	8013893	
Toluene		ug/g	0.2	<0.020	0.020	8013893	
1,1,1-Trichloro	ethane	ug/g	0.05	<0.040	0.040	8013893	
1,1,2-Trichloro	ethane	ug/g	0.05	<0.040	0.040	8013893	
Trichloroethylene		ug/g	0.05	<0.010	0.010	8013893	
Trichlorofluoromethane (FREON 11)		ug/g	0.25	<0.040	0.040	8013893	
Vinyl Chloride		ug/g	0.02	<0.019	0.019	8013893	
p+m-Xylene		ug/g	-	<0.020	0.020	8013893	
o-Xylene		ug/g	-	<0.020	0.020	8013893	
Total Xylenes		ug/g	0.05	<0.020	0.020	8013893	
Surrogate Reco	overy (%)			-			
4-Bromofluoro	benzene	%	-	95		8013893	
D10-o-Xylene		%	-	112		8013893	
D4-1,2-Dichlor	pethane	%	-	100		8013893	
D8-Toluene		%	-	94		8013893	
No Fill	No Exceedance						
Grey	Exceeds 1 criteria policy	/level					
Black	Exceeds both criteria/le	evels					
RDL = Reportat	ole Detection Limit						
QC Batch = Quality Control Batch							
Criteria: Ontari	o Reg. 153/04 (Amended	April 15	, 2011)				
Table 1: Full De	epth Background Site Con	dition St	andards				
Soil - Residentia	Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use						

RESULTS OF ANALYSES OF SOIL

Bureau Veritas ID		SRH403	SRH412	SRH412	SRH413				
Sampling Date		2022/05/18	2022/05/19	2022/05/19	2022/05/19				
COC Number		na	na	na	na				
	UNITS	BH22-12 SS4	BH22-10 SS2	BH22-10 SS2 Lab-Dup	BH22-10 SS4	QC Batch			
Inorganics									
Available (CaCl2) pH	рН	7.87	7.88	7.87	7.83	8023757			
QC Batch = Quality Control Ba	atch								

TEST SUMMARY

Bureau Veritas ID:	SRH396
Sample ID:	BH22-1B SS1
Matrix:	Soil

Sample ID: BH22-1B SS1 Matrix: Soil					Shipped: Received: 2022/05/20
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	8020761	2022/05/28	2022/05/30	Jolly John
Free (WAD) Cyanide	TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh
Conductivity	AT	8022135	2022/05/30	2022/05/30	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8020836	2022/05/28	2022/05/30	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teclu
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	8022159	2022/05/30	2022/05/30	Taslima Aktar
Sodium Adsorption Ratio (SAR)	CALC/MET	8007683	N/A	2022/05/31	Automated Statchk

Bureau Veritas ID: SRH397 Sample ID: BH22-1B SS2 . Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8007675	N/A	2022/05/31	Automated Statchk
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8020489	2022/05/28	2022/05/29	Jonghan Yoon

Bureau Veritas ID: SRH398 Sample ID: BH22-1B SS3 Matrix: Soil

2022/05/18
2022/05/20

Collected: 2022/05/18

Received: 2022/05/20

Shipped:

Collected: 2022/05/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	8008334	N/A	2022/05/25	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8021954	2022/05/27	2022/05/30	Ksenia Trofimova
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8009871	N/A	2022/05/24	Denis Reid

Bureau Veritas ID: SRH400 Sample ID: BH22-3 SS1 Matrix: Soil

Collected: 2022/05/18 Shipped: **Received:** 2022/05/20

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	8020761	2022/05/28	2022/05/30	Jolly John
Free (WAD) Cyanide	TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh
Conductivity	AT	8022135	2022/05/30	2022/05/30	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8021993	2022/05/30	2022/05/31	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teclu
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
OC Pesticides (Selected) & PCB	GC/ECD	8025555	2022/05/31	2022/06/01	Li Peng
OC Pesticides Summed Parameters	CALC	8008291	N/A	2022/05/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8022159	2022/05/30	2022/05/30	Taslima Aktar
Sodium Adsorption Ratio (SAR)	CALC/MET	8007683	N/A	2022/05/31	Automated Statchk

Page 17 of 30

TEST SUMMARY

Bureau Veritas ID:	SRH401
Sample ID:	BH22-7 SS1
Matrix:	Soil

Sample ID: BH22-7 SS1 Matrix: Soil				F	Shipped: Received: 2022/05/20
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	8020761	2022/05/28	2022/05/30	Jolly John
Free (WAD) Cyanide	TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh
Conductivity	AT	8022135	2022/05/30	2022/05/30	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8021993	2022/05/30	2022/05/31	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teclu
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
OC Pesticides (Selected) & PCB	GC/ECD	8025555	2022/05/31	2022/06/01	Li Peng
OC Pesticides Summed Parameters	CALC	8008291	N/A	2022/05/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8022060	2022/05/30	2022/05/30	Taslima Aktar
Sodium Adsorption Ratio (SAR)	CALC/MET	8007683	N/A	2022/05/31	Automated Statchk

Bureau Veritas ID:	SRH402
Sample ID:	BH22-8 SS1
Matrix:	Soil

Collected: 2022/05/18 Shipped: Received: 2022/05/20

Collected: 2022/05/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	8020761	2022/05/28	2022/05/30	Jolly John
Free (WAD) Cyanide	TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh
Conductivity	AT	8022135	2022/05/30	2022/05/30	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8020836	2022/05/28	2022/05/30	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teclu
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
OC Pesticides (Selected) & PCB	GC/ECD	8025555	2022/05/31	2022/06/01	Li Peng
OC Pesticides Summed Parameters	CALC	8008291	N/A	2022/05/24	Automated Statchk
pH CaCl2 EXTRACT	AT	8022159	2022/05/30	2022/05/30	Taslima Aktar
Sodium Adsorption Ratio (SAR)	CALC/MET	8007683	N/A	2022/05/31	Automated Statchk

Bureau Veritas ID: Sample ID: Matrix:	SRH403 BH22-12 SS4 Soil					Collected: Shipped: Received:	2022/05/18 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8023757	2022/05/31	2022/05/31	Taslima Ak	tar
Bureau Veritas ID: Sample ID: Matrix:	SRH404 BH22-5 SS1 Soil					Collected: Shipped: Received:	2022/05/18 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

· • • • • • • • • • • • • • • • • • • •					
Methylnaphthalene Sum	CALC	8007675	N/A	2022/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	8020761	2022/05/28	2022/05/30	Jolly John
Free (WAD) Cyanide	TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh
Conductivity	AT	8022135	2022/05/30	2022/05/30	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8021993	2022/05/30	2022/05/31	Violeta Porcila

Page 18 of 30

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

Collected:

Shipped:

Collected:

Shipped:

Received:

Shipped:

Received:

Collected: 2022/05/18

2022/05/18

2022/05/18

2022/05/20

2022/05/20

TEST SUMMARY

Bureau Veritas ID:	SRH404
Sample ID:	BH22-5 SS1
Matrix:	Soil

Matrix: Soil					Received: 2022/05/20	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals by ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teclu	
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel	
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8020489	2022/05/28	2022/05/29	Jonghan Yoon	
pH CaCl2 EXTRACT	AT	8022159	2022/05/30	2022/05/30	Taslima Aktar	
Sodium Adsorption Ratio (SAR)	CALC/MET	8007683	N/A	2022/05/31	Automated Statchk	

Bureau Veritas ID: SRH405 Sample ID: BH22-5 SS2 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	8008334	N/A	2022/05/25	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8021954	2022/05/27	2022/05/30	Ksenia Trofimova
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8009871	N/A	2022/05/24	Denis Reid

Bureau Veritas ID:	SRH406
Sample ID:	BH22-6 SS1
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	8007675	N/A	2022/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	8020761	2022/05/28	2022/05/30	Jolly John
Free (WAD) Cyanide	TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh
Conductivity	AT	8022135	2022/05/30	2022/05/30	Kien Tran
Hexavalent Chromium in Soil by IC	IC/SPEC	8020836	2022/05/28	2022/05/30	Violeta Porcila
Acid Extractable Metals by ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teclu
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	8020489	2022/05/28	2022/05/29	Jonghan Yoon
pH CaCl2 EXTRACT	AT	8022159	2022/05/30	2022/05/30	Taslima Aktar
Sodium Adsorption Ratio (SAR)	CALC/MET	8007683	N/A	2022/05/31	Automated Statchk

Bureau Veritas ID:SRH407Sample ID:BH22-6 SS2Matrix:Soil

Collected: 2022/05/18 Shipped: Received: 2022/05/20

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	8008334	N/A	2022/05/25	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	8021954	2022/05/27	2022/05/30	Ksenia Trofimova
Moisture	BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel
Volatile Organic Compounds and F1 PHCs	GC/MSFD	8009871	N/A	2022/05/24	Denis Reid

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	SRH408 DUP 1 Soil					Collected: Shipped: Beceived:	2022/05/18
Wati ix.	5011					Receiveu.	2022/03/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8007675	N/A	2022/05/31	Automate	d Statchk
Moisture		BAL	8009494	N/A	2022/05/21	Kruti Jitesl	n Patel
PAH Compounds in Soil by	y GC/MS (SIM)	GC/MS	8020489	2022/05/28	2022/05/29	Jonghan Y	oon
Bureau Veritas ID: Sample ID: Matrix:	SRH409 DUP 2 Soil					Collected: Shipped: Received:	2022/05/18 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	8008334	N/A	2022/05/27	Automate	d Statchk
Moisture		BAL	8009266	N/A	2022/05/21	Kruti Jitesl	n Patel
Volatile Organic Compour	nds in Soil	GC/MS	8013893	N/A	2022/05/26	Juan Pang	ilinan
Bureau Veritas ID: Sample ID: Matrix:	SRH410 BH22-4 SS1 Soil					Collected: Shipped: Received:	2022/05/19 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8007675	N/A	2022/05/31	Automate	d Statchk
Hot Water Extractable Bo	ron	ICP	8020761	2022/05/28	2022/05/30	Jolly John	
Free (WAD) Cyanide		TECH	8021529	2022/05/30	2022/05/31	Nimarta Singh	
Conductivity		AT	8022135	2022/05/30	2022/05/30	Kien Tran	
Hexavalent Chromium in	Soil by IC	IC/SPEC	8020836	2022/05/28	2022/05/31	Violeta Po	rcila
Acid Extractable Metals b	y ICPMS	ICP/MS	8020614	2022/05/28	2022/05/31	Daniel Teo	lu
Moisture		BAL	8009494	N/A	2022/05/21	Kruti Jitesh Patel	
PAH Compounds in Soil by	y GC/MS (SIM)	GC/MS	8020489	2022/05/28	2022/05/29	Jonghan Y	oon
pH CaCl2 EXTRACT		AT	8022060	2022/05/30	2022/05/30	Taslima Aktar	
Sodium Adsorption Ratio	(SAR)	CALC/MET	8007683	N/A	2022/05/31	Automate	d Statchk
Bureau Veritas ID: Sample ID: Matrix:	SRH410 Dup BH22-4 SS1 Soil					Collected: Shipped: Received:	2022/05/19 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Bo	ron	ICP	8020761	2022/05/28	2022/05/30	Jolly John	
Bureau Veritas ID: Sample ID: Matrix:	SRH412 BH22-10 SS2 Soil					Collected: Shipped: Received:	2022/05/19 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8023757	2022/05/31	2022/05/31	Taslima Al	tar

Page 20 of 30 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Microbiology testing is conducted at 6660 Campobello Rd. Chemistry testing is conducted at 6740 Campobello Rd.

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	SRH412 Dup BH22-10 SS2 Soil					Collected: Shipped: Received:	2022/05/19 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8023757	2022/05/31	2022/05/31	Taslima Al	star
Bureau Veritas ID: Sample ID: Matrix:	SRH413 BH22-10 SS4 Soil					Collected: Shipped: Received:	2022/05/19 2022/05/20
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8023757	2022/05/31	2022/05/31	Taslima Al	ktar

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Sampler Initials: RZ

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8009871	4-Bromofluorobenzene	2022/05/24	103	60 - 140	102	60 - 140	100	%		
8009871	D10-o-Xylene	2022/05/24	94	60 - 130	93	60 - 130	90	%		
8009871	D4-1,2-Dichloroethane	2022/05/24	107	60 - 140	104	60 - 140	105	%		
8009871	D8-Toluene	2022/05/24	100	60 - 140	102	60 - 140	94	%		
8013893	4-Bromofluorobenzene	2022/05/26	102	60 - 140	105	60 - 140	97	%		
8013893	D10-o-Xylene	2022/05/26	103	60 - 130	105	60 - 130	96	%		
8013893	D4-1,2-Dichloroethane	2022/05/26	93	60 - 140	99	60 - 140	100	%		
8013893	D8-Toluene	2022/05/26	105	60 - 140	103	60 - 140	93	%		
8020489	D10-Anthracene	2022/05/29	101	50 - 130	110	50 - 130	113	%		
8020489	D14-Terphenyl (FS)	2022/05/29	93	50 - 130	100	50 - 130	93	%		
8020489	D8-Acenaphthylene	2022/05/29	86	50 - 130	92	50 - 130	72	%		
8021954	o-Terphenyl	2022/05/30	99	60 - 130	90	60 - 130	95	%		
8025555	2,4,5,6-Tetrachloro-m-xylene	2022/06/01	83	50 - 130	74	50 - 130	78	%		
8025555	Decachlorobiphenyl	2022/06/01	82	50 - 130	98	50 - 130	89	%		
8009266	Moisture	2022/05/21							7.3	20
8009494	Moisture	2022/05/21							0.81	20
8009871	1,1,1,2-Tetrachloroethane	2022/05/24	104	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8009871	1,1,1-Trichloroethane	2022/05/24	109	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
8009871	1,1,2,2-Tetrachloroethane	2022/05/24	97	60 - 140	95	60 - 130	<0.040	ug/g	NC	50
8009871	1,1,2-Trichloroethane	2022/05/24	105	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8009871	1,1-Dichloroethane	2022/05/24	100	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8009871	1,1-Dichloroethylene	2022/05/24	104	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8009871	1,2-Dichlorobenzene	2022/05/24	97	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8009871	1,2-Dichloroethane	2022/05/24	103	60 - 140	99	60 - 130	<0.049	ug/g	NC	50
8009871	1,2-Dichloropropane	2022/05/24	101	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8009871	1,3-Dichlorobenzene	2022/05/24	99	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
8009871	1,4-Dichlorobenzene	2022/05/24	116	60 - 140	116	60 - 130	<0.040	ug/g	NC	50
8009871	Acetone (2-Propanone)	2022/05/24	98	60 - 140	90	60 - 140	<0.49	ug/g	NC	50
8009871	Benzene	2022/05/24	98	60 - 140	96	60 - 130	<0.0060	ug/g	NC	50
8009871	Bromodichloromethane	2022/05/24	108	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
8009871	Bromoform	2022/05/24	105	60 - 140	101	60 - 130	<0.040	ug/g	NC	50

Page 23 of 30

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Sampler Initials: RZ

			Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8009871	Bromomethane	2022/05/24	113	60 - 140	106	60 - 140	<0.040	ug/g	NC	50
8009871	Carbon Tetrachloride	2022/05/24	108	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
8009871	Chlorobenzene	2022/05/24	101	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8009871	Chloroform	2022/05/24	106	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8009871	cis-1,2-Dichloroethylene	2022/05/24	107	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8009871	cis-1,3-Dichloropropene	2022/05/24	100	60 - 140	95	60 - 130	<0.030	ug/g	NC	50
8009871	Dibromochloromethane	2022/05/24	103	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
8009871	Dichlorodifluoromethane (FREON 12)	2022/05/24	91	60 - 140	91	60 - 140	<0.040	ug/g	NC	50
8009871	Ethylbenzene	2022/05/24	91	60 - 140	90	60 - 130	<0.010	ug/g	NC	50
8009871	Ethylene Dibromide	2022/05/24	101	60 - 140	97	60 - 130	<0.040	ug/g	NC	50
8009871	F1 (C6-C10) - BTEX	2022/05/24					<10	ug/g	NC	30
8009871	F1 (C6-C10)	2022/05/24	88	60 - 140	89	80 - 120	<10	ug/g	NC	30
8009871	Hexane	2022/05/24	101	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
8009871	Methyl Ethyl Ketone (2-Butanone)	2022/05/24	106	60 - 140	98	60 - 140	<0.40	ug/g	NC	50
8009871	Methyl Isobutyl Ketone	2022/05/24	98	60 - 140	92	60 - 130	<0.40	ug/g	NC	50
8009871	Methyl t-butyl ether (MTBE)	2022/05/24	95	60 - 140	92	60 - 130	<0.040	ug/g	NC	50
8009871	Methylene Chloride(Dichloromethane)	2022/05/24	109	60 - 140	105	60 - 130	<0.049	ug/g	NC	50
8009871	o-Xylene	2022/05/24	92	60 - 140	91	60 - 130	<0.020	ug/g	NC	50
8009871	p+m-Xylene	2022/05/24	95	60 - 140	95	60 - 130	<0.020	ug/g	NC	50
8009871	Styrene	2022/05/24	104	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8009871	Tetrachloroethylene	2022/05/24	96	60 - 140	96	60 - 130	<0.040	ug/g	NC	50
8009871	Toluene	2022/05/24	97	60 - 140	96	60 - 130	<0.020	ug/g	NC	50
8009871	Total Xylenes	2022/05/24					<0.020	ug/g	NC	50
8009871	trans-1,2-Dichloroethylene	2022/05/24	108	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8009871	trans-1,3-Dichloropropene	2022/05/24	107	60 - 140	100	60 - 130	<0.040	ug/g	NC	50
8009871	Trichloroethylene	2022/05/24	109	60 - 140	106	60 - 130	<0.010	ug/g	NC	50
8009871	Trichlorofluoromethane (FREON 11)	2022/05/24	108	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
8009871	Vinyl Chloride	2022/05/24	101	60 - 140	100	60 - 130	<0.019	ug/g	NC	50
8013893	1,1,1,2-Tetrachloroethane	2022/05/26	96	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8013893	1,1,1-Trichloroethane	2022/05/26	100	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
8013893	1,1,2,2-Tetrachloroethane	2022/05/26	88	60 - 140	101	60 - 130	<0.040	ug/g	NC	50

Page 24 of 30

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8013893	1,1,2-Trichloroethane	2022/05/26	96	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8013893	1,1-Dichloroethane	2022/05/26	93	60 - 140	98	60 - 130	<0.040	ug/g	NC	50
8013893	1,1-Dichloroethylene	2022/05/26	104	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8013893	1,2-Dichlorobenzene	2022/05/26	98	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8013893	1,2-Dichloroethane	2022/05/26	90	60 - 140	100	60 - 130	<0.049	ug/g	NC	50
8013893	1,2-Dichloropropane	2022/05/26	94	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8013893	1,3-Dichlorobenzene	2022/05/26	103	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8013893	1,4-Dichlorobenzene	2022/05/26	121	60 - 140	122	60 - 130	<0.040	ug/g	NC	50
8013893	Acetone (2-Propanone)	2022/05/26	91	60 - 140	107	60 - 140	<0.49	ug/g	NC	50
8013893	Benzene	2022/05/26	92	60 - 140	97	60 - 130	<0.0060	ug/g	NC	50
8013893	Bromodichloromethane	2022/05/26	97	60 - 140	105	60 - 130	<0.040	ug/g	NC	50
8013893	Bromoform	2022/05/26	91	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
8013893	Bromomethane	2022/05/26	100	60 - 140	110	60 - 140	<0.040	ug/g	NC	50
8013893	Carbon Tetrachloride	2022/05/26	99	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8013893	Chlorobenzene	2022/05/26	99	60 - 140	104	60 - 130	<0.040	ug/g	NC	50
8013893	Chloroform	2022/05/26	96	60 - 140	102	60 - 130	<0.040	ug/g	NC	50
8013893	cis-1,2-Dichloroethylene	2022/05/26	99	60 - 140	106	60 - 130	<0.040	ug/g	NC	50
8013893	cis-1,3-Dichloropropene	2022/05/26	96	60 - 140	112	60 - 130	<0.030	ug/g	NC	50
8013893	Dibromochloromethane	2022/05/26	92	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8013893	Dichlorodifluoromethane (FREON 12)	2022/05/26	103	60 - 140	108	60 - 140	<0.040	ug/g	NC	50
8013893	Ethylbenzene	2022/05/26	97	60 - 140	98	60 - 130	<0.010	ug/g	NC	50
8013893	Ethylene Dibromide	2022/05/26	90	60 - 140	101	60 - 130	<0.040	ug/g	NC	50
8013893	Hexane	2022/05/26	112	60 - 140	112	60 - 130	<0.040	ug/g	NC	50
8013893	Methyl Ethyl Ketone (2-Butanone)	2022/05/26	100	60 - 140	120	60 - 140	<0.40	ug/g	NC	50
8013893	Methyl Isobutyl Ketone	2022/05/26	97	60 - 140	117	60 - 130	<0.40	ug/g	NC	50
8013893	Methyl t-butyl ether (MTBE)	2022/05/26	93	60 - 140	99	60 - 130	<0.040	ug/g	NC	50
8013893	Methylene Chloride(Dichloromethane)	2022/05/26	97	60 - 140	105	60 - 130	<0.049	ug/g	NC	50
8013893	o-Xylene	2022/05/26	96	60 - 140	100	60 - 130	<0.020	ug/g	NC	50
8013893	p+m-Xylene	2022/05/26	81	60 - 140	83	60 - 130	<0.020	ug/g	NC	50
8013893	Styrene	2022/05/26	86	60 - 140	91	60 - 130	<0.040	ug/g	NC	50
8013893	Tetrachloroethylene	2022/05/26	96	60 - 140	97	60 - 130	<0.040	ug/g	NC	50

Page 25 of 30

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8013893	Toluene	2022/05/26	99	60 - 140	102	60 - 130	<0.020	ug/g	NC	50
8013893	Total Xylenes	2022/05/26					<0.020	ug/g	NC	50
8013893	trans-1,2-Dichloroethylene	2022/05/26	99	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8013893	trans-1,3-Dichloropropene	2022/05/26	102	60 - 140	121	60 - 130	<0.040	ug/g	NC	50
8013893	Trichloroethylene	2022/05/26	105	60 - 140	108	60 - 130	<0.010	ug/g	NC	50
8013893	Trichlorofluoromethane (FREON 11)	2022/05/26	101	60 - 140	103	60 - 130	<0.040	ug/g	NC	50
8013893	Vinyl Chloride	2022/05/26	102	60 - 140	107	60 - 130	<0.019	ug/g	NC	50
8020489	1-Methylnaphthalene	2022/05/29	104	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
8020489	2-Methylnaphthalene	2022/05/29	96	50 - 130	101	50 - 130	<0.0050	ug/g	NC	40
8020489	Acenaphthene	2022/05/29	103	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40
8020489	Acenaphthylene	2022/05/29	100	50 - 130	103	50 - 130	<0.0050	ug/g	NC	40
8020489	Anthracene	2022/05/29	110	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
8020489	Benzo(a)anthracene	2022/05/29	115	50 - 130	115	50 - 130	<0.0050	ug/g	NC	40
8020489	Benzo(a)pyrene	2022/05/29	95	50 - 130	95	50 - 130	<0.0050	ug/g	NC	40
8020489	Benzo(b/j)fluoranthene	2022/05/29	108	50 - 130	108	50 - 130	<0.0050	ug/g	NC	40
8020489	Benzo(g,h,i)perylene	2022/05/29	101	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
8020489	Benzo(k)fluoranthene	2022/05/29	100	50 - 130	107	50 - 130	<0.0050	ug/g	NC	40
8020489	Chrysene	2022/05/29	112	50 - 130	110	50 - 130	<0.0050	ug/g	NC	40
8020489	Dibenzo(a,h)anthracene	2022/05/29	96	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40
8020489	Fluoranthene	2022/05/29	111	50 - 130	113	50 - 130	<0.0050	ug/g	NC	40
8020489	Fluorene	2022/05/29	104	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
8020489	Indeno(1,2,3-cd)pyrene	2022/05/29	100	50 - 130	100	50 - 130	<0.0050	ug/g	NC	40
8020489	Naphthalene	2022/05/29	91	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40
8020489	Phenanthrene	2022/05/29	104	50 - 130	105	50 - 130	<0.0050	ug/g	NC	40
8020489	Pyrene	2022/05/29	115	50 - 130	119	50 - 130	<0.0050	ug/g	NC	40
8020614	Acid Extractable Antimony (Sb)	2022/05/31	102	75 - 125	103	80 - 120	<0.20	ug/g	NC	30
8020614	Acid Extractable Arsenic (As)	2022/05/31	109	75 - 125	99	80 - 120	<1.0	ug/g	2.1	30
8020614	Acid Extractable Barium (Ba)	2022/05/31	NC	75 - 125	103	80 - 120	<0.50	ug/g	0.87	30
8020614	Acid Extractable Beryllium (Be)	2022/05/31	109	75 - 125	104	80 - 120	<0.20	ug/g	4.1	30
8020614	Acid Extractable Boron (B)	2022/05/31	103	75 - 125	102	80 - 120	<5.0	ug/g	3.9	30
8020614	Acid Extractable Cadmium (Cd)	2022/05/31	109	75 - 125	104	80 - 120	<0.10	ug/g	19	30

Page 26 of 30

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8020614	Acid Extractable Chromium (Cr)	2022/05/31	114	75 - 125	104	80 - 120	<1.0	ug/g	0.39	30
8020614	Acid Extractable Cobalt (Co)	2022/05/31	108	75 - 125	104	80 - 120	<0.10	ug/g	1.2	30
8020614	Acid Extractable Copper (Cu)	2022/05/31	102	75 - 125	103	80 - 120	<0.50	ug/g	1.9	30
8020614	Acid Extractable Lead (Pb)	2022/05/31	103	75 - 125	104	80 - 120	<1.0	ug/g	0.72	30
8020614	Acid Extractable Mercury (Hg)	2022/05/31	98	75 - 125	98	80 - 120	<0.050	ug/g	NC	30
8020614	Acid Extractable Molybdenum (Mo)	2022/05/31	108	75 - 125	103	80 - 120	<0.50	ug/g	6.0	30
8020614	Acid Extractable Nickel (Ni)	2022/05/31	NC	75 - 125	105	80 - 120	<0.50	ug/g	3.4	30
8020614	Acid Extractable Selenium (Se)	2022/05/31	104	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
8020614	Acid Extractable Silver (Ag)	2022/05/31	102	75 - 125	100	80 - 120	<0.20	ug/g	NC	30
8020614	Acid Extractable Thallium (Tl)	2022/05/31	106	75 - 125	105	80 - 120	<0.050	ug/g	6.1	30
8020614	Acid Extractable Uranium (U)	2022/05/31	106	75 - 125	102	80 - 120	<0.050	ug/g	2.3	30
8020614	Acid Extractable Vanadium (V)	2022/05/31	NC	75 - 125	101	80 - 120	<5.0	ug/g	3.7	30
8020614	Acid Extractable Zinc (Zn)	2022/05/31	NC	75 - 125	101	80 - 120	<5.0	ug/g	0.090	30
8020761	Hot Water Ext. Boron (B)	2022/05/30	95	75 - 125	105	75 - 125	<0.050	ug/g	9.6	40
8020836	Chromium (VI)	2022/05/30	89	70 - 130	91	80 - 120	<0.18	ug/g	NC	35
8021529	WAD Cyanide (Free)	2022/05/31	90	75 - 125	90	80 - 120	<0.01	ug/g	NC	35
8021954	F2 (C10-C16 Hydrocarbons)	2022/05/30	107	60 - 130	100	80 - 120	<10	ug/g	NC	30
8021954	F3 (C16-C34 Hydrocarbons)	2022/05/30	106	60 - 130	99	80 - 120	<50	ug/g	NC	30
8021954	F4 (C34-C50 Hydrocarbons)	2022/05/30	102	60 - 130	96	80 - 120	<50	ug/g	NC	30
8021993	Chromium (VI)	2022/05/31	91	70 - 130	93	80 - 120	<0.18	ug/g	NC	35
8022060	Available (CaCl2) pH	2022/05/30			100	97 - 103			0.57	N/A
8022135	Conductivity	2022/05/30			100	90 - 110	<0.002	mS/cm	7.4	10
8022159	Available (CaCl2) pH	2022/05/30			100	97 - 103			0.18	N/A
8023757	Available (CaCl2) pH	2022/05/31			100	97 - 103			0.16	N/A
8025555	a-Chlordane	2022/06/01	101	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
8025555	Aldrin	2022/06/01	94	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
8025555	Aroclor 1242	2022/06/01					<0.015	ug/g	NC	40
8025555	Aroclor 1248	2022/06/01					<0.015	ug/g	NC	40
8025555	Aroclor 1254	2022/06/01					<0.015	ug/g	NC	40
8025555	Aroclor 1260	2022/06/01					<0.015	ug/g	NC	40
8025555	Dieldrin	2022/06/01	119	50 - 130	103	50 - 130	<0.0020	ug/g	NC	40

Page 27 of 30

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAR & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8025555	Endosulfan I (alpha)	2022/06/01	99	50 - 130	84	50 - 130	<0.0020	ug/g	NC	40
8025555	Endosulfan II (beta)	2022/06/01	86	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
8025555	Endrin	2022/06/01	102	50 - 130	97	50 - 130	<0.0020	ug/g	NC	40
8025555	g-Chlordane	2022/06/01	99	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
8025555	Heptachlor epoxide	2022/06/01	102	50 - 130	90	50 - 130	<0.0020	ug/g	NC	40
8025555	Heptachlor	2022/06/01	96	50 - 130	89	50 - 130	<0.0020	ug/g	NC	40
8025555	Hexachlorobenzene	2022/06/01	102	50 - 130	87	50 - 130	<0.0020	ug/g	NC	40
8025555	Hexachlorobutadiene	2022/06/01	81	50 - 130	102	50 - 130	<0.0020	ug/g	NC	40
8025555	Hexachloroethane	2022/06/01	70	50 - 130	82	50 - 130	<0.0020	ug/g	NC	40
8025555	Lindane	2022/06/01	86	50 - 130	81	50 - 130	<0.0020	ug/g	NC	40
8025555	Methoxychlor	2022/06/01	117	50 - 130	124	50 - 130	<0.0050	ug/g	NC	40
8025555	o,p-DDD	2022/06/01	116	50 - 130	110	50 - 130	<0.0020	ug/g	NC	40
8025555	o,p-DDE	2022/06/01	96	50 - 130	85	50 - 130	<0.0020	ug/g	NC	40
8025555	o,p-DDT	2022/06/01	96	50 - 130	101	50 - 130	<0.0020	ug/g	NC	40
8025555	p,p-DDD	2022/06/01	113	50 - 130	106	50 - 130	<0.0020	ug/g	NC	40
8025555	p,p-DDE	2022/06/01	121	50 - 130	94	50 - 130	<0.0020	ug/g	NC	40
8025555	p,p-DDT	2022/06/01	111	50 - 130	104	50 - 130	<0.0020	ug/g	NC	40

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T1-Soil/Res

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ry table is for information purp	oses only and should	not be considered a comp	rehensive listing or	statement of	conformance to
applicable regulatory gui	idelines.					

		Phone:	6740 Ca 905-817-	-5700 f	Road, M Fax: 905-	VII551554 -817-57	auga, On 779 T	tario LSN 218 oll Free: 800-56	53-6266	5									E	NV CO	C - 00	014v0								Page of
nvoice information	Involce To Requires Report			Re	port in	forma	tion (if	differs from i	nvoice)			-				1	rojec	t Info	rmatic	n		_		1	1				
Company :	OS Accounting		Company	t									Quota	nion I	t:														2()-May-22 08:02
Contact Name:			Contact Name:				,	instin Olsen			-	-	P.O. 8	AFE	e: 1			-					-				As	ht	on	Gibson
treat Address:			Street				6221 +	ighway 7 Unit 1	6		-	-	Projec	ct 81	-					21-45	-100				-	11 11	11		111	FRE FE R E FE R E F R
Citys	Prov: Post	al o:	City:	Va	ughan		Prov	c ON	Po	stal	14	юка	site #	t	-			-)	Neyaga	wa & B	mhan	thorpe	-		-			C	21	D7426
Phone:	and and a second se		Phone:	T		-	91	25-264-9393	1_0	009			Site L	ocatio	eic .										1	1				
Email:		_	Email:			к	irstin.Ob	en@dsconsultan	ts.ca				Site L	ocatio	'n								-		1	1_	1			ENV-2022
Copidit			Copies:	_	_						-		Samp	ied By	T.					Ryan 2	hang					1				
Table 1	Rais/Park Med/ Cours Ind/Comm Cours Other Include Criteria on	Egulatory Criter	ria JCME keg 558* min 3 da MISA PWQD malvsis (y TAT N	Reg 4 Sanit Stor Aunicpa Othe	106, Tal tary Sev m Sew lity:	ble: wer Byla er Bylaw	W			a a	4	3	6	GANICS	8	an (8 - SWH	10	11	12 1	14	15	16	17	18	19 2	0	21	22	Regular TurnAround Time (TAT) S to 7 days 10 days Rush TurnAround Time (TAT) - Surcharges apply C Comp Res
SAMPLES N	NUST BE KEPT COOL (<10°C) FROM	TIME OF SAMPLI	NG UNTI	L DEUVER	Y TO BU	REAU	VERITAS				REQUIRE				S INOBI	METALS	Metals											S SUBMI	NUMEYZE	🗌 2 Day 🔤 3 Day
				Date Sampl	led	Time	: (24hr)		SHED	ERVE	NOID	#	57		ETALS	PMS I	CPMS											AINER	NOT 4	1 4 DAY
	Sample Identification		YY	мм	DD	нн	MM	Matrix	HELD FILT	TELD PRES	AB FILTRA	HEX PHC	HCs F2 - F	10C3	EG 153 M	EG 153 IC	Hg, Cr VI,	AHs	¥	5								OF CONT	00-010	Date YY MM DD Required:
1	81422-18 551		22	5	18			Soil	Ū	Ō	D		Ē	Ó	R		1		5 C	5 C					5		1	1	Ô	
2	BH22-1B \$\$2		22	5	18			Soll			۵							1							5]	1		
3	0H22+18 553		22	5	18			Soil				1	X	V			51								3		1	3		
4	BH22-18 \$\$5		22	5	15			Soil						M								D			5	00]	3		on hold
5	0H22-3 551		22	5	18			Soll							Ø					A C					5			2		
6	BH22-7 551		22	5	18			Soil							X					10]]	2		
7	BH22-8 551		22	5	18			Soil							R		51			80					5]	2		
8	BH22-12 554		22	5	18			Soil											1						5]	1		
9	BH22-5 551		22	5	18			Soil	D						R			1							3]	2		limited sample
10	8H22-5 552		22	5	38			Soil				A		I]	3		limited sample
11	BH22-6 551		22	5	18			Soil							N			1]	2		limited sample
12	BH22-6 SS2		22	5	18			Soil				A	N]	3		limited sample
13	DUP 1		22	5	18			Soil										N I									ן	1		
14	DUP 2		22	5	18			Soil						¥]]	3		limited sample
15	BH22-4 551	TTO ON THIS COULD	22	5	19			Soil							M												ו	2		
eal present eal intact ooling medal present	Yes No V rc	0 / 1 2	3	Seal Pro	isent áct Media P	ICHUNA CONTRACT	U VERTA	Yes	conati No	1010	C	1	G THE	2	S CHA	N DI CU LISTED	ABOV	eal pre eal pre eal lot	ument sent sct Media	A COPY UNION	CALT.	DGMEN	IT AND	Yet	ANCE	No No	CTER/	MS A	ND CO	INDITIONS WHICH ARE AVAILABLE FOR VERWING AT
Relinquished	d by: (Signature/ Print)	YY	MM	DD	HH	N	MM		Reling	uishe	d by:	(Sign	ature	e/ Pri	nt)		-	-	YY	-	M	/	17	D	H	Time	MN	n		SPECIAL INSTRUCTIONS
	A2	2020	5 7	20				-	0	~		J	re	1	~		-	20	2	2	0_	5	2	v	00	r	02	2		
	W D	- por	10				_				-		_		-			-	-	_			-							

6740 Campobello Road, Mississauga, Ontario L5N 218

CHAIN OF CUSTODY RECORD

Page _____ of ____

6740 Campobello Road, Mississauga, Ontario LSN 218 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CHAIN OF CUSTODY RECORD

ENV COC - 00014v0

Page _____ of ____

CONTINUED																													
	[PAGE 1 REFERENCE]	1						1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	5 1	6 1	7 1	8 1	20	21	22	
Company:	0													NNIG									T			1	ED		開く 山田 三日 日日日 日本
Contact Name:	Kirstin Olsen									RED				DRGJ	~	5											LISW	2	周立の調査との時間の問題
Project #:	21-455-100									In				1 INC	ETAL	Anta											SUBI	THAT	Same as Above
SAMPLES MUST	BE KEPT COOL (<10°C) FROM TIME OF SAMPLI	NG UNT	IL DELIVI	ERY TO	BUREA	U VERIT	AS	ERED	SERVED	ATION RI	E	FA		AETALS 8	CPMS MI	AETALS ICPMS A											IMMERS	DNDI NO	
Sar	nois Identification	U.S.	te sampi	ed	Time	e (24br)	Manda	E	PHE	E	H.	ŕ		53.0	2310	53 N											NO	N,	
		۲۲	MM	DD	HH	MM		FELD	FIELD	LAB F	nal l	PHCs	20Cs	REG 1	REG 1	He. C	PAHS	H									OF	HOLD	COMMENTS
16	BH22-4 552	22	5	19			Soll										\blacksquare				3 0] [I C	IC	1		1		on hold
17	MW22-10 552	22	5	19			Soll																1 C) C			1 1		
18	MW22-10 554	22	5	19			Soli] [) [1 C			1		
19] [1		
20] [][
21					_																	ם כ					1		
22		_] [1		
23] [1			1		
24															Ц] [1		
25]		1		
26		_																					1				1		
27]] [][1		
28] [j 🗆				1		
29			_																								1		
30																							i 🗆				1		
81]				1		
32																											1		
33																						ם כ	j 🗆				1		
34																						3 0					1		
35] []] []		
36																							j 🗆				1		
37] [] [1 []		
38																							1 C				1		
39																								1 C	1 []		
40) C]		
41]	1	1]		
42														0									j 🗆	1			1		
43][1]		
44] [1 C	10	1]		
45																								1 []		

Your Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Your C.O.C. #: 885839-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/07/06 Report #: R7198954 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2H9417 Received: 2022/06/28, 11:30

Sample Matrix: Water

Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2022/07/06	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	2	2022/07/04	2022/07/05	CAM SOP-00316	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Your C.O.C. #: 885839-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/07/06 Report #: R7198954 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2H9417 Received: 2022/06/28, 11:30

Encryption Key

Bureau Veritas 06 Jul 2022 15:59:26

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas	ID			TAK065	TAK066		
Sampling Date				2022/06/28	2022/06/28		
COC Number				885839-01-01	885839-01-01		
		UNITS	Criteria	MW22-2	DUP 1	RDL	QC Batch
BTEX & F1 Hydı	rocarbons					·	
Benzene		ug/L	5.0	<0.20	<0.20	0.20	8090878
Toluene		ug/L	24	<0.20	<0.20	0.20	8090878
Ethylbenzene		ug/L	2.4	<0.20	<0.20	0.20	8090878
o-Xylene		ug/L	-	<0.20	<0.20	0.20	8090878
p+m-Xylene		ug/L	-	<0.40	<0.40	0.40	8090878
Total Xylenes		ug/L	300	<0.40	<0.40	0.40	8090878
F1 (C6-C10)		ug/L	750	<25	<25	25	8090878
F1 (C6-C10) - BT	ΓEX	ug/L	750	<25	<25	25	8090878
F2-F4 Hydrocar	bons						
F2 (C10-C16 Hy	drocarbons)	ug/L	150	<100	<100	100	8088468
F3 (C16-C34 Hy	drocarbons)	ug/L	500	<200	<200	200	8088468
F4 (C34-C50 Hy	drocarbons)	ug/L	500	<200	<200	200	8088468
Reached Baselin	ne at C50	ug/L	-	Yes	Yes		8088468
Surrogate Reco	very (%)			-	-	-	
1,4-Difluoroben	izene	%	-	100	102		8090878
4-Bromofluorob	penzene	%	-	94	93		8090878
D10-o-Xylene		%	-	90	88		8090878
D4-1,2-Dichloro	oethane	%	-	87	88		8090878
o-Terphenyl		%	-	98	91		8088468
No Fill	No Exceeda	nce					
Grey	Exceeds 1 c	riteria p	olicy/leve	el			
Black	Exceeds bot	h criter	ia/levels				
RDL = Reportab	le Detection L	imit					
QC Batch = Qua	lity Control Ba	atch					
Criteria: Ontario	o Reg. 153/04	(Amend	ed April :	15, 2011)			
Table 2: Full De	pth Generic Si	te Cond	ition Stan	dards in a Potal	ole Ground Wate	er Cor	dition
Potable Ground	Water- All Ty	pes of P	roperty U	ises - Coarse Tex	tured Soil		

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	TAK065 MW22-2 Water					Collected: Shipped: Received:	2022/06/28 2022/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	8090878	N/A	2022/07/06	Georgeta I	Rusu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8088468	2022/07/04	2022/07/05	(Kent) Ma	olin Li
Bureau Veritas ID: Sample ID: Matrix:	TAK066 DUP 1 Water					Collected: Shipped: Received:	2022/06/28 2022/06/28
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	8090878	N/A	2022/07/06	Georgeta I	Rusu
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	8088468	2022/07/04	2022/07/05	(Kent) Ma	olin Li

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 14.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 21-455-100 Site Location: NEYAGAWA & BURNHAMTHORPE Sampler Initials: RZ

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8088468	o-Terphenyl	2022/07/05	97	60 - 130	100	60 - 130	104	%		
8090878	1,4-Difluorobenzene	2022/07/06	100	70 - 130	103	70 - 130	104	%		
8090878	4-Bromofluorobenzene	2022/07/06	94	70 - 130	93	70 - 130	92	%		
8090878	D10-o-Xylene	2022/07/06	104	70 - 130	108	70 - 130	91	%		
8090878	D4-1,2-Dichloroethane	2022/07/06	85	70 - 130	82	70 - 130	86	%		
8088468	F2 (C10-C16 Hydrocarbons)	2022/07/05	NC	60 - 130	98	60 - 130	<100	ug/L	9.4	30
8088468	F3 (C16-C34 Hydrocarbons)	2022/07/05	104	60 - 130	107	60 - 130	<200	ug/L	NC	30
8088468	F4 (C34-C50 Hydrocarbons)	2022/07/05	100	60 - 130	102	60 - 130	<200	ug/L	NC	30
8090878	Benzene	2022/07/06	87	50 - 140	90	50 - 140	<0.20	ug/L	1.4	30
8090878	Ethylbenzene	2022/07/06	95	50 - 140	99	50 - 140	<0.20	ug/L	NC	30
8090878	F1 (C6-C10) - BTEX	2022/07/06					<25	ug/L	NC	30
8090878	F1 (C6-C10)	2022/07/06	103	60 - 140	107	60 - 140	<25	ug/L	NC	30
8090878	o-Xylene	2022/07/06	90	50 - 140	92	50 - 140	<0.20	ug/L	8.6	30
8090878	p+m-Xylene	2022/07/06	95	50 - 140	99	50 - 140	<0.40	ug/L	4.8	30
8090878	Toluene	2022/07/06	90	50 - 140	93	50 - 140	<0.20	ug/L	4.8	30
8090878	Total Xylenes	2022/07/06					<0.40	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-GW-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary	y table is for information purp	oses only and should r	not be considered a compre	hensive listing or	statement of	conformance to
applicable regulatory guid	delines.					

BUREA VEALTA	51 IN	Bureau Veritas 6740 Campobello Road, VOICE TO:	, Mississauga, Ontar	io Canada L5N 2	L8 Tel (905) 817-5	700 Toll-free 800-1	563-6266 Fax (905) 817-577	7 www.bvna.com			PROJECT	INFORMATION:	CHAI	► - Ast	28-Jun-22 11:30 nton Gibson	Yage 1 of 1
Company Nor	#32616 DS Con	sultants Limited		0	0	Consul	taute				1.1	C2054	5		- ######	HA II A II II ALA ANNI I I AN	index #
Company Nam	Accounts Pavable	9		Company	y Name:	Laction	DICOM			Quotation	n#:	02004	5		-	C2H9417	rder #:
Attention.	6221 Highway 7	Unit 16		Attention		Kastin	UBen	LIFL	1	P.O. #.		21 455	100		-		
Address:	Vaughan ON L4H		in the second	Address:		624 A	Thurst	yna r	0	Project		21-400	-100		TPS	ENV-667	<u>139</u>
	(005) 264 0303	10110				Van	2792	8		Project N	ame:	Ney	lagada o	2 STATA	WM .	LUC #:	Project Manager:
Tel:	(905) 204-9595	Fax:	anal@daganau	Tel:		403-204-	4517 Fax	nt.	14 0-	Site #				Burn ham tho	pe.		Ashton Gibson
Email:	accounting@usco	onsultants.ca,bindu.	goel@usconsu	Itant Email:		Kir	stin.olsen	() dscon	sultants, ca	Sampled	By:	-Ry6	in zhang			C#885839-01-01	
MOE RI	EGULATED DRINKING SUBMITTED ON TI	3 WATER OR WATE HE BUREAU VERITA	R INTENDED FO AS DRINKING W	OR HUMAN C ATER CHAIN	ONSUMPTION OF CUSTODY	MUST BE	St.		AN	ALYSIS RE	QUESTED	(PLEASE BE			Regular (S	Turnaround Time (TAT) Please provide advance notice	Required: for rush projects
Regul	ation 153 (2011)		Other Regulations		Special In	structions	- uch	(-							(will be applie	d if Rush TAT is not specified):	51
Table 1	Res/Park Medium	VFine CCME	Sanitary Sewer E	Bylaw			2 Se	(\div)							Standard TAT	= 5-7 Working days for most tests	V
Table 2	Ind/Comm Coarse	Reg 558	Storm Sewer By	aw			Diea Diea								Please note: 3	Standard TAT for certain tests such as	BOD and Dioxins/Furans are > 5
Table 3	Agri/Other For RS		Municipality				d) p								days - contact	your Project Manager for details.	The second s
	-	PWQO	Reg 406 Table		1.1.		tere	HCs							Job Specifie	Rush TAT (if applies to entire sub	imission)
		U Other	(/			Vet	53 P							Date Required	dT	ime Required:
	Include Criteria	on Certificate of Ana	alysis (Y/N)? 🗋				Tielo	eg							Rush Contim	lation Number.	(call lab for #)
San	nple Barcode Label	Sample (Location) Id	dentification	Date Sampled	Time Sampled	Matrix		0 B							# of Bottles	Com	ments
4		MIA/22	2	Tun 28	1	6	Jul	./							0		
		1010 022-	-2	2022	AM	GW	T	V,			i				5		
		DUD	1	T. 28	d.	Gu	TR.	1.1				-			2		
2		DUP	1	Jun 20	FIM	Ciw	*K								5		
				Port													
3																	
4																	
															-		
5								2.1									
6																	
7							1.										
							- 00										
8																	
9							11707										
							1.14										
10							200										
10																	
	· RELINQUISHED BY: (SI	gnature/Print)	Date: (YY/MI	M/DD) Ti	ime	RECEIVED E	Y: (Signature/	Print)	Date: (YY	MM/DD)	N	tme	# jars used an	a	Labora	tory Use Only	
	Krem?	chang	22062	Ŷ					-6	MARY	48	-	not submitted	Time Sensitive	Temnerat	ure (°C) on Recei Custody	Seal Yes No
	Dag	undun .	7201	28	~	2	MAN	5	10111	214 0	11	12-			14	114/15 Preser	
· UNLESS OTH	ERWISE AGREED TO IN WR	TING, WORK SUBMITTER	D ON THIS CHAIN OF	CUSTODY IS SU	BJECT TO BUREAU	VERITAS'S STAN	DARD TERMS	AND CONDITI	ONS. SIGNING OF	THIS CHAN	N OF CUST	DOY DOCUM	ENT IS			White	Bureau Veritas Vellow: Client
ACKNOWLEDG	GMENT AND ACCEPTANCE	OF OUR TERMS WHICH AI	RE AVAILABLE FOR	VIEWING AT WW	W.BVNA.COM/TERM	S-AND-CONDITIO	NS.						SAMP	ES MUST RE KERT	001 (21000)	FROM TIME OF RANDUNG	
TIT IS THE RES	SPONSIBILITY OF THE RELI	NQUISHER TO ENSURE T	THE ACCURACY OF	THE CHAIN OF CL	JSTODY RECORD.	AN INCOMPLETE O	HAIN OF CUST	ODY MAY RE	SULT IN ANALYTIC	AL TAT DE	ELAYS.		SAMPL	UNTIL DELI	VERY TO BUREA	U VERITAS	or ite
** SAMPLE CO	NTAINER, PRESERVATION,	HOLD TIME AND PACKAG	GE INFORMATION C	AN BE VIEWED A	T WWW.BVNA.CON	RESOURCES/CH	AIN-OF-CUSTO	DY-FORMS.									

Bureau Veritas Canada (2019) Inc.

Your Project #: 21-455-100 Your C.O.C. #: 881142-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/06/13 Report #: R7165658 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2E5909 Received: 2022/05/30, 13:13

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum	1	N/A	2022/06/03	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	1	N/A	2022/06/02		EPA 8260C m
Chloride by Automated Colourimetry	1	N/A	2022/06/02	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water	1	N/A	2022/06/01	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2022/06/01	CAM SOP-00457	OMOE E3015 m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2022/06/10	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydro. CCME F1 & BTEX in Water	1	N/A	2022/06/02	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2022/06/01	2022/06/02	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1)	1	2022/06/08	2022/06/08	CAM SOP-00316	CCME PHC-CWS m
Mercury	1	2022/06/02	2022/06/02	CAM SOP-00453	EPA 7470A m
Lab Filtered Metals by ICPMS	1	2022/06/01	2022/06/02	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM)	1	2022/06/01	2022/06/02	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds in Water	1	N/A	2022/06/01	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

Page 1 of 16

Your Project #: 21-455-100 Your C.O.C. #: 881142-01-01

Attention: Kirstin Olsen

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/06/13 Report #: R7165658 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C2E5909 Received: 2022/05/30, 13:13

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Ashton Gibson Project Manager 13 Jun 2022 17:05:53

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 16 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Bureau Verita	as ID			STE131		
Sampling Dat	e			2022/05/30		
COC Number				881142-01-01		
		UNITS	Criteria	MW22-2	RDL	QC Batch
Inorganics						
WAD Cyanide	e (Free)	ug/L	5	<1	1	8027442
Dissolved Chloride (Cl-)		mg/L	790	95	1.0	8028012
Metals						
Chromium (V	I)	ug/L	25	<0.50	0.50	8024952
Mercury (Hg)		ug/L	0.1	<0.10	0.10	8028969
Dissolved Ant	imony (Sb)	ug/L	1.5	<0.50	0.50	8027861
Dissolved Ars	enic (As)	ug/L	13	<1.0	1.0	8027861
Dissolved Bar	ium (Ba)	ug/L	610	120	2.0	8027861
Dissolved Ber	yllium (Be)	ug/L	0.5	<0.40	0.40	8027861
Dissolved Boron (B)		ug/L	1700	50	10	8027861
Dissolved Cadmium (Cd)		ug/L	0.5	<0.090	0.090	8027861
Dissolved Chromium (Cr)		ug/L	11	<5.0	5.0	8027861
Dissolved Col	oalt (Co)	ug/L	3.8	0.55	0.50	8027861
Dissolved Cop	oper (Cu)	ug/L	5	<0.90	0.90	8027861
Dissolved Lea	d (Pb)	ug/L	1.9	<0.50	0.50	8027861
Dissolved Mo	lybdenum (Mo)	ug/L	23	9.5	0.50	8027861
Dissolved Nic	kel (Ni)	ug/L	14	1.1	1.0	8027861
Dissolved Sel	enium (Se)	ug/L	5	<2.0	2.0	8027861
Dissolved Silv	er (Ag)	ug/L	0.3	<0.090	0.090	8027861
Dissolved Soc	lium (Na)	ug/L	490000	140000	100	8027861
Dissolved Thallium (TI)		ug/L	0.5	<0.050	0.050	8027861
Dissolved Uranium (U)		ug/L	8.9	7.7	0.10	8027861
Dissolved Vanadium (V)		ug/L	3.9	<0.50	0.50	8027861
Dissolved Zinc (Zn)		ug/L	160	<5.0	5.0	8027861
No Fill	ill No Exceedance					
Grey	Exceeds 1 criteria policy/level					
Black	Exceeds both c	riteria/le	evels			
BDI = Reportable Detection Limit						

O.REG 153 INORGANICS PKG (LAB FILTERED)

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards

Ground Water - All Types of Property Uses

O.REG 153 PAHS (WATER)

Bureau Verita			STE131					
Sampling Dat	e			2022/05/30				
COC Number				881142-01-01				
		UNITS	Criteria	MW22-2	RDL	QC Batch		
Calculated Pa	arameters							
Methylnapht	halene, 2-(1-)	ug/L	2	<0.071	0.071	8021671		
Polyaromatic								
Acenaphthen	e	ug/L	4.1	<0.050	0.050	8027493		
Acenaphthyle	ene	ug/L	1	<0.050	0.050	8027493		
Anthracene		ug/L	0.1	<0.050	0.050	8027493		
Benzo(a)anth	racene	ug/L	0.2	<0.050	0.050	8027493		
Benzo(a)pyre	ne	ug/L	0.01	<0.0090	0.0090	8027493		
Benzo(b/j)flu	oranthene	ug/L	0.1	<0.050	0.050	8027493		
Benzo(g,h,i)p	erylene	ug/L	0.2	<0.050	0.050	8027493		
Benzo(k)fluor	ug/L	0.1	<0.050	0.050	8027493			
Chrysene	ug/L	0.1	<0.050	0.050	8027493			
Dibenzo(a,h)a	ug/L	0.2	<0.050	0.050	8027493			
Fluoranthene		ug/L	0.4	<0.050	0.050	8027493		
Fluorene		ug/L	120	<0.050	0.050	8027493		
Indeno(1,2,3-	cd)pyrene	ug/L	0.2	<0.050	0.050	8027493		
1-Methylnapl	hthalene	ug/L	2	<0.050	0.050	8027493		
2-Methylnapl	nthalene	ug/L	2	<0.050	0.050	8027493		
Naphthalene		ug/L	7	0.053	0.050	8027493		
Phenanthren	e	ug/L	0.1	0.042	0.030	8027493		
Pyrene		ug/L	0.2	<0.050	0.050	8027493		
Surrogate Re	covery (%)	-						
D10-Anthrace	ene	%	-	101		8027493		
D14-Terphen	yl (FS)	%	-	88		8027493		
D8-Acenapht	hylene	%	-	95		8027493		
No Fill	No Fill No Exceedance							
Grey	Grey Exceeds 1 criteria policy/level							
Black	Exceeds both	criteria/	levels					
RDL = Report	able Detection L	imit						
QC Batch = Q	uality Control Ba	atch						
Criteria: Onta Table 1: Full	Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards							

Ground Water - All Types of Property Uses

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Bureau Veritas ID				STE131			STE132		
Sampling Date				2022/05/30			2022/05/30		
COC Number				881142-01-01			881142-01-01		
		UNITS	Criteria	MW22-2	RDL	QC Batch	DUP	RDL	QC Batch
BTEX & F1 Hydrocar	bons								
Benzene		ug/L	0.5	<0.20	0.20	8045521	<0.20	0.20	8030191
Toluene		ug/L	0.8	<0.20	0.20	8045521	<0.20	0.20	8030191
Ethylbenzene		ug/L	0.5	<0.20	0.20	8045521	<0.20	0.20	8030191
o-Xylene		ug/L	-	<0.20	0.20	8045521	<0.20	0.20	8030191
p+m-Xylene		ug/L	-	<0.40	0.40	8045521	<0.40	0.40	8030191
Total Xylenes		ug/L	72	<0.40	0.40	8045521	<0.40	0.40	8030191
F1 (C6-C10)		ug/L	420	<25	25	8045521	<25	25	8030191
F1 (C6-C10) - BTEX		ug/L	420	<25	25	8045521	<25	25	8030191
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydroca	arbons)	ug/L	150	<300 (1)	300	8040113	<100	100	8027486
F3 (C16-C34 Hydroca	arbons)	ug/L	500	<600 (1)	600	8040113	<200	200	8027486
F4 (C34-C50 Hydroca	arbons)	ug/L	500	<600 (1)	600	8040113	<200	200	8027486
Reached Baseline at	C50	ug/L	-	Yes		8040113	Yes		8027486
Surrogate Recovery	(%)								
1,4-Difluorobenzene	1	%	-	99		8045521	99		8030191
4-Bromofluorobenze	ene	%	-	96		8045521	101		8030191
D10-o-Xylene		%	-	90		8045521	97		8030191
D4-1,2-Dichloroetha	ne	%	-	88		8045521	93		8030191
o-Terphenyl		%	-	92		8040113	99		8027486
No Fill	No Excee	dance							
Grey	Exceeds 2	L criteria	a policy/le	evel					
Black Exceeds both criteria/levels									
RDL = Reportable Detection Limit									
QC Batch = Quality C	QC Batch = Quality Control Batch								
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards Ground Water - All Types of Property Uses									
(1) RDL exceeds crite	eria								

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas ID			STE133				
Sampling Date			2022/05/30				
COC Number			881142-01-01				
	UNITS	Criteria	TRIP BLANK	RDL	QC Batch		
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/L	0.5	<0.50	0.50	8022559		
Volatile Organics	ļ						
Acetone (2-Propanone)	ug/L	2700	<10	10	8024629		
Benzene	ug/L	0.5	<0.20	0.20	8024629		
Bromodichloromethane	ug/L	2	<0.50	0.50	8024629		
Bromoform	ug/L	5.0	<1.0	1.0	8024629		
Bromomethane	ug/L	0.89	<0.50	0.50	8024629		
Carbon Tetrachloride	ug/L	0.2	<0.19	0.19	8024629		
Chlorobenzene	ug/L	0.5	<0.20	0.20	8024629		
Chloroform	ug/L	2	<0.20	0.20	8024629		
Dibromochloromethane	ug/L	2	<0.50	0.50	8024629		
1,2-Dichlorobenzene	ug/L	0.5	<0.40	0.40	8024629		
1,3-Dichlorobenzene	ug/L	0.5	<0.40	0.40	8024629		
1,4-Dichlorobenzene	ug/L	0.5	<0.40	0.40	8024629		
Dichlorodifluoromethane (FREON 12)	ug/L	590	<1.0	1.0	8024629		
1,1-Dichloroethane	ug/L	0.5	<0.20	0.20	8024629		
1,2-Dichloroethane	ug/L	0.5	<0.49	0.49	8024629		
1,1-Dichloroethylene	ug/L	0.5	<0.20	0.20	8024629		
cis-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	8024629		
trans-1,2-Dichloroethylene	ug/L	1.6	<0.50	0.50	8024629		
1,2-Dichloropropane	ug/L	0.5	<0.20	0.20	8024629		
cis-1,3-Dichloropropene	ug/L	0.5	<0.30	0.30	8024629		
trans-1,3-Dichloropropene	ug/L	0.5	<0.40	0.40	8024629		
Ethylbenzene	ug/L	0.5	<0.20	0.20	8024629		
Ethylene Dibromide	ug/L	0.2	<0.19	0.19	8024629		
Hexane	ug/L	5	<1.0	1.0	8024629		
Methylene Chloride(Dichloromethane)	ug/L	5	<2.0	2.0	8024629		
Methyl Ethyl Ketone (2-Butanone)	ug/L	400	<10	10	8024629		
Methyl Isobutyl Ketone	ug/L	640	<5.0	5.0	8024629		
Methyl t-butyl ether (MTBE)	ug/L	15	<0.50	0.50	8024629		
No Fill No Exceedance							
Grey Exceeds 1 criteria policy							
Black Exceeds both criteria/le	vels						
RDL = Reportable Detection Limit							
QC Batch = Quality Control Batch							
Criteria: Ontario Reg. 153/04 (Amended	April 15	, 2011)					
Table 1: Full Depth Background Site Con	dition St	andards					
Ground Water - All Types of Property Use	Ground Water - All Types of Property Uses						

O.REG 153 VOCS BY HS (WATER)

Bureau Veritas	; ID			STE133			
Sampling Date				2022/05/30			
COC Number				881142-01-01			
			Criteria	TRIP BLANK	RDL	QC Batch	
Styrene	ug/L	0.5	<0.40	0.40	8024629		
1,1,1,2-Tetrach	ug/L	1.1	<0.50	0.50	8024629		
1,1,2,2-Tetrach	loroethane	ug/L	0.5	<0.40	0.40	8024629	
Tetrachloroeth	ylene	ug/L	0.5	<0.20	0.20	8024629	
Toluene		ug/L	0.8	<0.20	0.20	8024629	
1,1,1-Trichloro	ethane	ug/L	0.5	<0.20	0.20	8024629	
1,1,2-Trichloro	ethane	ug/L	0.5	<0.40	0.40	8024629	
Trichloroethyle	ene	ug/L	0.5	<0.20	0.20	8024629	
Trichlorofluoro	ug/L	150	<0.50 0.50		8024629		
Vinyl Chloride		ug/L	0.5	<0.20	0.20	8024629	
p+m-Xylene		ug/L	-	<0.20	0.20	8024629	
o-Xylene		ug/L	-	<0.20	0.20	8024629	
Total Xylenes		ug/L	72	<0.20	0.20	8024629	
Surrogate Reco	overy (%)						
4-Bromofluoro	benzene	%	-	99		8024629	
D4-1,2-Dichlor	oethane	%	-	107		8024629	
D8-Toluene		%	-	95		8024629	
No Fill	No Exceedance						
Grey	Grey Exceeds 1 criteria policy/level						
Black Exceeds both criteria/levels							
RDL = Reportable Detection Limit							
QC Batch = Qua	QC Batch = Quality Control Batch						
Criteria: Ontari	o Reg. 153/04 (Amended	April 15	, 2011)				
Table 1: Full De	Table 1: Full Depth Background Site Condition Standards						
Ground Water	- All Types of Property Use	es					

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	STE131 MW22-2 Water					Collected: Shipped: Received:	2022/05/30 2022/05/30
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	8021671	N/A	2022/06/03	Automate	d Statchk

Methylnaphthalene Sum	CALC	8021671	N/A	2022/06/03	Automated Statchk
Chloride by Automated Colourimetry	KONE	8028012	N/A	2022/06/02	Alina Dobreanu
Chromium (VI) in Water	IC	8024952	N/A	2022/06/01	Theodora Luck
Free (WAD) Cyanide	SKAL/CN	8027442	N/A	2022/06/01	Nimarta Singh
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8045521	N/A	2022/06/10	Anca Ganea
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8040113	2022/06/08	2022/06/08	Suleeqa Nurr
Mercury	CV/AA	8028969	2022/06/02	2022/06/02	Gagandeep Rai
Lab Filtered Metals by ICPMS	ICP/MS	8027861	2022/06/01	2022/06/02	Nan Raykha
PAH Compounds in Water by GC/MS (SIM)	GC/MS	8027493	2022/06/01	2022/06/02	Jonghan Yoon

Bureau Veritas ID: STE132 Sample ID: DUP Matrix: Water

Collected: 2022/05/30 Shipped: Received: 2022/05/30

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	8030191	N/A	2022/06/02	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	8027486	2022/06/01	2022/06/02	Suleeqa Nurr

Bureau Veritas ID: Sample ID: Matrix:	STE133 TRIP BLANK Water					Collected: 2022/05/30 Shipped: Received: 2022/05/30
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	l	CALC	8022559	N/A	2022/06/02	Automated Statchk
Volatile Organic Compour	nds in Water	GC/MS	8024629	N/A	2022/06/01	Narayan Ghimire

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Page 8 of 16

GENERAL COMMENTS

Each te	emperature is the	average of up to	hree cooler temperatures taken at receipt
	Package 1	14.0°C	
Sample Reporti	STE131 [MW22- ng limits were ad	2] : F24 Analysis: justed accordingly	Due to limited amount of sample available for analyses, a smaller than usual portion of the sample was used.
Results	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 21-455-100 Sampler Initials: NP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8024629	4-Bromofluorobenzene	2022/06/01	102	70 - 130	100	70 - 130	99	%		
8024629	D4-1,2-Dichloroethane	2022/06/01	103	70 - 130	102	70 - 130	101	%		
8024629	D8-Toluene	2022/06/01	97	70 - 130	97	70 - 130	96	%		
8027486	o-Terphenyl	2022/06/02	99	60 - 130	99	60 - 130	102	%		
8027493	D10-Anthracene	2022/06/01	97	50 - 130	92	50 - 130	98	%		
8027493	D14-Terphenyl (FS)	2022/06/01	84	50 - 130	84	50 - 130	89	%		
8027493	D8-Acenaphthylene	2022/06/01	90	50 - 130	85	50 - 130	88	%		
8030191	1,4-Difluorobenzene	2022/06/02	95	70 - 130	96	70 - 130	100	%		
8030191	4-Bromofluorobenzene	2022/06/02	102	70 - 130	102	70 - 130	100	%		
8030191	D10-o-Xylene	2022/06/02	105	70 - 130	110	70 - 130	97	%		
8030191	D4-1,2-Dichloroethane	2022/06/02	93	70 - 130	92	70 - 130	92	%		
8040113	o-Terphenyl	2022/06/08	93	60 - 130	93	60 - 130	92	%		
8045521	1,4-Difluorobenzene	2022/06/10	98	70 - 130	101	70 - 130	98	%		
8045521	4-Bromofluorobenzene	2022/06/10	96	70 - 130	94	70 - 130	97	%		
8045521	D10-o-Xylene	2022/06/10	98	70 - 130	97	70 - 130	92	%		
8045521	D4-1,2-Dichloroethane	2022/06/10	89	70 - 130	84	70 - 130	88	%		
8024629	1,1,1,2-Tetrachloroethane	2022/06/01	99	70 - 130	100	70 - 130	<0.50	ug/L	NC	30
8024629	1,1,1-Trichloroethane	2022/06/01	97	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
8024629	1,1,2,2-Tetrachloroethane	2022/06/01	98	70 - 130	95	70 - 130	<0.40	ug/L	NC	30
8024629	1,1,2-Trichloroethane	2022/06/01	99	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
8024629	1,1-Dichloroethane	2022/06/01	92	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
8024629	1,1-Dichloroethylene	2022/06/01	95	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
8024629	1,2-Dichlorobenzene	2022/06/01	91	70 - 130	91	70 - 130	<0.40	ug/L	NC	30
8024629	1,2-Dichloroethane	2022/06/01	98	70 - 130	98	70 - 130	<0.49	ug/L	NC	30
8024629	1,2-Dichloropropane	2022/06/01	95	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
8024629	1,3-Dichlorobenzene	2022/06/01	89	70 - 130	90	70 - 130	<0.40	ug/L	NC	30
8024629	1,4-Dichlorobenzene	2022/06/01	102	70 - 130	105	70 - 130	<0.40	ug/L	NC	30
8024629	Acetone (2-Propanone)	2022/06/01	107	60 - 140	106	60 - 140	<10	ug/L	NC	30
8024629	Benzene	2022/06/01	91	70 - 130	93	70 - 130	<0.20	ug/L	NC	30
8024629	Bromodichloromethane	2022/06/01	104	70 - 130	103	70 - 130	<0.50	ug/L	NC	30
8024629	Bromoform	2022/06/01	121	70 - 130	119	70 - 130	<1.0	ug/L	NC	30

Page 10 of 16

DS Consultants Limited Client Project #: 21-455-100 Sampler Initials: NP

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8024629	Bromomethane	2022/06/01	97	60 - 140	97	60 - 140	<0.50	ug/L	NC	30
8024629	Carbon Tetrachloride	2022/06/01	99	70 - 130	101	70 - 130	<0.19	ug/L	NC	30
8024629	Chlorobenzene	2022/06/01	93	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
8024629	Chloroform	2022/06/01	94	70 - 130	95	70 - 130	<0.20	ug/L	NC	30
8024629	cis-1,2-Dichloroethylene	2022/06/01	98	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
8024629	cis-1,3-Dichloropropene	2022/06/01	97	70 - 130	95	70 - 130	<0.30	ug/L	NC	30
8024629	Dibromochloromethane	2022/06/01	107	70 - 130	108	70 - 130	<0.50	ug/L	NC	30
8024629	Dichlorodifluoromethane (FREON 12)	2022/06/01	84	60 - 140	88	60 - 140	<1.0	ug/L	NC	30
8024629	Ethylbenzene	2022/06/01	87	70 - 130	88	70 - 130	<0.20	ug/L	NC	30
8024629	Ethylene Dibromide	2022/06/01	93	70 - 130	92	70 - 130	<0.19	ug/L	NC	30
8024629	Hexane	2022/06/01	95	70 - 130	96	70 - 130	<1.0	ug/L	NC	30
8024629	Methyl Ethyl Ketone (2-Butanone)	2022/06/01	112	60 - 140	111	60 - 140	<10	ug/L	NC	30
8024629	Methyl Isobutyl Ketone	2022/06/01	105	70 - 130	103	70 - 130	<5.0	ug/L	NC	30
8024629	Methyl t-butyl ether (MTBE)	2022/06/01	92	70 - 130	94	70 - 130	<0.50	ug/L	NC	30
8024629	Methylene Chloride(Dichloromethane)	2022/06/01	110	70 - 130	111	70 - 130	<2.0	ug/L	NC	30
8024629	o-Xylene	2022/06/01	88	70 - 130	88	70 - 130	<0.20	ug/L	NC	30
8024629	p+m-Xylene	2022/06/01	90	70 - 130	91	70 - 130	<0.20	ug/L	NC	30
8024629	Styrene	2022/06/01	97	70 - 130	97	70 - 130	<0.40	ug/L	NC	30
8024629	Tetrachloroethylene	2022/06/01	84	70 - 130	86	70 - 130	<0.20	ug/L	NC	30
8024629	Toluene	2022/06/01	88	70 - 130	90	70 - 130	<0.20	ug/L	NC	30
8024629	Total Xylenes	2022/06/01					<0.20	ug/L	NC	30
8024629	trans-1,2-Dichloroethylene	2022/06/01	96	70 - 130	98	70 - 130	<0.50	ug/L	NC	30
8024629	trans-1,3-Dichloropropene	2022/06/01	93	70 - 130	91	70 - 130	<0.40	ug/L	NC	30
8024629	Trichloroethylene	2022/06/01	101	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
8024629	Trichlorofluoromethane (FREON 11)	2022/06/01	93	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
8024629	Vinyl Chloride	2022/06/01	94	70 - 130	96	70 - 130	<0.20	ug/L	NC	30
8024952	Chromium (VI)	2022/06/01	101	80 - 120	102	80 - 120	<0.50	ug/L	NC	20
8027442	WAD Cyanide (Free)	2022/06/01	90	80 - 120	92	80 - 120	<1	ug/L	NC	20
8027486	F2 (C10-C16 Hydrocarbons)	2022/06/02	102	60 - 130	102	60 - 130	<100	ug/L	NC	30
8027486	F3 (C16-C34 Hydrocarbons)	2022/06/02	107	60 - 130	109	60 - 130	<200	ug/L	NC	30
8027486	F4 (C34-C50 Hydrocarbons)	2022/06/02	104	60 - 130	104	60 - 130	<200	ug/L	NC	30

Page 11 of 16

DS Consultants Limited Client Project #: 21-455-100 Sampler Initials: NP

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8027493	1-Methylnaphthalene	2022/06/01	89	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
8027493	2-Methylnaphthalene	2022/06/01	86	50 - 130	83	50 - 130	<0.050	ug/L	NC	30
8027493	Acenaphthene	2022/06/01	84	50 - 130	83	50 - 130	<0.050	ug/L	3.1	30
8027493	Acenaphthylene	2022/06/01	82	50 - 130	81	50 - 130	<0.050	ug/L	NC	30
8027493	Anthracene	2022/06/01	85	50 - 130	84	50 - 130	<0.050	ug/L	NC	30
8027493	Benzo(a)anthracene	2022/06/01	93	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
8027493	Benzo(a)pyrene	2022/06/01	79	50 - 130	77	50 - 130	<0.0090	ug/L	NC	30
8027493	Benzo(b/j)fluoranthene	2022/06/01	86	50 - 130	86	50 - 130	<0.050	ug/L	NC	30
8027493	Benzo(g,h,i)perylene	2022/06/01	92	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
8027493	Benzo(k)fluoranthene	2022/06/01	83	50 - 130	83	50 - 130	<0.050	ug/L	NC	30
8027493	Chrysene	2022/06/01	89	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
8027493	Dibenzo(a,h)anthracene	2022/06/01	86	50 - 130	83	50 - 130	<0.050	ug/L	NC	30
8027493	Fluoranthene	2022/06/01	92	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
8027493	Fluorene	2022/06/01	87	50 - 130	85	50 - 130	<0.050	ug/L	NC	30
8027493	Indeno(1,2,3-cd)pyrene	2022/06/01	93	50 - 130	92	50 - 130	<0.050	ug/L	NC	30
8027493	Naphthalene	2022/06/01	80	50 - 130	78	50 - 130	<0.050	ug/L	NC	30
8027493	Phenanthrene	2022/06/01	89	50 - 130	87	50 - 130	<0.030	ug/L	NC	30
8027493	Pyrene	2022/06/01	92	50 - 130	90	50 - 130	<0.050	ug/L	NC	30
8027861	Dissolved Antimony (Sb)	2022/06/02	105	80 - 120	102	80 - 120	<0.50	ug/L		
8027861	Dissolved Arsenic (As)	2022/06/02	100	80 - 120	97	80 - 120	<1.0	ug/L		
8027861	Dissolved Barium (Ba)	2022/06/02	102	80 - 120	99	80 - 120	<2.0	ug/L		
8027861	Dissolved Beryllium (Be)	2022/06/02	107	80 - 120	104	80 - 120	<0.40	ug/L		
8027861	Dissolved Boron (B)	2022/06/02	105	80 - 120	99	80 - 120	<10	ug/L		
8027861	Dissolved Cadmium (Cd)	2022/06/02	102	80 - 120	99	80 - 120	<0.090	ug/L		
8027861	Dissolved Chromium (Cr)	2022/06/02	97	80 - 120	96	80 - 120	<5.0	ug/L		
8027861	Dissolved Cobalt (Co)	2022/06/02	99	80 - 120	97	80 - 120	<0.50	ug/L		
8027861	Dissolved Copper (Cu)	2022/06/02	99	80 - 120	95	80 - 120	<0.90	ug/L		
8027861	Dissolved Lead (Pb)	2022/06/02	100	80 - 120	97	80 - 120	<0.50	ug/L		
8027861	Dissolved Molybdenum (Mo)	2022/06/02	107	80 - 120	103	80 - 120	<0.50	ug/L		
8027861	Dissolved Nickel (Ni)	2022/06/02	94	80 - 120	93	80 - 120	<1.0	ug/L		
8027861	Dissolved Selenium (Se)	2022/06/02	99	80 - 120	95	80 - 120	<2.0	ug/L		

Page 12 of 16

DS Consultants Limited Client Project #: 21-455-100 Sampler Initials: NP

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	2
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8027861	Dissolved Silver (Ag)	2022/06/02	103	80 - 120	99	80 - 120	<0.090	ug/L		
8027861	Dissolved Sodium (Na)	2022/06/02	98	80 - 120	91	80 - 120	<100	ug/L		
8027861	Dissolved Thallium (TI)	2022/06/02	102	80 - 120	96	80 - 120	<0.050	ug/L		
8027861	Dissolved Uranium (U)	2022/06/02	100	80 - 120	95	80 - 120	<0.10	ug/L		
8027861	Dissolved Vanadium (V)	2022/06/02	96	80 - 120	93	80 - 120	<0.50	ug/L		
8027861	Dissolved Zinc (Zn)	2022/06/02	96	80 - 120	94	80 - 120	<5.0	ug/L		
8028012	Dissolved Chloride (Cl-)	2022/06/02	NC	80 - 120	104	80 - 120	<1.0	mg/L	2.4	20
8028969	Mercury (Hg)	2022/06/02	89	75 - 125	97	80 - 120	<0.10	ug/L	NC	20
8030191	Benzene	2022/06/02	91	50 - 140	93	50 - 140	<0.20	ug/L	NC	30
8030191	Ethylbenzene	2022/06/02	101	50 - 140	105	50 - 140	<0.20	ug/L	NC	30
8030191	F1 (C6-C10) - BTEX	2022/06/02					<25	ug/L	11	30
8030191	F1 (C6-C10)	2022/06/02	85	60 - 140	90	60 - 140	<25	ug/L	11	30
8030191	o-Xylene	2022/06/02	96	50 - 140	102	50 - 140	<0.20	ug/L	1.9	30
8030191	p+m-Xylene	2022/06/02	97	50 - 140	102	50 - 140	<0.40	ug/L	0.14	30
8030191	Toluene	2022/06/02	93	50 - 140	96	50 - 140	<0.20	ug/L	NC	30
8030191	Total Xylenes	2022/06/02					<0.40	ug/L	0.71	30
8040113	F2 (C10-C16 Hydrocarbons)	2022/06/08	NC	60 - 130	106	60 - 130	<100	ug/L		
8040113	F3 (C16-C34 Hydrocarbons)	2022/06/08	NC	60 - 130	108	60 - 130	<200	ug/L		
8040113	F4 (C34-C50 Hydrocarbons)	2022/06/08	106	60 - 130	106	60 - 130	<200	ug/L		
8045521	Benzene	2022/06/10	98	50 - 140	99	50 - 140	<0.20	ug/L	NC	30
8045521	Ethylbenzene	2022/06/10	106	50 - 140	111	50 - 140	<0.20	ug/L	NC	30
8045521	F1 (C6-C10) - BTEX	2022/06/10					<25	ug/L	NC	30
8045521	F1 (C6-C10)	2022/06/10	98	60 - 140	95	60 - 140	<25	ug/L	NC	30
8045521	o-Xylene	2022/06/10	103	50 - 140	105	50 - 140	<0.20	ug/L	NC	30
8045521	p+m-Xylene	2022/06/10	105	50 - 140	109	50 - 140	<0.40	ug/L	NC	30
8045521	Toluene	2022/06/10	96	50 - 140	99	50 - 140	<0.20	ug/L	NC	30

DS Consultants Limited Client Project #: 21-455-100 Sampler Initials: NP

			Matrix	Spike	SPIKED I	BLANK	Method B	International State RPD International State UNITS Value (%) QC Limit .40 ug/L NC 30 curacy.)	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8045521	Total Xylenes	2022/06/10					<0.40	ug/L	NC	30
Duplicate: Pai	ired analysis of a separate portion of the same sample.	Jsed to evaluate t	he variance in t	he measurem	ent.					
Matrix Spike:	A sample to which a known amount of the analyte of in	terest has been ad	dded. Used to e	valuate sampl	e matrix interfe	erence.				
Spiked Blank:	A blank matrix sample to which a known amount of the	analyte, usually fr	om a second so	ource, has bee	n added. Used t	to evaluate me	ethod accuracy.			
Method Blank	:: A blank matrix containing all reagents used in the ana	lytical procedure.	Used to identify	y laboratory co	ontamination.					
Surrogate: A	pure or isotopically labeled compound whose behavior	mirrors the analyte	es of interest. U	Ised to evaluat	te extraction eff	ficiency.				
NC (Matrix Spi recovery calcu	ike): The recovery in the matrix spike was not calculated ılation (matrix spike concentration was less than the nat	. The relative diffe ive sample concer	erence betweer ntration)	the concentra	ation in the pare	ent sample an	d the spike amou	unt was too	small to permit	a reliable
NC (Duplicate	RPD): The duplicate RPD was not calculated. The conce	ntration in the san	nple and/or dup	olicate was too	low to permit	a reliable RPD	calculation (abs	olute differ	ence <= 2x RDL).	

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

auistin Camiere

Cristina Carriere, Senior Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T1-GW

Detection Limit Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
MW22-2	STE131-07	F2 (C10-C16 Hydrocarbons)	150	<300	300	ug/L
MW22-2	STE131-07	F3 (C16-C34 Hydrocarbons)	500	<600	600	ug/L
MW22-2	STE131-07	F4 (C34-C50 Hydrocarbons)	500	<600	600	ug/L
The exceedance summary table applicable regulatory guidelines.	is for information purp	oses only and should not be cons	dered a comprehe	ensive listing or	statement of	conformance to

INVOICE TO: Company Name: #32616 DS Consultants Limited							REPO	RT TO:			_		P	PROJECT INFORMATION:				Labora	tory Use On	ly:	
pany Name:	#32616 DS Con	sultants Limited	a striken	C	mpany N	ame: D	S Cons	witch 15				Quotation #:		C20545	15.21		Bureau Veritas Job #:			Bottle O)rder i
ition:	Accounts Payabl	e Linit 16		At	tention;	Kirs	Kirstin Olsen							21 455 100							
955:	Vaughan ON L4H	1 0K8	in the first	Ad	idress;				5		7 1	Project: Project Nam	e	21-455-100			2	COC #:		881142 Project Manager:	
	(905) 264-9393	Fax:		Te	st.	Fax								THE OWNER T			B 111 BUT				unagi
;	accounting@dsc	onsultants.ca;bindu.g	oel@dscons	sultant Er	nail:	Kirs	tin. Olsen	@dsa	Sal.	trats	.Ch	Sampled By		Nori	na P			C#881142-01-01		Ashton G	Gibso
MOE REC	ULATED DRINKIN	G WATER OR WATER	INTENDED F	FOR HUM	AN CON	SUMPTION F CUSTODY	MUST BE			1	AN	ALYSIS REQU	JESTED (PL	LEASE BE SPE	CIFIC)		Carlo and and a	Turnaround 1 Please provide adv	Time (TAT) Requ	ired:	
Paquilati	on 153 (2011)		ther Regulation	R R R R R R R R R R R R R R R R R R R		Special In	staustions	cle):	Pkg								Regular (S	Standard) TAT:	ance nonce for te	isin projects	
ble 1	Res/Park Mediur		Sanitary Sewer	r Bylaw		Special in	14	1	1-F4	14			(will be applied if Rush TAT is not specified):								
able 2 Ind/Comm Coarse Reg 558. Storm Sewer Bylaw				lylaw				leas	norge	42 SH		EXF					Please note:	I = 5-7 Wonling days for n Standard TAT for certain t	nost tests ests such as BOD	and Diovins/Fu	mas
e3	Agri/Other For RS		lunicipality		-			d) pe	als & I	s by	ø	s, BT					days - contac	t your Project Manager fo	r details.		· unit
		Other	J Reg 406 Tabl					Filter	3 Meta	3 VOC	S PAH	S PHC		-			Job Specifi Date Require	c Rush TAT (if applies t	o entire submiss Time R	ion) lequired:	
	Include Criteri	a on Certificate of Analy	ysis (Y/N)?	V				M	9 153	g 153	g 153	g 153			14	- 11 -	Rush Confirm	nation Number:	leal b		
Sampl	e Barcode Label	Sample (Location) Ide	ntification	Date San	pled	Time Sampled	Matrix		O.Re (Wir)	O.Re	O.Re	O.Re					# of Bottles		Comments	10 TOF #)	-
		MW22-2		Men	(0	(1)	ALC: N	X		X						-2				_
				19930	122	PM	60	2. 0	1		A	N	_		-		Ø				
		DUP					1	1000				×			1.54		2				
			1		-			and there		V					-		0				_
		Trip Blar	N	V		V	V			75							2	- N.			
							99	-728										2		1	
			_		-				-												
																	1				
			_		-			1.1		1											_
	a la farma																				
								1.2.3										30-Ma	y-22 13-1	3	
										-				_	+ +			Ashton Gibs	on	5	
								No. Con									1 1				
																		C2E590	9		
								S = H									R	JM END	1.1600		
								1 11											-1002		
	RELINQUISHED BY: (S	ignature/Print)	Date: (YY/	MM/DD)	Time	>	RECEIVED	BY: (Signature)	Print)		Date: (YY/	MM/DD)	Time	# ja	rs used and		Labora	tory Use Only			
Na	elui		27/2	120	PM	de	- Ravi	MUSCI	N	2	2022	05 30	131	3 10	t submitted	Time Sensitive	Temperat	ure (%C) on Recei	Custody Seal	Yes	_
				9			1					1					131	14/15 -	Intact		_

Appendix D

Phase Two Conceptual Site Model

Introduction

The Phase Two Conceptual Site Model (CSM) has been prepared for the Site described as Part of Lot 20, Concession 2, Oakville, Ontario. This Phase Two CSM has been prepared based on the following environmental site assessment reports:

- *"Phase One Environmental Site Assessment, "Part of Lot 20, Concession 2, Oakville, Ontario"* dated February 22, 2022, prepared for ARGO Neyagawa Corporation, prepared by DS Consultants Ltd. (DS).
- "Phase Two Environmental Site Assessment, "Part of Lot 20, Concession 2, Oakville, Ontario" dated July 15, 2022, prepared for ARGO Neyagawa Corporation, prepared by DS Consultants Ltd.

The Phase Two CSM is comprised of the following figures and text:

- Figure 1 Site Location Plan
- Figure 2 Phase Two Property Site Plan
- Figure 3 Phase Two Study Area
- Figure 4 PCA within Phase Two Study Area
- Figure 5 Borehole Location Plan with APECs
- Figure 6A Groundwater Elevations Contours and Flow Direction
- Figure 6B Geological Cross Section
- Figure 7A Summary of Metals and ORPs in Soil
- Figure 7B Summary of PHCs + BTEX in Soil
- Figure 7C Summary of VOCs in Soil
- Figure 7D Summary of PAHs in Soil
- Figure 7E– Summary of OCPs in Soil
- Figure 8A Summary of Metals and ORPs in Groundwater
- Figure 8B Summary of PHCs in Groundwater
- Figure 8C Summary of VOCs in Groundwater
- Figure 8D Summary of PAHs in Groundwater
- Figure 9 Pathways and Receptors

The RSC Property is an irregularly shaped 11.29-hectare (27.90 acre) parcel of land situated within a mixed agricultural, commercial and residential neighbourhood in the Town of Oakville, Ontario. The RSC Property is located on the northwest corner of the intersection of Neyagawa Boulevard and Burnhamthorpe Road West.
The Phase One ESA indicated that the Phase One Property appears to have been part of an agricultural and residential homestead prior to 1880. A small orchard was observed in the County Atlas adjacent to the historical homestead. It is possible that environmentally persistent pesticides/herbicides were applied to the orchard. By 1934 the residential dwelling and orchard were no longer visible and the property was utilized as an active agricultural field. By 2013 the southwestern portion of the Site was leased as a storage area to a landscaping contractor. The potentially contaminating activities associated with the historical land use included the presence of fill material of unknown quality and the application of pesticides.

The neighboring properties adjacent to the RSC Property appear to have been used for residential and agricultural purposes since the prior to the 1880s and for residential and agricultural purposes from the early 2000s.

The Phase Two ESA was completed in conjunction with the geotechnical and hydrogeological investigations and involved the advancement of nine (9) boreholes (MW22-1A, MW22-1B, MW22-2, MW22-9, MW22-10, BH22-11, MW22-12, BH22-13 and MW22-14), which were completed between May 18 to May 25, 2022 and an additional six (6) boreholes (BH22-3 to BH22-8) between May 17 to May 19, 2022. The boreholes were advanced to a maximum depth of 17.0 metres below ground surface (mbgs) under the supervision of DS personnel. Groundwater monitoring wells were installed in seven (7) of the boreholes.

The soil and groundwater analytical results were compared to the "Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/ Parkland/ Institutional Use with coarse-textured soils" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011.

It is noted that a total of nineteen (19) grain size analyses were conducted as a part of this investigation. The results of the grain size analyses indicated that more than two-thirds of the soils encountered were medium to fine textured. However, for the purpose of determining the Site Condition Standards the more conservative coarse grain standards are applied.

- I. Description and Assessment of:
 - A. Areas where potentially contaminating activity has occurred

A summary of the PCAs considered to be contributing to APECs on the RSC Property is provided in the table below.

Table 1-1. Summary	i of DCAs Contributing to ADECs
	ULL CAS CONTRIDUCING TO ALLOS

PCA	PCA Description (Per. Table 2,	Description	Rationale
Item.	Schedule D of O.Reg. 153/04)		
1	PCA-30: Importation of Fill Material of Unknown Quality	Historic aerial imagery and CVD's (2016) report indicates that the southwestern portion of the Site – which was reportedly leased to a landscaping company – was occupied by more than ten soil stockpiles of varying sizes over time. CVD (2016) describes the material as imported concrete, asphalt debris and miscellaneous granular material. The landscaping company was not available to identify the source of the soil.	PCA is on-Site
2	N/S - Storage of miscellaneous construction material and debris	Historic aerial imagery indicates that the southwestern portion of the Site – which was reportedly leased to a landscaping company – was occupied by various vehicles as well as miscellaneous materials and refuse.	PCA is on-Site
4	PCA-30: Importation of Fill Material of Unknown Quality	During the site reconnaissance CVD (2016) observed black granular material stored on the south adjacent property to be encroaching onto the Phase One Property.	PCA is on the south adjacent property.
7	PCA-40: Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications	According to the Halton County Atlas from 1880, the Phase One Property appears to have a residential dwelling with an orchard located along the western boundary of the Site.	PCA is on-Site
9	PCA-30: Importation of Fill Material of Unknown Quality	In the 1934 aerial imagery, the residential dwelling and orchard are no longer visible on the Phase One Property. However, the area where the historic residential dwelling and orchard were appears to be graded.	PCA is on the south adjacent property.
10	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	The south adjacent Property was occupied by a residential dwelling and a Quonset Hut at the time of the site	PCA is on the south adjacent property.

PCA Item.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rationale
		reconnaissance, and was used for residential and commercial purposes. There were two (2) ASTs on the property.	

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

B. Areas of potential environmental concern

Six (6) APECs were identified to be present on the RSC Property through the completion of the Phase One ESA. A summary of the APECs identified, and the associated COPCs is provided in the table below.

Table 1 2. Cummer	u of ADECo idoptified	on the DCC Dronerty
Table 1-2: Summary	V OF APEUS IDENTITED	OF THE RAC PLODELLY

Area of Potential Environment al Concern	Location of Area of Potential Environment al Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminant s of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1A	Southwestern portion of the Property	#30: Importation of Fill Material of Unknown Quality	On Site PCA-1	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR, PAHs	Soil
APEC-1B	Southwestern portion of the Property	#30 – Importation of Fill Material of Unknown Quality	On Site PCA-4	Metals, PAHs	Soil
APEC-1C	Southern portion of the Property	#30 – Importation of Fill Material of Unknown Quality	On Site PCA-9	Metals, As, Sb, Se, B-HWS, CN-, electrical conductivity, Cr (VI), Hg, Iow or high pH, SAR, PAHs	Soil
APEC-2	Southwestern portion of the Property	PCA N/S - Storage of miscellaneous construction material and debris	On Site PCA-2	PHCs, VOCs, BTEX, Metals, As, Sb, Se, B- HWS, CN-, electrical conductivity, Cr (VI), Hg, low or high pH, SAR	Soil and groundwater
APEC-3	Western portion of the Property	#40: Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents)	On Site PCA-7	Metals, As, Sb, Se, CN-, OCPs	Soil

		Manufacturing, Processing, Bulk Storage and Large-Scale Applications			
APEC-4	Southern	#28 - Gasoline and	Off Site	PHCs, VOCs,	Groundwater
	Portion of the	Associated Products	PCA-10	PAHs	
	Property	Storage in Fixed Tanks			

Notes:

BTEX – Benzene, Toluene, Ethylbenzene and Xylene.

PAHs – Polycyclic Aromatic Hydrocarbons

PHCs – Petroleum Hydrocarbon

OCPs – Organochloride Pesticides

In order to investigate the APECs identified on the RSC Property, the following soil samples were submitted for chemical analysis.

Table 1 2. Summary	1 of Coil Complee	Submitted from	the DSC Droperty
Table 1-5. Summary	אווטנייט איז	SUDITILLEU ITOTT	

APEC	Description	COPCs	COPCs Media		Samples Analysed	Parameter Analyzed
	Historic aerial imagery and CVD's (2016) report indicates that the southwestern portion of the Site -				SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B- HWS, EC,SAR
	which was reportedly leased to a landscaping company - was	PHCs, VOCs, BTEX,		MW22-1B	SS2	PAHs
	occupied by more than ten soil	Metals, As,			DUP 1	PAHs
APEC-1A	time. CVD (2016) describes the	HWS, CN-, Cr	Soil		SS3	PHCs & BTEX, VOCs
	material as imported concrete, asphalt debris and miscellaneous	(VI), Hg, low or hiah pH,			SS1	PAHs
granular material. The landscaping company was not available to identify the source of the soil.	SAR, PAHs		BH22-5	SS2	PHCs & BTEX, VOCs	
APEC-1B	During the site reconnaissance CVD (2016) observed black granular material stored on the south adjacent property to be encroaching onto the southeastern portion of the Phase One Property.	Metals, PAHs	Metals, PAHs Soil BH22-4		SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR, PAHs
	In the 1934 aerial imagery, the residential dwelling and orchard are no longer visible on the Phase				SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR, PAHs
APEC-1C One Property where the h dwelling ai appeared	One Property. However, the area where the historic residential dwelling and orchard were appeared to be graded.	conductivity, Cr(VI), Hg, Iow or high pH, SAR, PAHs	Soil	BH22-6	SS2	PHCs & BTEX, VOCs
	Historic aerial imagery indicates	PHCs, VOCs, BTEX,			SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR
	the Site - which was reportedly	Metals, As, Sb, Se, B-,	Soil	MW22-1B	SS2	PAHs
APEL Z	was occupied by various vehicles	HWS, CN-, Cr (VI), Hg, low or high pH,	2011		DUP 1	PAHs
	as well as miscellaneous materials and refuse				SS3	PHCs & BTEX, VOCs
	materials and refuse.			BH22-5	SS1	PAHs

					SS2	PHCs & BTEX, VOCs
	According to the Halton Country			BH22-3	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR, OCPs
Allas from 1880, the Phase One Property appears to have a residential dwelling with an orchard located along the western boundary of the Site.	Property appears to have a residential dwelling with an	Metals, As, Sb, Se, CN-, OCPs	Soil	BH22-7	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR, OCPs
			BH22-8	SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR	
		PHCs, VOCs, BTEX, Metals, As, Sb, Se, B-, HWS, CN-, Cr (VI). Hg, Jow			SS1	PAHs
The south adjacent prop occupied by a residentia					DUP 3	PAHs
	The south adjacent property was occupied by a residential dwelling		Soil	MW22-2	SS2	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR
APEC 4	and a Quonset Hut at the time of the site reconnaissance, and was				SS3	PHCs & BTEX, VOCs
	used for residential and				SS4	PHCs & BTEX, VOCs
two (2) ASTs o	two (2) ASTs on the property.	or high pH,			DUP 4	VOCs
		SAR, PAHS	Groundwater	MW22-2	MW22-2	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B- HWS, EC, SAR, PHCs, BTEX, PAHs

Groundwater samples were collected from monitoring wells MW22-2 to assess the groundwater quality with respect to APEC-4 as follows:

Table 1-4: Summary of groundwater	samples submitted on the RSC Property
-----------------------------------	---------------------------------------

Well ID	Well	Scr (r	een Interval masl)	Sample Date	Parameter Analyzed	APEC Investigated
MW22-2	177.39	-	180.44	30-May-22	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, Na, CI-, PHCs, BTEX, PAHs	APEC 4
MW22-2	177.39	-	180.44	28-Jun-22	PHCs	APEC 4

C. <u>Any subsurface structures and utilities on, in or under the Phase Two</u> <u>Property that may affect contaminant distribution and transport</u>

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

Underground utilities were not identified at the Phase One Property. Plans were not available to confirm the depths of these utilities, however if present they are estimated to be installed at depths ranging from less than 3 metres below ground surface.

The depth to groundwater at the Phase One Property has been calculated at depths of between 0.80 to 8.43 mbgs; therefore, the utility corridors (if present) are may intersect the water table and act as preferential pathways for contaminant distribution and transport in the event that shallow subsurface contaminants exist at the Phase One Property.

- II. Description of, and as appropriate, figures illustrating, the physical setting of the Phase Two Property and any areas under it including:
 - A. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard</u> <u>investigated</u>

A surficial topsoil layer approximately 100 to 250 mm thick was encountered BH22-3, BH22-8, MW22-10 and BH22-11. Fill material was encountered in boreholes MW22-1A, MW22-1B, MW22-2 and BH22-5 and it consisted of clayey silt, sandy silt and sand without any indication of deleterious materials. The fill material was generally heterogeneous and ranged in thickness from 1.0 to 1.5 mbgs. Re-worked native soils were encountered in boreholes MW22-9, MW22-10, BH22-11, MW22-12, BH22-13, MW22-14. The reworked native soils and native overburden material encountered below the fill material generally consisted of clayey silt till/sandy silt till/ silty clay till and extended to depths ranging from 4.6 to 13.7 mbgs. Shale Bedrock was encountered in MW22-1B, MW22-2 and MW22-14 at a depth of between 12.2 to 15.2 mbgs.

The borehole locations are depicted on Figure 5. A visual representation of the stratigraphy investigated is presented on the cross-sections provided in Figure 6B.

B. <u>Hydrogeological Characteristics, including aquifers, aquitards and, in</u> <u>each hydrostratigraphic unit where one or more contaminants is present</u> <u>at concentrations above the applicable site condition standards, lateral</u> <u>and vertical gradients</u>

A total of seven (7) monitoring wells (MW22-1A, MW22-1B, MW22-2, MW22-9, MW22-10, MW22-12 and MW22-14) were installed on the RSC property.

MW22-1A, MW22-9, MW22-12, MW22-14 were screened at depth ranging from 6.1 – 9.1 mbgs within silty clay till unit encountered. MW22-1B was screened at depth ranging from 12.2-15.2 mbgs within the sandy silt till/clayey silt till unit encountered on the lower water bearing zone. The depth to groundwater was found to range between 0.80 and 8.43 mbgs on June 8, 2022. Generally, the groundwater elevation was found to range from 174.12 to 180.86 masl in aquifer investigated.

Based on the groundwater elevations calculated, the flow direction on the upper groundwater unit is interpreted to be south to southeast, towards the Osenego Creek. The groundwater elevation contours, and flow direction are presented on Figure 5.

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on June 08, 2022.

Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Clayey Silt/Silty Clay Till	Minimum: 0.0001347 Average: 0.01607 Maximum: 0.05631

The vertical hydraulic gradient was calculated based on the groundwater levels recorded on June 08, 2022.

Summary of Vertical Hydraulic Gradient Calculations

Monitoring Well Nest	Calculated Vertical Hydraulic Gradient
MW22-1A MW22-1B	0.9472 (downward)

C. <u>Depth to bedrock</u>

Shale bedrock was encountered at borehole termination depth in three (3) of the advanced boreholes, MW22-1B, MW22-2 and MW22-14, at depths ranging between 12.2 and 15.2 mbgs.

D. Approximate depth to water table

The depth to groundwater in the shallow monitoring wells (MW22-1A, MW22-2, MW22-8, MW22-10, MW22-12 and MW22-14) was found to range between 0.80 to 8.43 on June 08, 2022.

E. <u>Any respect in which section 41 or 43.1 of the regulation applies to the</u> property

Section 35

Section 35 is not applicable to the Phase Two Property, permission to use the non-potable groundwater standards was not obtained from Halton Country.

Section 41

A total of eleven (11) pH samples were collected and submitted for analysis on the RSC Property.

Nine (9) pH samples were collected from depths of between 0 to 1.5m representing surficial soils. The pH values of surficial soils measured between 6.85 and 7.88, which are within the acceptable limits for non-sensitive sites.

Two (2) pH samples were collected from depths of between 2.3 to 2.9 m, representing subsurface soils. The pH values of the subsurface soils measured between 7.83 and 7.87 units, which is within the acceptable limits for non-sensitive sites.

There are no areas of natural significance on the Site, or within 30 m of the Site. As such the Site is not considered to be environmentally sensitive as defined by Section 41.

Section 43.1

Not applicable – the Site is not a shallow soil property, nor does it include a water body, nor is it within 30 metres of a water body.

F. <u>Areas where soil has been brought from another property and placed on</u>. <u>in or under the Phase Two Property</u>

No excess soil was placed on the Site.

G. <u>Approximate locations, if known, of any proposed buildings and other</u> <u>structures</u>

It is our understanding that redevelopment of the Site for residential purposes has been proposed, and that the development will feature a residential sub-division.

- III. Where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of
 - A. Each area where a contaminant is present on, in or under the Phase Two Property at a concentration greater than the applicable SCS

The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met.

B. <u>The contaminants associated with each of the areas</u>

The results of the chemical analyses conducted on soil and groundwater samples indicate that the applicable Site Condition Standards have been met.

C. Medium that contaminants were identified in

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

D. <u>Description and assessment of what is known about each of the areas</u>

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

E. <u>Distribution in which the areas of each contaminant is present in the</u> <u>area at a concentration greater than the applicable SCS, for each medium</u> <u>in which the contaminant is present, together with figures showing the</u> <u>distribution</u>

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

F. Anything known about the reason for the discharge of the contaminants present on, in or under the Phase Two Property at a concentration greater than the applicable SCS

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

G. Anything known about migration of the contaminants present on, in or under the phase two property at a concentration greater than the applicable SCS away from any area of potential environmental concern, including the identification of any preferential pathways

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

H. <u>Climatic or meteorological conditions that may have influenced</u> <u>distribution and migration of the contaminants, such as temporal</u> <u>fluctuations in groundwater levels</u>

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater. Therefore the potential effect of meteorological and climatic conditions on the migration of contaminants on the Phase Two Property is considered to be minimal.

I. <u>Information concerning soil vapour intrusion of the contaminants into</u> <u>buildings</u>

No volatile parameters were identified at concentrations greater than the applicable SCS, therefore vapour intrusion is not considered to be an exposure pathway at this time.

IV. Where contaminants on, in or under the Phase Two Property are present at concentrations greater than the applicable SCS, one or more cross-sections showing

- A. <u>The lateral and vertical distribution of a contaminant in each area where</u> <u>the contaminants are present at concentrations greater than the</u> <u>applicable SCS in soil, groundwater and sediment</u>
- B. Approximate depth to water table
- C. <u>Stratigraphy from ground surface to the deepest aquifer or aquitard</u> <u>investigated</u>
- D. <u>Any subsurface structures and utilities that may affect contaminants</u> <u>distribution and transport</u>

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.

- V. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable SCS for the contaminant, a diagram identifying, with narrative explanatory notes
 - A. The release mechanisms
 - B. Contaminant transport pathway
 - C. The human and ecological receptors located on, in or under the phase two property
 - D. Receptor exposure points
 - E. Routes of exposure

No contaminants were identified at concentrations greater than the applicable SCS in soil or groundwater.